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The Hamiltonian of the exchange anisotropy spin chain is
the familiar Heisenberg-Ising Hamiltonian: :

Mg
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Here J is the exchange integral, J>0; g is the anisotropy
constant, g> 1, .

Recently /17, we have shown that the linear superposition f¢m0>
of heavy spin complexes |, >

s expl-%—[lu(-zl -al? .y

k=—o0 N0+k>’ (2)

I¢m0>=A

where my =Ny +a, lo|$1/2, Noow, A= X emlolks(z-al?,

is a complete quantum analog of the classizﬁ domain wall in
the spin 1/2 chain (1). The expectation values of the spin com-
ponents S_(ﬁ=x,y,z) and the energy of this state coincide with
the corresponding classical expressions:

<¢...0|S.: (90> - %[ch(m ~myol a8 <9, /8719, >=0-8]

m,class ’

m class’
2 1
<8, 501, >=gth@m-mo=87 | 3
Gy =g 10 - 162 = Wetpi|# s o= InE+vEE 1.

Since the position of the domain wall is arbitrary, mg is
a free parameter. The expressions for Si ... and W, . in
Eqs. (3) have been found independently by solving the domain
wall problem for the classical counterpart of (1) (see/l/ ):
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It is seen from Eqs. (3) that |¢m0> realizes a complete corres-—
pondence between classical and quantum treatment of the domain
wall in the exchange anisatropy spin chain (1). In the classi-
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1
cal theory B8y, is a vector of fixed length S. The condition

3 (<¢ |sf|¢m0>)2=-}(=s’), ; , (5)

x,y,z2 0
which follows from (3), is its quantum analog.
On the other hand, Bishop, Domany, and KrumhanSI/ 2/ have
proposed a variational procedure for establishing such a cor-
respondence between both pictures. The trial wave function is

chosen by these authors in a form (here we restrict ourselves
to the case of s=1/2 only):

|$> o cos0m/2
'm(smom/z)' 0

If one minimizes <¢|H|¢> with respect to {0m}, the classical
equations for 6, are obtained /2/. Moreover, as Pokrovskii and
Khokhlachev’? have shown, if, for the spin chain (1), 9, sa-
tisfies the equations equivalent to the classical domain wall "
equation (4), there exists a stationary state of the form (5).
Now the exact solution (3) of Eq.(4) is available. This means
that we have two explicit quantum states |¢m0> and |$m0> ful-

filling formulae (3). Hence, one can ask how they are related.
If [@my>=3 Chlyy >, then T, =<y, |$m0>, and, using the exact

wave function |¢n> (see /4/), one gets:
. exp{—g-[kz +(1 - 2)k]}
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where “=N0+k’6N0+k ->C »mg =Ng +a, Ng o, Next, we shall use
the Gauss-Jacobi identity /5/:

= 2 T = K 2
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A z#£0,lq| <1,
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Choosing q= 67 and z= ie -3 from (2), (7), and (8) we

de t C, =C, = Aexpi- = S -
conclude that C, k = Aexp{ 3 [k+(‘2 a)l“}, thus |¢m°>_.{¢m0>,
In this way, the state |¢mO> is rewritten as a direct pro-
e'¥ coso/2\ .
g in

e“?sin0/2

the domain wall case = 0). The properties of the |x> state
are well known/6/. In particular, this is a minimum uncertainty
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duct of one-site Bloch®s coherent states |x> =(

-~

<¢m lsln sm '¢m >=<¢m |Sfll¢m ><¢m
0 1 2 0 0 1 0

state. Thus, |¢, > is a minimum uncertainty state too, and,
mo

as it is seen from (6), the correlation functions factorize:

Pr P olsf:|¢m0>. m, #m,.

The properties of |¢m0> indicate that this is a coherent state

for the considered interacting spin system (1). To best authors
knowledge, up to now the coherent states have been found only
for noninteracting magnons’/?/. For such systems the direct pro-
duct of Glauber”s coherent states is a complete quantum analog
of the classical spin wave. It is clear from our results that
the complete quantum analog (6) of classical domain wall (i.e.,
a nonlinear excitation) is a direct product of Bloch”s cohe-
rent states. On the other hand, this quantum analog is a Gaus-
sian superposition (1) of heavy spin complexes. Usually, the
unique spin complex is considered as a quantum analog of the
classical soliton/8/. However, condition (5) cannot be fulfilled
in the case of unique spin complex as has been pointed out in/1/,

We thank Dr.V.Priezzhev for bringing the Gauss-Jacobi iden-
tity (8) to our attention.
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