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1. For the description of a large number of physical
phenomena in quagi-one-dimensional models of condensed matter
physics the following Hamiltonian has been widely used over the

past years .

H= Aa, Z[iz'q)nl + _2%(¢u_?u_4)1+ ("oz V("u)]~ M
n °

Here 9,(¢) is the scalar field in the site "n", W%, ) is a lo-
cal potential, 4, is the lattice constant, ¢ , &, are charac-~
terigtic parameters having the dimension of velocity and fre-
quency. A is a constant with the dimension [ ene;z-gy.lengt;h-1
-ti.me2] = [mass-length] and it determines the energy scale.

( We uge the notation of the works ok I These works, by the
way, contain a list of many physical problems which may be de-
scribed by the Hamiltonian (1) ). If the relation d=¢/u, >a,
ig satisfied the continuum approximation (Pn - Plx,t), 2.'-’ fdx/do

is true and eq.(1) yields a differential equation

v
AN A (2)

A choice of the potential V(?) is determined by the physical
specificity of a problem. So, for V(#)=1-cosP (the sine-Gor-
don potential) we come to the completely integrable ayatem/B/‘
In the action-angle variables (1) is represented as a sum of
three Hamiltonians corresponding to "phonons", solitons (kinks
and antikinkg) and breathers (bions). The gtability of two la-
ter solutions with respect to external perturbations allows usg
to use them for the description of real particle-like objects.

There are significant experimental reasons’ 4/ for such a consgi-~

deration.
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However, for the interpretation of the experimental data
(mainly the scattering of neutrons on the "classical" ferromag-
net CsNiFj) only solitons have been used. Their contribution to
the thermodynamics is negligible because of the large activation
energy but a number of remarkable features of the central peak
(CP) (the dependence of the CP on temperature and magnetic field
at low temperatures (4K - 15K)) predicted in/5/ may be explained
using a picture of a goliton gas. Beginning from /5,8/ various
structure factors responsible to the scattering on solitons have
been calculated in the "nonrelativigtic" approximation (v« C,,
v is the velocity of a soliton) in a geries of papers. A general
formula which is true for all v, -(,<v< C, , has been obtained
1n/7/ +{ Especially much attention was given to fhe so-called
"parallel" formfactor S, (4,#) . In recent experimental in-
vestigations (the works/4/ give the up-to =dats situation about
the investigations of solitons in one-dimensional magnets) some
discrepancies between its behaviour predicted by the soliton-
gas theory and the experiment have been found.

We underline that for explaining the experimental data on
equilibrium and dynamic properties of quagi-one -dimensional
gystems breathers have nearly not been exploited. The necessity
to use them, egpecially with the aim to describe 5” , has been
noted for the first time in/B/. The parallel structure factor
has been calculated /%, 1t was shown that breathers give a

contribution to the CP, however, anslytical expressions for S”
and its structure were not obtained. The mean density of the

breather gas and the formfactor in the first approximation

(about it see bellow) have been calculated 1n/1°/ (see 8150/11/).

+/We note that this is not only of a pure academic inte-
rest: for the description of scattering on solitons in DNA/13/,
where in the first approximation the S5G-equation takes place,
it is necessary to calculate $(qw) in the whole range -G<Vv4G.
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The results of these calculations allow us to draw two conclu-
sions: a) breathers apparently give a considerable contiribution
to the CP of E%@ﬁﬂ; b) there arige additionally two narrow si-
de peaks ("satellites").

In the present work general analytical expreassions for the
parallel and perpendiculér DSF are obtained for the scattering
of neutrons on the ideal breather gas. The bagis of the calcu-
lations is quite similar to that proposed in/7/'It is shown that
the DSF éonsists of the CP and an infinite series of satellites.
the relations obtained are rather cumbersome and we reduce them
to approximate analytical "working" formulae for the CP and sa-
tellites. The location of the satellites is found and some pro-
perties of them are discussed. The intensities of the satellites
are shown to decreAse sharply as the distence between the satel-
lite and the CP increases. Comparatively with/19*1Y the beha-
viour of the CP changes essentially. Purthermore, in the frame-
work of the ideal gas model the thermodynamic functions of the
breather subsystem are calculated.

2. The breather solution of eg.(2) has the following form:

¢ = ‘Mrdﬂ %, X = ——-——-—“;lm sinf Cosh'lf ’

9:0011.({-”/".1)5*99, §= ‘%,"W—Jll ‘(x-vf-X.),

: (3)
B ~4f2
(= U-0Ir) ) _mexjrtcm, ~Geves, 0£6,82T, ocflcA.

Here fl is the intrinsic frequency of a breather, Vv is the
velocity, x ,+ are the space and time variables, and X, ,6,
are free parameters (the initial location and the phase). Below

we need the energy of the breather

@ & 1712
= E(,( ? [ EL)T-+ qu ] ) .

@ 5
where the energy of the static breather, € , i8
E® - 16 Awc {1-n7,
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and the momentu.ni
p= /ICAu.,lc';le-.fl’ - (5)

The form of the solution (3) predetermines difficulties with

the calculation of the equilibrium and dynamical characteris-
tics of breathers as compared to solitons of the SG-equation/ [ s
the automodel dependence on (x-vt- X,)/A(v)  vanishes, the
averaging over 0, becomes nontrivial and the additional intrin-
sic variable (2 appears, the averaging over which will be car-
ried out using some- '!reasonable”e.saumptions (they have been for-
mulated in /10/, gee also below).

Let us consider the thermodynemics of breatheras. We note
that the model of a lattice soliton gas, which was developed
inﬁ'"/ for the description of thermodynamic properties of so-
litons, is not applicable to breathers. We canmnot operate free-
1y with the "gize" of breathers. Therefore, we shall develop
the thermodynamics of breathers in the model of the ideal one-
dimensional gas in the "volume" O < [ ( [ - ).

The thermodynamics may be constructed proceeding from the
partition function of a separate breather

L 1
o= 4 an, 2 (s (e P50 (6
/]

[}

where h ig the Planck constant, T is the temperature, and

p= (kT)™ . The partition function thus determined gives, as
we shall see later, the expression for the breather density
which agrees with the assumption of the papers/ 10,11/ .After the
integration we obtain

jm = dexlAak! [K,($)L(5)- L (%) K, ($)], )
where the dimensionless parameter
d = 'CA‘O.Co? ' (8)
4

and K 5 I ~are the modified Bessgel functions. At "low®
temperatures (£ % 1, in some systems, e.g., in/13/ "low" may

mean the room temperatures)

R L 2
jar = T At (kT)". (7a)

The grand partition function of the breather gas is defined by
~ 2 Gle N .
= 7 2 e [j] /NI = up[J(T)ur(P/-)], (9)
N=0

with the chemical potential /M . Since there are no external
limitations on the number of breathers and it is determined
only by the temperature, after calculations with E, one must

put [“ = 0 in the resulting formulae. Using the thermodynamical
potential 2=- kT‘blS we find the breather density

L ok - im
L dapm im0 = r ' (10)

80, the mean number of breathers in the system is 1'(1') « This
expreasion need to be used by us below in the calculation of
the structure factors.

By analogy with the breather density all other thermodyna-
mic characteristics are calculated. Here we give the results

in the case & >>1{

_ 1)

5 AR (density) ,
F= —-klTn (free-energy density),
u = (kT)3/ 4hAw,c?

(internal-energy density),
C, > 3k (kT V/hhAoct (heat capacity).

In the "high" temperature case ( £« 1, jm= 2LkT/hes )
m=2kT/he, , F=-20kTVlhe, , u= 2(kT)*hes, ¢ = 4k*T lhe,.
Putting in eqs.(7) and (10) A= @, =¢, = 4 and changing
h—+ k/4 , we obtain the breather density found in /107,



( The last substitution is due to the fact that in/w/ the
phase volume of the kink was taken 2/t -times smaller than the
one of the breather, and the averaging over ) was carried
out without the normalizing factor 2/% ).

The given formulae allow us to conclude that unlike the
goliton gas,due to the absence of the cut-off factor '~¢y.f(—PE:),
breatherg may essentially influence the thermodynamic characte-
rigtice of the SG-systems.

3. Now we ghall calculate the DSF of the scattering of
neutrongs (or light) on breathers. We proceed in the framework

of the calculation scheme given :Ln/7/. As was mentioned above

the additional averaging over 6, and [} arises. The parallel
DSF is determined by averaging the product cos P(xt)co ?(0,0),
where according to (3)

{-cs¢ = 8&1(44-&1)—2. 1)

A general apalytic formula for {{-cos P(xt),1-cos $(60)> obtained
below describes the essential contribution of the breather mo-
de to the parallel DSF; naturally, in the complete correlator
Lon $(x;t) oos ?(o,o)) there are terms which give a contribution
to the Bragg scattering and are added to the corresponding so-
liton contribution/5’7/. However, we shall be interested in a
modified picture of the quasielastic scattering from breathers.
For the ideal breather gas

Sy (42) = N, S, (g, - (12)

Here N‘, is the mean number of breathers in the system and

! d6, 2 dJi i(gx-at)-PEQ) ) i
s'(":“) 2411*.) gdxdédrdx,ﬁ ;.____me (1'M?(q0),’ 08*!, ))(13)

The integration is taken over the ranges shown in -(3); E(f) is
given by eq.(4) and j(T) by eqs.(7)-(7a).

Passing in (13) into the breather rest frame with the

help of the transformation
x=yp(§+et), t= 5({'+vf'/f.z), (14)

substituting then

[ t-6, X = _ﬁg_ 2 1~ Gy
t= w, ! o w Vq’ §= 75 %, (15)

and uging (10), we obtain instead of (13)

G d =
S“(q,h)) = m gd’l‘t d.rdidoo m—z—;'.ejl.f[— PE(,) + ¢ (at 49,

+by + Le)])((dm éfe"‘U—;)a-t)cos [fxcrg]cos[1X(8,2)],

(16)
where we have introduced
- © b Ko 9- ov/G?
=V Em ! T e, Yfentr ! (17)

An identical representation

oo 2 L
2 T *i 1 XTt,y) = flof " BT
X(+x*) = 2!7 e (4 f)wsfx ’ 6 19) T eoskty 4
and an analogous representation for the functions of variables

8,

s * have been uged. Then, we use the expansion of c¢os fX

which is true for all fX:

o 21 mog2n v (2a-2m)
stz I LED f

4-4')'! e
Sbe neminl A sk y

Now the y and i-integration is easily realizea’ 12/ :

thy 2n-4 "

fleltor 2 Irene )7
cosk Py (Zn-4)! Ea

and after the integration over ¢ the Dirac delta-function

§F(a+2n- z"‘) arises. Possible values of A are thus 1i-

mited to integer numbers a= 2m-2n o Thig is important for
the 6 -integration. After expanding Cos[ % X(6,,2)]



into the series 2*12 ag it was done above, the following
integral appears
T
(46, op[-iab, + 6 (2k-20)] - B iy
= 0, in the opposite case.

The f and 7 -integrations are elementary, too. Finally, we
pass from the integration over p , by means of (5), to ve(-¢G)-
Joining all stages of the calculations given above, we

obtain for Su from (16)
0 Ni\avk
d2 -BELWY) 41-
Sa(q,k))= 2 Afa Pv 7. P ZZZ—C"k'R '-———)

wthot JL({—Jll) R0 me0 k=0
0Ln-mek £2k

e P ke 3 5 (av2n-2m),

(18)
( - Ot [ ! C2n-2m) (- m4k) Cl-nem)! ]

nk )
After some manipulations with the sum in (18), the last formu-
la may be written in a more compact form. It is natural to con-
front the terms, which are determined by the condition x= mt,
with the contribution to the CP, and the other terms with the

contribution to satellites. Then

Syl = § () + 2;4 S:s“ (g,0), (19)
where pE(vl .

fokc, 0" rq-at @
St(‘f"“)' *hid (" ﬂ.rzu i) [Z Ln- 4)']‘( ) i )']( )

. ' 20
x 5Ca), o
..p v) H) n AR

©ac, LECL

Sns«u(‘h"” = 21 - dedﬂ (-0 [Z N g )

(21)
| Pln+ i_zi:”Z]Z [ S’(¢_2~)+S(a+2N)] .

These equations may be rewritten briefly by means of the hyper-
geometric function F= 2 F4 9 Cefey . the CP is described

by the following expression (after the integration over V¢ )

- pE(w) E ) g
Sy - ZAS dng—,‘—h-l-,—mlr<%,4+t-;;1,-4.m;,
’ ) v, = @{4 . (208)
We note that the first satellites (N = 1) have been pre-
/107 ( /117

dicted for the first time in see also and belﬁw).

One integration in {20),(21) is easily carried out due to
the delta-functions. The last integration may be fulfilled
approximately, e.g., as it has been done in/10/. Since one can
carry out the calculations in the exact formu}ae {19)-(21) in
various ways, we shall give further calculations in a geparate
section.

4. Let us first consider in more detail the CP, After the
integration { we chooge the integration over v ) we obtain

(20a) , or

A i-0° -PEMIES ) 4070
e x2h @, g:m U [ o (L 0% )
: 22
C T Guete B82) 22 <58

The integrand in (22) converges to 0 at fL - 0;1, Indeed, the
inequality |l (x+iy)l& |T'(x)] yields the following limitations
on the integrand S (q,w,Q)

Aco

S.(qw, 1) & i——"— Fvo) ({-02%) >0,

th

” 2‘OAC0' . Vo € £33
S (0, 220) & == f(nle =0 >»4).
x1h wol4l
The last estimation, which is written for low temperatures,
may be specified remembering that for breathers 1-cosP ~0
at 150 (see (3) and (11)). S, 4is expressed as a sum of

nonnegative terms, thus all the terms, particularly Sc ]
approach zero if {1l —-0.

On the other hand, S, may be written in the form

40 2z 1 )
27Ac S e
=L e . \afle ),
S @) iR, 191 708 g 3 (22a)

9



where

fe)= o g in? + 5/ptw) =™ , L3 "7!'1’-'0/@0,

- SpVETE Y2y, § " 74-0t\n 27t
g(.n)=.!l4(4—e'5/""’4n ) ['f-" Z,lmt ) ﬂ( b)].
S0 long as & >4  the functon 4(2) has a aha.rp meximum
at 1= 0Q ~1 (an importance of the contributions to S7qw)
with Q~1 has been postulated 1n/1°/). Therefore, for the
eatimation of (22a) one may use/9'1°/ the saddle-point method.
This gives 1- it X/d[ %),

gane“mg(mz ——Kﬂ—’e— [ (_rzl a3V )+m{((4—.a)l I§"cmi/2 )],

2{l§%@i/2

or, taking into account once more that A >>1,

Sm.e gc.n.) f-g(ll)e“ (H"(.rl)l/Z)"z

After substitution of thig estimation in (22a), we finally
obtain

n
Pd P AT IR L 7 en ﬁ ]z
S = T o( e T (d (23)

The leading term of the approximation (the factor before the
square brackets) was found before/w'”’(in /10’”/A=u,=c, =4).

However, our result is essentially modified by the factor

[4- 92+ 9%4 - v*/36+..- 17, T 5_,‘,_

For the interpretation of Sc in recent experiments (this
will be the subject of our separate investigafion) it is not
sufficient to use only the first term of the sum. The parame-
ters of the CP (intensity, width) are determined, of course,
by concrete values of A, a,, ¢, .

Now we will estimate 5”3“ (eq.(21)). We use the well-

known relation for the delta-function

§(%) = ZJ'(X X;)I‘P(x,)l

10

where X; are the roots of the equation Px)=0 . We specify .
q,® 20 - and solve the equations a * 2N=0  relative to V.

This leads to the quadratic equations

qv-wt 2Na, 2 r" =

Using the solutions of these equations we obtain after the

integration
Susaf("’”) ” wr {dﬂ Gm)( (Jl) Fzm,) (24)
L IS T &(% ey %‘L?B:m();:“r-f;:m wh'’
SRR A .
Gum= BB g T 2 T
« (= 1‘1)'M ﬂ (¢+ “'} )] By = T (gt + (zm»,m’-w‘):; |

Since the functions f , [, have sharp mexima at Q~41,
the estimations of the integrals in, (24) may be accomplished
followi.ng/w/ with the use of the saddle-point method. PFor the

paper briefness we designate

it + (2Nw, )2 gt + (Nwon)?

() = o
C ('Q) % 96 @, By / /x+ Nl E“ 19cow By /7 - 2Nar 2| e
and express S,. sat in the form
p " . .
S:Sa:t e SusmH i Su atd ! (27)

where

. ‘l ~2
Mm(i-e B'(C)C,(l? )

N, 2 M
27AC K Bu(0)
. (“ ) ( Byta) Cu(4))

N
Susats = TTThag \ Cu)

et e Byu(1) \W ﬁ(l‘+ By (1) Cu (1) )]" (28)
dlas V1o 2o

(hed- M 44N\ Cul)]) g

11



and S:suz is obtained from (28) after the substitution
Cy » En . Because of the cut-off exponential factor
in(28), S:m{ will be appreciably different from zero only

in the vicinity of w determined from the condition

By(1) ~ Jqick+ (20w, )~ x 0,
that ig, if @ is near to

@y = ¢+ (2Ne)® . (29)

Thus the satellites are the peaks located near the frequencies
D= Oy « At low temperatures.their posgitions are almost
independent of the temperature., However, taking into account
our approximations in obtaining (27)-(29), we see that if T

increages, the value of &y decreases and the gatellites
come nearer to the CP,

The gquantity BN is small near @y . This allows us to

make one more approximation. Instead of (26) we will have

L ot r“‘
EN i3 CN 3 m ) B" = K Q,}_,Q‘ ’ (263)
and
] N e
Sum * 2Sysatq s ) (30)

if we substitute (26a) in (27)-(30).
As was mentioned‘ above, the first satellite (N=1) has been
found 1n/10,11/. Our expressions determine the series of follo-
wing satellites, the corrections to the solutionho'”/ for
st“ and correct the expression for Spsat obtained in the
cited works ( in eq.(28) of the paper/m/ one must replace
sge(qi-a*) by snlg-o*l ; this alters the following calculations). L

We write the expressions for the first two satellites:

S;s,;t ZQAC. ( 54 )yz(BC ){‘ﬂ}(4 QJE) [1_" ]Z i

W hat (31)
1 2%t g B, \2 LA B.Ch 2
Sise * aimra (B) (060 BE YU SE -y (310)
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The corrections to 1 in the square brackets in these formulae

1
are not important in this case. For Sy we have

B2
[1--1=4-% %*Z’?)*'" g

2
and for Su sat

9 B B.Ca o N
i8] = =g (0 ks e

4 2
Near the maxima (in & ) of the functions S, ¢ and S sat

the values C1 and C, remain of the same order but 8,, B,
are gmall, Therefore, one may conclude that the heights of the
peaks of Sig, -and Spy much differ in their magnitudes,
S:m being much smaller than gns«t . The same conclusion
takes place for other N, too. Thus, the general picture is as
follows: the parallel DSF, which is responsible for the scatte-
ring from breathers, consists of the CP and the peaks of inten-
sity (the satellites) located near the frequencies &y (N=¢2,--)
with gradually decreasing heights.

5. Usually, in scattering experiments besides the "parallel"
DSF (investigated above) the corresponding "perpendicular" DSF,
S, » is determined. The calculation of 'the later is cemnected
with the averaging of the product sin P(x,t) six $(00). Si
has been investigated for the first time :tho'n/. There was
found in these workslthat S_L gives a very small contribution
to the CP (which can be neglected) and represents a satellite
located near the frequency ®= m .

According to (3) $ir? ig defined by the expression

sin® = loe(4-2) (4+22)2 . (32)

Substituting (32) instead of - ({-cos®) in (12) and (13)

and using the trangformations (14) and (18) we obtain

_Sataes d - PEC

S,(qw) -m ZZ dydrdadp 9. .n.‘) ‘Jz( E:f[ p :‘M
9-9.

+i(-b2+by-ab, at)](l '(2"1)(2&-&4) toshy )z 33)

13



Here the formal expansion hes been used
oo
., wm
sin = 42 (A" (2net) e i

=0
Such a way (despite of its formality) gives the same results

as the more rigorous method we have used in the calculations

of S" and is slightly more fast and straightforward. The va-
lues a and b are given in (1'7). The integrals over ¥y and
2 » a8 in Section 3, are expressed in terms of gamma-~functions,
and the integral over T 'gives birth to the sum of delta- func-

tions 2044

5, Z (t"}(—l}ﬂf(hﬂ-— 20+a)

€=0
Pogsible values of a are now limited to integer numbers, so
the integration over 8, gives

~iabo 2kt [ 4 2k -
SJG Sin g = —— . )(“) i

2 L Rik-0414 ¢
if 0% e k-0+0 % 2k+4 » and O in the opposite case. Finally,

after the subgtitution dp = ptndv , (33) is replaced by

6
S( @) = 2 Aco Sd mﬂsl -PE) l 4__‘12 ik
)
© xthat .% %,Z_B ke )
Osntk-e+1£2ke 4

1S(Zu41 28+a) | F(:u—+ )["(ht‘ 4-“")'7'

= Y (e R Cone ) (ko nets 1)1 Onet-)! ]! S

Making the substitution 2n+ed-20= -2N-4 and regroupping

the terms in the sum, we have

S, (gl = :6‘“ gvdfl £te EMZ [3Car2met)e §Ga-an- 1]

R
haw] N=o

[ZE) ret)? "nl) [T(ney + i) ] " (34a)

Sk (ne1+ N (r-N)!
The terms which correspond to N = 0, 1, ..., may be called
the satellites (there is no separate cohtribution to the CP

14

as it was in the case of S;). If n = O one may obtain from
{34a) an expression for the firgt "odd" satellite (N=0) found
:I.n/w'", (with corrected numerical factor). Finaelly, after
the integration over v (which is easily realized due to the
delta~functions) we obtain from (34a) for the Nth satellite

2°Act ( ~PEG ~-pE(v;))

rhaol } g n? B,,(JZ)

et (2n)? 1-n2 By () y[2 ]2
) [ Z— (r+4+N) 1 (n-N)! ) lr(“ 21!31 n‘” ] ’ (35)

n3N

TS gl = I (qr- ot bt @i,

o (2N+ 1202 N+ 9
PE(H2) = Lit-D (2N+1) @003 0L F 4Gty By /X ©(36)

Slset (1) =

The expression (35) is exact in the model of the ideal breather
gas. The integration in (35) may be carried out numarically or
uging various methods of estimations. We note, however, that

/10,11/ and above,

the saddle-point method, which was used in
must be used with some care. In such an approximation the first
satellite“o'nl diverges at W m while it is easy
to shaw that Siget 20 as @ - Vyeks (ZNIQZ .

'6. The expresgsions found above for the thermodyngmic
functions and DSF of the breather gas are true for any system
governed by the SG-equation (2). In any concrete system one

mugt only specify the velues of the constants Aty ¢, and a,.
We will use the obtained results in a following work for the

interpretation of the mentioned neutron écattering expefiments
on one-dimensional Heisenberg magnets/4/. In gpite of the agree-
ment that the spin-dynamics in such magnets (as CsN1F3) is go-
verned by the SG-equation, the breather contribution to the

DSF of scattering has not been yet considered quentitatively.

It is hoped that the revealed features of the structure of the

15



DSF (the series of satellites) will stimulate further experi-

mentsg in this field. One more example which demonstrates the

wide range of application of the SG-model may be the problem of

"open states" in DNA/13/. Probabiy, torsion vibrations may

exist in DNA which may be described by the SG-equation. The

additional condition of low temperatures ( & >>{ ) which hag been

widely used above is well satisfied in experiments/4/; we note

that for DNA "low" temperatures may mean the room tempertatures.
We are grateful to V.G. Makhankov for stimulating remarks

and discussions on the results.
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Bxnag GMOMOK B PAINOBEL HUE M AWHAMMMGLKUE XADBKTEPHC TUKK KBA3MOAHOME PHHIX
cucTem

B patiite miyuonu PABMONSE HME W AMHAMUUECKMC XAPAaKTEPUC TMKKM ra3a GuoHoe
/Gonddepun/ AN MOABNEN © TATHC TUNECKOW MEXAHWKW, ONMCHBAEMHX YPaBHEHMEM
sine=Gordun . NocTpocis 1iepMoauHammuka 6uoHoB. Bnepswe nonyueHw TOuHWE aHanu-
THUYECKME QOPMYNM ANR NPOAOABHOrC M NONEPEUHOrO AMHAMMUECKMX CTPYKTYPHBIX
daxtopon 84(Q, w) w S, (Q@) Okasanocs, YTo S, COCTOMT M3 WEHTPANLHOrO NMKa
n BecKOHEYHO NOCNEeAOBATENbHOCTH CATENNUTOR, UEHTPH KOTOPWX PACMONOXEHM

eGnnau vacrtor “’.N -y q’c: + (2Nay, ¥, N =1,2,...; exnag OT S; 8 WEHTPaNuHui
NMMK OTCYTCTBYET, a CcaTennute UueHTpupoeaHs BO6NM3M 4acToT

0; = \/0205 + (2N + l)‘mg, N =0,1,... . fMonyuenHue gopMynu MoryT GuTs npumere-
Hb ANIA aHANWU3a W WHTEPNPETAUWN IKCNEPHMEHTANbHUX AAHHWEX NO PAcCCERHMD HEHTPO-
HOB W CBETA Ha KBA3WOAHOMEPHBIX MarHeTwkax, monexyne [IHK, sonHax 3apapomoii
NMOTHOCTH W T.n.

PaboTta euwnonHena B flaGopaTopuu TeopeTuyeckon Ouamkm OUAU.

NpenpusT O6beOWHEeHHOro MHCTHTYTAa AOEPHMX MHccllenoBaHmit, [lyGra 1984

Fedyanin V.K., Lisy V. E17-84-223
Contribution of Breathers to the Equilibrium and Dynamical Characteristics
of Quasi-One-Dimensional Systems

The equilibrium and dynamical characteristics of a gas of breather§
are investigated for statistical mechanical models described by the sine-
Gordon equation. The thermodynamics of breathers is constructed. For the
first time exact analytical expressions are obtained for the parallel and
perpendicular dynamical structure factors S, (1, ) and $;(q, »). These
expressions are approximately averaged over the intrinsic frequency © of
a breather. 8, is proved to consist of a central neak and an infinite
series of satellites with centres near the frequencies “k =

= Vﬂzcg+(2Nmo)§. N =1,2,... . 8§, has no central peak while the satellites

are centered near the ferquencies wj‘, = \/q202+(2N+1)2w%, | ST T S
i

Q § o
The obtained expressions may be use n the analysis of experimental data
from the scattering of neutrons and light on quasi-one-dimensional objects,

€.9., magnets, DNA-molecule, charge-density-waves, and others.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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