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There are a number of reasons causigg the imgortance.of 1';heI
examination of three-level systems (emitters) pictured ;nSflg. 4
Such a system contains three energy 1eve¥s hﬂﬂ (j =1l, ;.),
where the upper level |3> is connected with t e.l?ve a‘l : e
and | 2> by dipole trangitions whgrea§ the FransxFlon l »
is a forbidden one. This system is widely investigated in
a theory of a two-mode laser, in a theory of resonance Tgmﬁ:
scattering, in connection with the problem of light by lig
control and also in the theory of superradiation effect
(see "% and the references given therein), In our previous
paper some exact results for the three~1ev?1 sysFem of g i{pe
described above were obtained. Here on their basis we sha s
examine a two-photon-process dynamics for a number of concrete
e s e Systm:kl'ﬂamilt:onian describing such a pro-
3 cess can bhe presented in the following

form (see / ";
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Here the operator ft” = |j><j| describes
the population of a j-th level. Then
1 likj = |k»><j| (R #i) corresponds to t‘neh
iti he state_ |j>» to the
Fig.1. Two-photon transition from t ! g
pi:gcess in g three- state |k>.The operators Ry, are gene
level system with rators of SU(3) group and abey:
a common upper level.

Rijlm b kaalj '
[R‘kj .Rgm] = kaah ‘le’skm s
The photon operators Ea A at describe two modes with the reso-

nance frequencies o, = {4~ 4, and g, (a= 1,2) are the field-
emitter coupling parameters.

In paper’/4’/ the operator gquatioms of motion for Rji(t) to-
i N =a‘®a integrated exactly. Their

gether with the N, (t) = a,(t) a.a(t) were integ

solution can be represented in the following manner

ﬁu(t) ) ;1 (cosit - 1) + 51 sinit +§§ l;z(cosﬂt - 1) + fg sinxtl ¢ R, (),
2

e

Rgg (1) =~K%{py (costht — 1) + Bgsin2it} + Rgg(0) ,

N, =R, ® +M,, N®= Rop®) + My .

Here M, are time-independent operators defining the "Rabi-

frequency operators” A, and the nonlinear oscillation fre-
quency operator )\’/4/_

-~

Ao =gavMg+1, X=\/)ff+f§. (3)

The "amplitudes operators" l:a’ Ea are defined by the initial
conditions as follows

-

ny = DPLAZR, (0 AR, (014 [A2-XBIKIX 4,

wy = (AR(1 2 2Ry (0)] + K1/ @Yy,

-~ -~

By = B3R (0) ~RXTRpp (I, = R,,(0) + R,y @1/ B,
Here K is the integral of motion /4/

R =gg,0a,ma;0R, 0+ 30 3, () R 1501 - K2R 5 (1) ~AZR,, () = const
and the first derivatives ftau(o) obey the equations of a form/4/
R, =g [a (0 R,O+alOR @] «=12.

Let p(0) be a density matrix for some initial state of a to-
tal system "emitter + field". Then the time behaviour for the
observable mean values of the level populations and photon-
mode occupation can be defined as

<Cw> -éwWow@, - (4)

where € is f{” or N,.

First of all let us consider a simple but interesting case
when at the initial moment t = 0 the emitter is in a state |j>

and the field is in a quantum state with definite occupation
numbers [n;,ny>.Then

P (0) = ltmgl><imyll, |imgl> = 10, n,>. (5)
Q'Q'Rt
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One can easily see that an initial state |imy}> 1is one of the
basis states of the total system. In this basis the density
matrix p(0) has only one nonzero element

Pty <P ORI =8y 1 12 (0, m ) -

The operators Xa are diagonal in this representation. So %O
<C1(,)»> =<imgl| O 1R )limyl> =

. , 9 N = (6)
= <imy}| Clim o> 1 limg A {im o1>) =<C> A, >),

where f(A;) can be any function of the operator Ap. Below we
shall use the following notation: <€> = €, ¥C. Now from (2)

in compliance with the expression (6) we obtain for any time

moment t that

At ;
R, ® = —2ulsin2(-§-) - 2% ugsin®at + R, (0,

2 AL ;
R, = 2u1’sm2(—-2—) - 2y, sin?At + Ry (0)

Rgg ®) = mguzsinzm + Rgd0), )

. g At .
N,® = —2u l'sm’Z (,;..) - 2)\?#2 sin®At + N, @,

N, () = Bu,sin® (%E-) ~ 22y, sin At + Ny (0) -

Here A_, A define the nonlinear oscillation frequencies in
the system under consideration:

Aa =ga‘/Na(o) -Raa(0)+1, a=1,2; A =\/A§+A22 : (8)
Amplitudes of the above-mentioned oscillations are defined as

u; =222 R,,(0) - R, OI*, up =R, (0) ;A§R22(0) ~ B Ryg(0)l/ @4,
‘ 9

Let us now concretize the initial condition ).

Case 1. At ' = O the emitter is in the unexcited state 1>
with the energy hQ; and thus |img}> = |1iny, ng> . Then R0 =1,
Ry, (0) =R 4(0) =0 and from the expression (8) it follows that

M =gV Ay =g VAT, A=yl +g5@,+1). (10)
4

il

Pz(t;1—93-02) =

Now instead of (7), we obtain for the 1 i
evel populatio
photon—mode occupations ; i

B, =N, (+1 -0 =1- REAEA~4 5in? (523-) ~XX* sm®ae,

“

Rgo () = No(t) —ny = 222N 'Sin‘(%) i (1)
Rgg® = 25272 sin®ae. |

For a small time t<< A7l we have

Ryp()) = 1-M12 4 (@24 2)M ek 4 ..,

Rgp® =AM Bt L, (12)
Ry ® =Aft% - 20T a8t

To deEeFmine thé transition probabilities, let us introduce
the Schrddinger representation with a wave-function of the total
systeg t‘l/l(t) >, where |y(0> =[1;n;,ny>. Then the probability for
one-photon transition 1-3 in the system is describ =
i _ y ed by a stan

Pt = in’, n.>| %= R

((ti13) n;,z..; ke ®13:05, 0> 2= <P @ 1R gy 16 ®)> = Ryg(®)
By analogy ?or the probabii_ity of a two-photon process of a Ra-
man scattering type (transitions 1+ 3 -2) one can obtain

Py(t; 143+ 2) = Roo(t) . So frém (10)-(11) we have

2n
P, (t1+3) = - fi sin® it v g2n, + g2, + D1,
g, + g:(nz+1)
48%%0 @+ 1) il

sin{-t.yg2n +g2@, +1) .
!gflnl+ 2(n2+1)}2 .‘2 211 2(2+

This/lgal.:tial-conclusion (13) coincides with the result of pa-
per in which the kinetic equation for the two-mode laser
has been obtained.

. Case 2. At t = O the emitter is in the excited state |3>
with the energy and [{mg}) =(3/n;, ng>. 1In this case
R11(0) =Rpp(0) = 0, Rgg(0) =1 and (8) leads to the following

5
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expressions

Ag=g,Vn +l, a=1,2 A=y % g2, + 1) . ' (14)

From expressions (7) one can now receive

Alsim\t 2
Ru(t) =N (®) ~n; = (__A—_') :

Ap sinAt g (15)
Rps® = Ny () —mp= (=), Rgy(®) = cos®At,

Drawing a parallel with the previous case one can obtain now
that the probability P;(t:3+ a) of the transition3-a ( a =
= 1,2) coincides with Raa(t). So from (14) we receive

2
ga(na+ 1)

P (t:3~a)= sin® {t/ gg(n +D+ ge(n +Dl. (16)

gf(n1 +1)+ g:(n2 +1)

This expression also is in confirmity with the results of pa-
/1/
per’/1/,

Case 3. At t = O the emitter is in the state 2> and lmgh =
= |2;n1, ng> .This case is described by formulae (11)~(13) with
the substitution of index 2 instead of | and 1 instead of 2.

Let us consider below the case of the initially coherent
state of a field. For a two-level system such a condition can
lead to the collapse and revival of the oscillations of the dy-
namical parameters /5/, Here we show that a similar phenomenon
may also happen in the three~level system. For simplicity we
propose here that only coherent mode 1 is present in the sys-

tem at t = 0. The coherent state of mode | is described by
) ng
2>, = exp(—lzl2/2) 2 . n,>, - (17)
\/n

Let the emitter be in the state | 1> with the energy tﬂ at
t = 0. Then the initial state of the total system em1tter +
field is

o __I_.le ny
> =11>0[2>8[0>, = £ e 2
nl=0 \/nl

1:n;, 0>. (18)

The density matrix for such a pure state is p(O) = |y, ><|/: 14
We consider a special case of the operator ﬂ which obeys
the following condition

<L n; < 0161 0y, 05 -8, et (19)
ng,0y
Then
-
~ oo n A
B> =<y 1€y > - = el B e (20)
0 0 0 n,! oy
1 1

Here Izlzz 'Tl is the mean number of the photons in the cohe-
rent mode | at t =0 and <...>p,; denotes the average with the

composite basis state |1'nl. 0> <6> —<1'n1,0|el1'n1,0>

It should be nofed that the operators "a’ Ba and thus the
operators R”(t) s Ng(t) obey condition (19). Thus, the mean va-
lues of these operators over state (18) can be expanded in com-
pliance with (20) into a sum over all n; of the averages
< >n1 which is calculated in confirmity with expressions (10),

(11). So, we get
= oy 43?322“1
R,®=N®+1-5 -1- 3 —1EL_

.sin?t ygen +gd)-P@,) -
11 g 1
n1=0 (g?n1 + g:22)2 2

s e et
-3 —11 . sin®tveln + g5)-P@).
hy=0ein, + 23 an
Roo() = No(®) = = - 8in (--\/g n, +g3)-Pm),
=0 (gh, +g2)*

-

g
Re)) = ——11. .

33
n, =0 2
17° &b, +e3

Lo 2 2 2
sin (t\/g1n1+g2)-P(n1) -

Here the weight factor P(n;) is the Poisson distribution
= ot |
-1 n

Pny)=ce L L

nlt

Let us now consider a special case of a strong enough initial
pumping, i.e., El»l. Then instead of (21) we obtain

! ! 32 25,87 8 ‘52
R“(t) =N, ®+1-n, = 12 _.ELE&'_'J_F(L) = ._g_L_L,F(t) s

Ly (22)

Reg(®) = Np(t) 5 —LETIU4F (L) ~FOL, Roft) =



Here W= 2\/gf—nl+ g g, Ft) =1- b go P(ny) 003(2“/3%“1 + 85) =
21 -1 expl () cosp(®)  and. '

16gdn%e® 1/
() = Q + g;: R ’
16g5n e _
$®) =27, sin®E@A/M A+ ——e—)
W

$t) = Wi+ Ty sin(e}V W) - 2658, t/W- - arctanl4g{n, v/ W),

Here we substitute O, instead of n; in the fractional fac~-
tors in (21) and use the approximation of paper’/5 for the
functions F(t). One can see that the time behaviour of F@®)

and thus of Rjj (t) , N,(t) has a character of fast oscillations
which collapse and again revive in a time period

2
= g
T, =gt We ZFl2q, V2 (23)
B 2] . 2=
By

For t << T these oscillations collapse during the time

o= === Y2 I g /e® )

given, g,
(see fig.2). Subsequent revivals ought to vanish when t 200,
We shall call the phenomenon of the revival of fast oscilla-
tions in a time period Ty "autoecho” to distinguish it from
the echo induced by two classical coherent pulses with the'
areas #/2 and n. The latter case is connected with the de-
phasing because of the inhomogeneous broadening /%/, whereas
the former case is a pure quantum nonlinear phenomenon. The
most interesting and surprising is the revival of the oscil-
lations of the second level population R, Jt) (see fig.2b).
The oscillations which are resumed in a period 2Ty have
a much larger amplitude than the same in a period Ty, Such
behaviour can be explained with the aid of the second expres-
sion in (22). Really, the resuming connected with the term
4F(t/2) has a period 2T, and an amplitude which is four times
as large as the one due to the term F(t) with a period Ty.

From our formulas (22) we can obtain the results of pa-
per /% for the two-level system. For this aim let us introduce
the quantity 83y defining the population difference of le-
vels 3 and 1 Sy, =(R83-R11)/2. Then from (22) we have

- 1 16gPe?
2 w

T

2= 2=
£%n 4g°n

11+ =L YHFo. (24)
w2 w2

nl»i"(t-z-) +

R For the two-level case we
o = ought to put here g = 0.
So, from (23) we obtain

=B i T 5
8g,= 59 +*2--F(t) =

=~ 310 e~y ©lcos ().

This is the result of pa-
per’% .

Thus, in the present
paper the dynamics of the
three-level two-mode system
L m-was rigorously examined on

the basis of our exact
L L -2 operator solution’4/, Some
gt/ﬂ initial states were consi-
dered and the autoecho phe-
R22 ' b) nomemon was described. It
should be emphasized that
061 other initial states can
also be examined for the
/A problem above considered.
o 1t can be a subject for
further investigations.

0.2

Fig.2. The autoecho or
the revival of the fast
oscillations in the sys-
tem with the coherent ini-
tial pumping (17). Time
is in units of #/g and
By = Bp= 8, n;=9.
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