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l. INTRODUCTION

As is well known in Peierls systems with half-filled bands
the ground state is two-fold degenerative.This degeneration ap-
pears as a result of the lattice dimerization which is caused by
the structural phase transition due to the electron-phonon inte-
raction (see, e.g.,”'*? ). Therefore the symmetry of the system
is broken spontaneously and besides phonons the existence of so-
liton-type excitations (kinks) is possible /3%/_  The lattice
distortion at the N-th site has the form:
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where, 8y is the distortion due to the dimerization; &, the lat-
tice constant; and £;, the soliton width, The corresponding so-
litons are amplitude solitons contrary to the phase solitons
which are usually used to describe transitions in incommensura-
te structures and charge-density-waves behavior. The effective
Hamiltonian of the system described by distortions s, corres-
ponds to the lattice scalar ¢‘-nnde1.

The energy of the chain with a soliton is enhanced by a soli-
ton energy E, and thus the appearance of solitons in the ground
state is not profitable. But in the presence of donor or accep-
tor impurities the excess electrons or holes can lead to the
creation of charged (te) solitons if E_ <A, where A is a half-
width of the electronic spectrum gap in the dimerized state/3:7/,
In such a way the soliton lattice is formed which can be shif-
ted along the chain without any cost of energy thus forming a
conducting state of the system.

Bak and Poktovsky/s/ have proposed the mechanism of the tran-
sition to such conducting state according to which the transi-
tion takes place when at some critical concentration of excess
electrons (solitons), €., ,the soliton-interaction energy beco-
mes equal to the energy of soliton pinning to the lattice. Howe—
ver a more intensive pinning effect is caused by structural de- -
fects among which at least dopant impurities should be taken
into account as they lead to the soliton creation. Different
aspects of charge-density-waves pinning to defects were conside-
red in many papers (see, e.g., /1+3:68/y),

In this paper we investigate the influence of impurities on
amplitude-soliton properties in one-dimensional ¢ -model of )
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Peierls systems with nearly half-filled bands.In Sec.2 the so-
liton-solution change near the impurity is studied with the
help of the perturbation theory. Two types of impurities are
considered: symmetry-conserving and symmetry-breaking impuri-
ties. The soliton lattice is investigated in Sec.3. The kink-
impurity binding energy and a critical concentration at which
kinks form an unpinned conducting lattice are calculated.

A limiting velocity of soliton passing over the impurity is
obtained and estimation of depinning temperature is given.

2, IMPURITY INFLUENCE ON A KINK

When the concentration of impurities is small one can consi-
der them as isolated. Thus in this section we will investigate
the problem of one impurity assuming hereafter the additive
contribution of impurities with concentration p.

We write the model Hamiltonian in the continum limit and
in dimensionless variables in the form:
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The interaction of kinks with the impurity can be described by
the attractive short-range potential:

V(x) =ad(x -x,), (3)

where x, is the impurity coordinate. In the case of conserving-
symmetry impurity (defect) its equilibrium position is defined
by é4(x) =¢4=0. In the critical phenomena approach one con-
nects this type defect with the 'random bond" or the "random
temperature" probleu1/9/. In the case of breaking-symmetry de-.
fects the equilibrium position is different from zero (¢4 #0).
This corresponds to the presence of a random field in the sys—
tem. Note that in the case of breaking-symmetry defects there
take place both a "random field" and a "random bond".

The equation of motion for displacive fields has the form:

$-0"-d+8% 4y =-V@($ -9, ). (4)

The damping constant y describes phenomenologically the stohas-
tic character of kink motion between their collisioms.

To describe the kink-defect interaction let us represent
a displacement ¢(X) as a sum of an equilibrium position ¢y(x)
and a fluctuation u(x,t):

$(x.t) = ¢5 (x) + u(x, t). (5)
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The function ¢,(x) is the statiomary partial solution of the ho-
mogeneous Eq. (4) and has the form (1). Replacing in Eq. (1) the
variable na/{, by x we write:

¢, () = m‘/—iz_. (6)

Substitute now Eq.(5) into Eq.(4) and obtain the equation for
u(x, t) in the linear approximation:

U -y (2-3@“2:/‘?)‘: +yU = =VE@u - V@) (@ - ¢, (€3]

In order to solve Eq.(7) we use the complete orthonormal set
{¥] of eigenfunctions of the self-adjoint linear operator L:

LY =-9”+[2-8ch 22 1¥ wwly, (8)
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The normalized solutions of this equation have the form:
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Then the displacement u(x,t) is defined by the expansion:
u(x 1) = By ¥% (D +B, 0% @) + [&B,O% ®. (10)

Substituting Eq.(10) into Eq.(7) and using Eq.(8) and the
orthonormal properties of the basis (9) we obtain the system of
equations for coefficients {g}.

By +vBg + @i +4 )By + Ay, B, + [aB Ay =-8y+Dyd,, (lla)
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ﬁk+yﬁk+ wiﬂk + Atoﬂ0+ Akl‘el +_}:dqﬁquq ='Ak+Dk¢d' (11e)
where
A, = [av@RrY,, (12)



D, = Fde(z)‘Pj‘, (13)

A E‘[:dxvcx)%wj* . U8 =01,k). (14)

The partial solution of the system of the inhomogeneous equa-
tions (11) one findes by using Fourier-transformation of Bj (r).
Then in the weak kink-defect—interaction approximation (a<1)
we yield:

(1

where
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In Eqs.(15)-(17) w,; are the eigenvalues in Eqs, (9) and the
matrix elements after calculations according to Eqs.(12)-(14)
with the help of Eq.(9) have the form:
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where xp is the initial kink's position.
Futher, using Eq.(15) we obtain:
(1) g

The general solution of the system of homogeneous equations
(11) one finds for small g and the weak damping constant (y<a):

g(’m(:) =Cy; o~YY?2 cosQl;t + Cy e n/2 sin@l; t, (22)
where
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and Cj , Cjy are integration constants.

The general solution of the system of inhomogeneous equati-
ons (11) has the form:

B, =8"m+8"0. (24)

Integration constants can be found from the condition of kink
localization at t = 0: B;(0) = B;(0) =0. 1In this case using
Eq. (24) together with Egs.(21), (22) and taking into account
Egs. (16)-(20) in linear approximation in a« we obtain the final
expressions for Bj (2) =

B, ® =821~ o YV2 (cos;t + %} sinQ; 1)], (25)
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Finally, to calculate uy(xt) it is necessery to use the
integral:

Frasaae 6 =%
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(27)
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Now the solution of the Eq.(4) can be obtained, It is defi-
ned by Eqe.(5), (6) and (10) in that using Eqs. (25)-(27).
The solution (5) does show the kink changes as a result of its
interaction with the impurity.

3. PINNING OF KINKS TO DEFECTS AND TO THE LATTICE

Let us consider conditions of kink's pinning to the impuri-
ty. The binding energy of a kink with the impurity is the energy
difference between two configurations/8/,

- [Ey| 'Ed‘E.'Ek(’o"’p)'nk(‘o"‘.)' (28)
where
Y s
E,@) =1 e fomlga nlax. (29)
0 —e

By using Eq.(5) and Eq.(2), without kinetic energy, and perfor-
ming integration in Eq.(29) we find:

'B -d—‘;lgll‘l-

84-13y2
=) (30)
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In general, the solution to (2) is a soliton lattice, The so-
liton interaction energy can be derived by expanding the energy
of the soliton lattice in small soliton concentration ¢ (or for

fo >> 8) /5, 112/:
Eq = NoEC, em(-a/cy/2¢, ), (31)

where C, is a constant (according to/¥ € = 4) and Eq =
=By2 §, /8 is kink energy.

Besides defects the discretness of the lattice can hinder
to the movement of the soliton lattice/5 1%/, According to /8/
the pimning energy of kinks to the lattice is equal to

- 4 2./8.
Eg = Ne 1:" (Ji“ ) exp(-~ "f“ ) (32)

for £;>>a.

When concentration of impurities is small they are isolated
(noninteracting) and the corresponding pinning energy of kinks,
according to Eq, (30) is given by:

B, 0o Dgp1 MoIWE (33)
3 82

where P is the impurity concentration. A critical scliton con-
centration €, is defined by the condition:

E. ~E, +E,. (34)
At o0 < o, the soliton lattice is pinned, while at ¢ > ¢, it
can be shifted along the chain without any cost of energy. When
only dopant defects are present in the system the soliton con-
centration ¢ (the concentration of excess electrons) is equal
to the impurity concentration p and from the condition (34) one

obtains: - »
oy ==t at etya S0P VIS MRy, (35)
60 1 ] 84

where Vig,) = 21 + M-ye ). In absence of impurities ( a=0)
d d

and at §/a >1 Eq.(35) goes over to the expression for ¢, :
¢ =822 which was obtained in the case of lattice pin-
ning mlly/s .°

In Fig.l| the dependence of ¢, on the dimensionless kink
width y -fq/. is shown for breaking symmetry defects ( ¢a= 1).

For comparison we perform calculations with Eq.(35) for different
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Fig.1. The soliton critical
concentration ¢ as a func-
tion of y=§,/a for breaking-
symmetry impurities (g;=1).
Curves 1, 2 and 3 correspond
to the pinning to the lattice,
to defects and both to the
lattice and defects, respec-
tively.
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Fig.2. The soliton eritical con-
centration Oy as a function of '

couplzng eonstant a at y=1.5, 3 P et Al
and & for the curves 1, 2 and 3, ¥ A
respectwely ‘0 8 6 " tOSd
mechanisms of pmnmg 1) only to the lattice (a=0), 2) only

to defects (@=10" ) and 3) to both the lattice and defects
(a have the same values as in previous case). As one can see
the eritical concentration and the contributions of different
pinning mechanisms depend crucially on the kink width. The pin-
ning to the lattice takes place only at small values of Yy,
while at y> 2 the essential contribution to the pinning comes
from impurities. In Fig.2 the dependence of ¢, on the coupling
constant a for ¥y = 1.5, 3, and 5 is shown. The pinning of kinks
to breaking symmetry impurities is stronger than to conserving
symmetry ones and increases proportionally to ¢,.

So far we were considering the system at zero temperature.
The enhancement of the temperature must lead to the depinning
of kinks. Let us estimate a depinning temperature by using the
relation O’mk"k where m, is a kink mass and v, it's velocity
By performing the Lorenz-transformation in Eq.(6) we obtain

.

34’

Fig.3. The depivming tempera-
ture Tq as a function of y at
=10 a =10, ¢3=0

T}

J N\
i S

i & 99 5) |
Fig.4. The dependence of depin—
ning temperature on conce?gtra- ’

tion ¢ at ¢g= 1, a = and a A
fop Y= 5; 7, 8 for tiﬂe curves -3
1, 2, 3, respectively. 5']0

the kinetic kink energy:

2
k

02.,2
ovk . (36)
0

m
Ek=Ekv

Here E is the maximal kinetic energy; Cps the 11m1t1ng kink ve-
locity (the sound velocity in the medium); Vo= A 2/4B is the
depth of the one-partical potential; the k1nk mass is my =
= 2/2mA/3B&) 8, being the partical mass, A/B is the squared dis-
tance between minima in the one-particle potential.

From the condition E,=Ep one can obtain the expression for
the limiting velocity of a kink as passing through a defect:

~2 § 4V
Vko ) 02[1 “—13@_¢d] 37)

When Vg< ‘;‘k.O a kink stopes (pinns) on a defect. From Eq. (37)
it follows that the %unlt:mg velocity in the case of conserving-
symmetry defects (vko ) and breaking-symmetry one (vk ;‘;) ) are

~ (1) 84132
kO /ko =1+ T¢d. It means

that in the later case a kink must have a larger kinetic energy
as to pass through a defect,

The depinning temperature T ;=@ /V0 can be found from the
condition: Ty =2(Ep+E4=-E;;,)/Ne if e¢<c. Then by using
Eq's. (31)-(33) we obtain:

connected by the ratio:
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In fig.3 the y-dependence of T4 at ¢ = 107% is shown for diffe-

rent pinning mechanisms. In Fig.4 the c-dependence of T; at
various ¥ =5, 7, 9 is shown.

T, (38)

4. DISCUSSION

The investigations presented show that Peierls systems with
half-filled bands described by the phenomenological model (2)
necessarily undergc a transition from the insulating phase to
the conducting one. In the insulating phase the charged ampli-
tude solitons are pinned to dopant impurities. This phase seems
to be a stable chaotic phase having properties of spin glas-
ses /1% : When the soliton width nearly exceeds the lattice con-
stant the impurity pinning prevails the lattice one. The former
pinning growths with increasing of the kink-impurity interaction
which is characterised by both the coupling constant a and the
"impurity field" ¢4. The transition to the conducting regular
incommensurate structure at low temperatures, T<T,, appears
at some critical consentration of the excess electrons €. -
which rapidly decreases with & /a.

The transition to the conducting state (the depinning of
kinks) at c<cCg takes place when the temperature increases
up t:/os T>T,. An external electric field will act in the same
way

Our results can be applied for the qualitative description
of the insulator-metal transition in }rgys—polyacetylene for
which, as has been estimated in ref. , a<ég<ba. Of co-
urse our model of dopant impurities is oversimplified and has
to be improved for a detailed comparison with experiments.In a
more realistic model it is necessary to include screening ef-
fects, electronic correlations as well as electron-dopant and
interchain interactions /15.16/

The authors thank Prof.V.G.Machankov for discussions and
Prof.S.Stamenkovic for critical reading of the manuscript.
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