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I. INTRODUCTION 

As is well known in Peierls systems wi.th half-filled bands 
the ground state is two-fold degcner8tive.Thi:s degeneration ap­
pears as a result of the lattice dimerization which is caused by 
the structural phase transition due to the electron-phonon inte­
raction (see ., e. g. '. 11,2/). Therefore tlle symmetry ·0£ the system 
is broken spontaneously and besides phonons the existence of so­
liton-type excitations (kinks) is possible I!~/. The lattice 
distortion at the n-th site has the form: 

- (-1) - 80 I/J D' 9 D .. ~ (0) _ th D a _ • (I )eoV2 
where, ~ is the distortion due to the dimerization; a, the. lat­
tice constant; and eo. the soliton width. The corresponding so­
litons are amplitude solitons contrary to che phase solitClns 
which are usually used to describe transitions in incommensura­
te structures and charge-density-waves behavior. The effective 
Hamiltonian of the system described by distortions 'g corres­
ponds to the lattice scalar 94-model. 

The energy of the chain with a soliton is enhanced by a 901i ­
ton energy E. and thus the appearance of soli tons in the gr ound 
st a te is not profitabl e . But i n the presence of donor or accep­
tor impur ities t he exces s elect r on s or holes can lead to t he 
crea tion of charged (.± e ) solitons if E . < 6 . where fl i s a ha1£­
wid th of the electronic spectrum gap i n the dimerized s tate / 3•7/. 
In such a way the soli t on l att ice i s formed which can be shif­
t ed along the chain wi t hout any cost of energy thus fo rming a 
conducting s t ate of the system. 

Bak and Pokrovsky 151 have proposed the mechanism of the tran­
s ition to such conducting state according to which t he transi­
t i on takes place when at some critical concentrat i on of excesS 
electrons (solitons), ocr' the soliton-interaction energy beco­
mes equal to the energy of soliton pinning to the lattice. Howe­
ver a more intensive pinning effect is caused by structural de­
fects among which at least dopant impurities should be taken 
into account as they lead to the soliton creation. Different 
aspects of charge-density-waves pinning to defects wereconside­
red in many papers (see, e . g., Il.a.6~/) . 

In this paper we investigate the influence of impurities on 
amplitude-soliton properties in one-dimensional 1/J4-model of 
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Peierls sys tems with nearly hal f -fil l ed bands . In Sec . 2 t he so ­
liton- solut i on change near t he impurity is studied with t he 
help of the pert urbat ion theor y . Two type s of impur ities are 
cons idered : symmetry-conserving and synmetry-breaking impuri­
t ies . The sol i t on lat tice is investigat ed in Sec . 3. The k i nk­
impurity binding energy and a cr i ti cal concentration a t whi ch 
ki nks f orm an unpi nned conduc t i ng latt i ce ar e calculated. 
A limi t ing veloc i ty of soli t on pass ing over the impur ity i s 
obta i ned and est imation of depinning t emperature is given. 

2. IMPURITY I NFLUENCE ON A KI NK 

When the concentrat i on of impuriti e s is ~mal l one can cons i ­
der t hem as isolated. Thus in this section we will i nvestigate 
the problem of one impurity assuming hereafter thl' udditive 
contribut ion o f impurities with concentration p. 

We write the model Hamiltonian in lhe conLinUlII 1 imi t and 
i n dimensionless variables in the form: 

2 
H :; rdx(.!. (it) _..l(~~/ _.!P!..+£ _I -l-V(x)(t/I-ct>d)2). (2)

2 at 2 ax 2 4 I<:;-00 

The interaction of ki nks with t he impurity cnn he dCBcribed by 
the attractive s hort-range pot ential: 

Vex) ,. a8 (% - Xp) • (3) 

where 1p is the i mpurity coordinate. In the case of conservi ng­
symmetry impurity (defec t ) its equilibrium position is def ined 
by ¢d(1~ '" </>d = O. I n t he cri t ical phenomena approach one con­
nects this type defec t wi t h t h e "random bond" or lhe "random 
temperature " prob l em /9/ . In t he ca se of breakin~-symm('try de- .. 
fec ts the equilibrium position is different from zero (</>d to). 
Thi s corres ponds t o t he presence of a random field in the sys ­
tem. Note that in t he cas e of breaking-symmetry defects there 
t ake place both a "random field" and a "random bond". 

The equation of mo t i on f or displacive fields has the form: 

.. 3' 
</> - </> " - </> + </> + y</> = - V (x) (</> - ¢ d ) • (4) 

The damp ing constant y describes phenomenologically the s t ohas­
t ic character of kink motion be tween their collisions. 

To describe t he kink-defect i nter action let us represent 
a displacement </>(%) as a sum of an equilibrium position ¢o(x) 
and a fluctua tion u(x, t) : 

</>(x, t) = ¢o (x) + u(x, t) . (5) 
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The function ¢ o(x) i s the stationary par tial so lut i on of t he ho ­
mogeneous Eq . (4) and has the form ( I). Rep lacing in Eq . ( I ) the 
variable na/g0 by 1 we write: 

</> 0 (x) '" th x • (6 ) 

..)2 


Substitute now Eq.(S) into Eq .(4) and obtain the equation f or 
u(x, t) in t he 1inear approximation : 

.. 2 .I. • 
U - u" + (2 - S cb - -=) u + y u = - V(%) U - V(x) (</>o - ¢ d)' (7) 


"';2 

In order to solve Eq.(7) we use the complete orthonormal set 
(WI of eigenfunctions of t he self-adjoint l inear operator L: 

Lqt '= -1p" + [2 - 3eb-2 _ X_l'l'_w 2 '1J1. (8)

"';2 


The normalized solutions of this equation have the f orm: 

S -2 x 2 
1{I0 (x) =...;--=- eh - , w 0 - 0 , (9a) 

4..)2 "';2 
(9b)ru () . • I -3- th x ..-1 x 2 a 

T 1 % = v -- -- e.. -- w .. ­
2..)2 ..)2' ..)2' 1 2' 

'qI (x) = e i'u./..j2 [3 tb 2 (1/..;2) - 81t tb (1/..)25 - (1 + k2
)] • w~- 2 + k

2 
(9c) 

It (2rr(l + k2)(4+ k2» 1/2 2' 

Then the displacement u(x,t) is defined by the expansion: 

00 

u(%. t) • ~o (t) qto (%) +,91 el) 'PI (1) + f eli ~ k(t) "'It (x) • (10)
- .. 

Substituting Eq.(IO) into Eq.(7) and using Eq. (8) and the 
orthonormal properties of the basis (9) we obtain the system of 
equations for coefficients (,91: 

;io +ytio+(w~ +Aoo)tlo+A01~1 + jdqtl AO C:-~O+DO¢d' (1Ia) 
-00 q q 

.. • 2 .. 

tl 1 +ytl1 +(w1 + A ll ),91 +AI0~O + fdqtlqAlq --~I + Dl</>d' (lIb)
-.. 
.. 2 .. 

~k + )'~k + w lt,9k + A kO 110+ Au ~l + f dqtlqAltq :; - ~k + Dk ¢ d' (I Ie) 


-00 

where 

... 
'" f dxV(x)'t lJl •• (12)A Ja -.. 
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... 
D

j 
= f d.J: v(x) 'P ,* , ( 13) 

_00 I 

GO 

.«1 j = I d.J: V(x) ¢>o 'P,.. 0.6 == O.l.k). (14)
_00 I 

The partial sol~tion of the system of the inhomogeneous equa­
tions (II) one findes by using Fourier-transformation of tJ (r).j
Then in the weak kink-defect-interaction approximation {a < 1 ) 
we yield; 

(I)
13 j teu) "" - 2Ir(d i - D j ¢>d)6(eu) Q j (eu), ( 15) 

where 

'00 (eu) = [Eo (eu) _ A 10 A 10 1-1 
( \6a)

E 1leu) 

01 (r.l) ~ [E 1 (eu) _ A 10 A 10 ]-1 (16b)
EO (r.l) 

0k{r.l) ~ E~I (cu), (16c) 

E J' (eu) = - r.l 2 - iyeu ~ CU ~ .. A.., j .. 0.1. (17a)
J JJ 

EJr. (eu) = -eu 2 - iyw +r.l~ • (17b) 

In Eqs. ( 15)- ( I 7) W j are the eigenvalues in E(( s. (9) I1nd the 
matrix elements after calculations according to Eqt;. (12)-(14) 
with the help of Eq. (9) have the form: 

A _ I 3V2 Xo - Xp 2 ltO - lt
Uo - - v --'--flth ch- P ( 18a) 

8../2 ../2 

'1/ 3../"2 2 ltO - It P -1 Xo - x P
6 1 = ath ch_ (18b)

2 '1/2 ../2 

%0- X 
6 It = - a th P'P * (x - X ) ( 18c)../2 It 0 p , 

Do = '1/ S¥'2 a ch - 2 Xo - X p (19a)
8 '1/ 2 

'1/ 3 '1/2 Xo - Xp -1 x 0 - Xp
D } = - a th ch (1 9b ) 

2 yrE ../~ 

4 

Dk = a 'P :(l.o- :l ) • (J 9c ) 
p 

3../2 - 4 %0 - I. p
Aoo = - - a oh (20a)

8 '1/ 2 

All = 3y 2 a th2 Xo - xp cb-2 %0 - xp (20b ) 
4 "';2 ../2 ' 

CI [ If tb 4 ~I. P _ (8 _ 3k2) th2 x0 - xp + (1 + k 2) 2] 

Akl 
{! 

2fr(1 + It ~(4 + It 2) , (20c) 

3a %0- xp -' X0- X P (20d)Aol ~ - T Sh ../ 2 oh .j2 ' 

whe r e Xo is t he initial kink ' s posi t ion. 
Futher, using Eq . (1 5) we ob tai n : 

lJ~l )(r) ",-(L\ I - Dj rPd)'O j (0). (21) 

The general so lu t ion of the system of homogeneous equa t i ons 
(II ) one finds f or small a and the weak damp i ng cons t ant (y < a): 

(0) -yt/2 - yt / 2 fJ I (t) .. Cli a cosOj t + 02j e Sin0 j t . (22) 

wher e 

2 2 y2 2 2 y2n (.() __ •
O J '" W j - '4- . J = 0,1, U k It 4 (23)+ Alj 

and CJI • Cj2 are integration cons tant s. 

The general solution of the system of i nhomogeneous equati ­
ons (11) has t he f orm: 

(0) (1)

13 j (t) = 13 j (t) +.13 j (t). (24) 


I ntegration constant s can be fo~nd from the condi t ion of kink 
localization at t = 0: fJ j (0) = 13 I (0) = O. In th is case using 
Eq. (24) together with Eqs.(21), (22) and taking into accoun t 
Eqs . ( 16) -(20) in linear approximation in a we obtain the f inal 
expressions f or tJ j (I) : 

tJ (t) = tJ? [1 - e-YI/2 (cosO . t + L sinO j t)], (25)j 20 jJ J 
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where 

../f" + Ib:lO =-:lP] 002 llo- :lptJo., 2v'-r [c/>d 	 (26a)
v'2 v'2' 

:10 -:I
Ib P


V8v'2 :10- zp
Pi --4 I [II/Id t Ib--=:- 1 ..;r (26b)
2~I+Al1) '1/2 __, 10-:1 IPob 

if 
IlO '~(:lo- li[ :lo-:lp 1 
fo"k -. I ~d + Ib • (26c) 

Ql k . '1/2 

Finally, tn calculate u(:I, t) it is necessery to use the 

integrale 


-	 6 :10 -:1
rtl:RO'~(:I_I) -~c/> +1Il p]x
_~t op led 

(27) 

10- I P 4 :10 - Z P ])( [l - _ +cb _. 

v'2 v'2 


Now tbe solution of the Eq. (4) can be obtained. It is defi ­
ned by Eql .• (5). (6) and (10) in that using Eqs.(25)-(27). 
The solution (5) does show the kink changes QS 8 result of its 
interaction with the impurity. 

3. PINNING OF KINKS TO DEFECTS AND TO THE LATTICE 

Let UI consider conditions of kink's pinning to the impuri­
ty The binding energy of a kink with the Unpurity is the energy 
difference between two configurations /8/ 1 

-	 IGt I - III d - E. - Ilk (x 0" Ip) - Ek (:10 ... 1 .. ) • (28) 

where 

T Irp 
Ek (1 ) -.!.. f dt J af[c/>(a. t)l d:I. (29)p T 0 _ .. 

By using Eq. (5) and Eq.(2). without kinetic energy. and perfor­
ming integration in Eq.(29) we find: 

19 - II {o 2[1 + 6&-18v'2 (30)• 82 cPdl. 

6 

In general, the solution to (2) is a soliton lattice. The so­
liton interaction energy can be derived by expanding the energy 
of the soliton lattice in small soliton concentration C (or for 
(o »a) /5. UI; 

EIIl! = NoEOC} 8IP (-alcii(o ) , 	 (31) 

whet:.!. 01 is a constant (according to /121 C1 = 4) and Eo" 
• 	8'1/2 eo /8& is kink energy 

Besides defects the discretness of the lattice can hinder 
to the movement of the soliton lattice IS, lSI. According to 151 
the pinning energy of kinks to the lattice is equal to 

Et - No 18w'(J2eo )' exp(_ ,,2if{0 (32) 
8 a a 

for eo» •. 
When concentration of impurities is small tbey are isolated 

(noninteracting) and the corresponding pinning energy of kinks, 
according to Eq. (30) is given by~ 

E 	 : Npa (o 2[ 1 + 84 - lali ¢ ] .. (33) 
d • 82 d 

where p is the impurity concentration. A critical soliton con­
centration Oqr is defined by the condition: 

(34)E la! - E t + Ed' 

At 0 < 0 er the soliton lattice is pinned, ,~hi1e at 0 > car it 
can be shifted along the chain without any cost of energy. When 
only dopant defects are present in the system the soliton con­
centration 0 (the concentration of excess electrons) is equal 
to the impurity concentration p and from the condition (34) one 
obtains: 

o • • 111-1 [It' '1/2 (eo)! e - rr2v'2 e;. + 3-./2 a V(c/> )]. (35) 

OJ' 'l/2{0 • 84 d 


where V(q,d) _ 2(1 + 64 - 18';2 11/1§I) d)' In absence of impuri ties (a =0) 

and at Va» I Eq. (35) goes over to the expression for ocr : 
o •• 1/&1 2f 2 which was obtained in the case of lattice pin­
ntbg only/5 .0 

In Fig. 1 the dependence of Cor on the dimensionless kink 
width Y-{Qt. is shown for breaking symmetry defects (c/>d-- J). 
For compar1son we perform calculations with Eq. (35) for different 

7 



---

3 

Fi g. 1. The so l i ton critical 
concentration c cr as a f unc-­Ctr t i on of y = e- /a f or breaking­o 
syrrune try impuriti es (<Pd = 1). 
Curves 1 ~ 2 and 3 correspond 
t o t he pi nning t o t he lattice~ 
to def ect s and both t o the 
l atti ce and defects~ respec­
t i vely.5-f 

Ccr 

r: -2,rIO 
\. 

l' ' .... 

t t 3 ~ 5 ~ 
F'ig.2 . The BoU ton ariticaZ con­
centrat ion Ocr as a func tion of ~ 
coupUng cons t ant a at y = l . 5, 3 , 

d £> f or t he curves 1, 2 and 3 , 
Y'espectively. -10 ..8 ..6 .~ ~d. 

mechani sms of p inni ng: 1) onl y to the lattice (a =0), 2) onl y 
to def ects (a= 10-5 ) and 3) t o both the lattice and defect s 
(a have the same values as in previous case). As one can see 
the critical concentration and the contributions of different 
pinning mechanisms depend crucially on the kink width. The pin­
ning to t he lattice takes place onl y at small values of 'I, 
whi l e at y::: 2 the essential contr ibution to the pinning comes 
f r om i mpurit i es. In Fig. 2 the dependence of ocr on the coupling 
cons t ant a for y "" 1.5, 3, and 5 is shown. The pinning of kinks 
to breaking symmet ry impurities is stronger thsn to conserving 
symmetry ones and increases proportional l y to ¢d' 

So far we were cons i dering the system at zero temperature. 
The enhancement of t he t empera t ur e mus t lead t o the depinning 
of ki nks . Le t us e st i mat e a depi nni n g temperature by using t he 
re l a t ion 8 =0 mkYJ&.2, where WJ,; i s a kink mass and vit it ' s velocity. 
By per f ormi ng t he Lorenz- t ransformat i on in Eq .(6) we obta i n 

8' 

Fig. 3. The depinning tP.mpera­
ture Td aa a function of y atT~ c :::: 10-:l, a = 10-5 • ¢d :::: o.

3fJ~ 
'T:i 

, i i 3 f fi5·J~H 
Fig. 4. The dependence of dep~:n­


ning temperature on conc~tra­

tion 0 at <Pd = 1, a =10- and 

for y = 5> 7, 9 for the auJ~ve8 
 • 
1, 2, 3.. respeativeZy. 5-10.3 

the kinetic kink energy: 

2 m 2 11\ Co -2 
Ek =; Ekv k" --Vk (36)

ltVo 
Here E~ is the maximal kinetic energy; 00' the limiting kink ve­
l ocity (the sound velocity in the medium); Vo. A2/4B is the 
depth-of the one-partiesl potentisl; the kink mass is =mk 
- 2y'2mA/3Be-o a, being the partical mass, AlB is the squared dis­
tance between minima in the one-particle potential. 

From the condition Ek=EB one can obtain the expression for 
the limiting velocity of a kink as passing through a defect: 

-2 e-o 4V o2 [1 64-13:/2 -l.]v... 0 .. a - - + '*"d • (37)
IL. a Ek 32 

When Vk < v-kO a kink stopes (pinns) on a defect. From Eq.(37) 
it follows tha t the limiting veloci t y in the case of conserving­
symme t ry defec t s (v".~) and breaking- symmetry one (Vk~~) ) are 

• - (2) - (l) 84 - 13v2 
connected by t he r a t I O: Vk,o /VIt•o - 1 + 32 <P d I t means 

t hat i n the l ater case a k i nk must have a larger k i neti c energy 
as to pas s through a defect . 

The depi nn ing temperatur e Td = (j d/ Vo can be f ound f r om the 
condit i on : Td ,= 2(E f +E d- E illt)/Nc if c < c CT ' Then by using 
Eq ' s . (31)-(33) we obtain: 
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Td = 32"\ 	V2~O )' e-2~01\ 2a ~o V(¢ ) _~ _~ 0 e - 8./J2c~? (38) 
8 & 	 & d 3 a 

In f i g. 3 the y-dependence of Td at C - 10-2 i s shown for dif f e­
rent pinni ng mechanisms . I n Fig.4 the c - depe.ndence of Td a t 
var ious y = 5, 7 , 9 is shown. 

4 . 	 DISCUSSI ON 

The investigati ons pre sented show that Peierls systems with 
hal f-filled bands described by the phenomenological mode l (2) 
necessarily undergc a transi tion from the i nsulating phase t o 
t he conducting one. In t he i nsulating phase the charged ampli­
tude sol i tons are pi nned to dopant impurities. This phase seems 
to be a stable chaotic phase having properties of spin glas­
ses/ lt/ : When the soliton width nearly exceeds the lattice con­
stant the impurity pinning prevails the lattice one. The former 
pinning growths with increasing of the kink-impurity interaction 
which i s characterised by both the coupling constant a and the 
"impurity fie ld" ¢d' The t rans i tion to the conducting r egular 
incOlmnensurate structure at l ow temperatures. T <T d' appears 
at some cri t i cal cODsentration of t he excess electr ons ca . 
which rapid l y decreases wi t h ~ la. 

The transition to the conducting state (the depinning of 
kinks) at o< ca take s pl ace when the temperature increases 
up to T ~ T d' An external el ectric field will act in the same 
way /5/ 

Our resul t s can be appl i ed for the qualitative description 
of the insulator-metal transition in "ra?s-pol yacetylene for 
which, as bas been estimated in ref. 5,5 • 2a < ~ 0 < fia. Of co­
urse our model of dopant impurities is over simpl ified and has 
to be improved for a detailed comparison with experiments.In a 
more realistic model it is necessary to include screening ef­
fects, electronic correlations as well as electron-dopant and 
intercbain interactions /15,16/. 

The authors t hank Prof.V. G.Machankov for discussions and 

Prof . S.Stamenkovic for cri t ical reading of the manuscript. 
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I1CCJ11!l1080ll0 BJIHJUlHe npHNeceR tla cBoltcTIIB BMWlHTYAHbIX co-
IITOHOIl D oAJroNepHoR MOAeItH nllRepncoBCKHX CHCTaN c nO'lTH Hano­


nOBHHY lI lUlOJIHeHtu.IHIi :SOHaMH . nOKBSBHO, 'ITO HMeeTCJl KpHTH'leCKBJl 

KOtll.\eHTpBL\HJl, npH KOTOpoR ConHTOHbI OI5PBSYJOT HeSBKpenneHHYJO, 

npoBOAJl~ pemeTKY. 


Pal50Ta BbinonHeHa B nal5opaTopHH TeOpeTH'IeCKOA ~HSHKH OHHH. 
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Aksenov V.L., Didyk A.Yu., Zakula R. E17-84-483 
Pinning of Amplitude Solitons 
in Peierls Systems with Impurities 

The influence of impurities on properties of ampl i tude 
solitons in a one-dimensional model of Peierls systems with 
nearly half-filled bands is investigated. It is shown t hat 
there takes place a critical concentration at wh i ch the soli ­
tons form an unpinned conducting lattice. 

The inve stigation has been performed nt t he Labora t ory 
of Theoret i cal Physics, J INR. 
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