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An extension of TFD to the study of nonequilibrium systems 
seems therefore of interest. The aim of this work is to show, 
Ьу analyzing а very simple nonequilibrium proЬlem, how а pos­
siЬle extension of ТFD to nonequilibrium situation can Ье reali­
zed • . We shall analyze with the TFD formalism the classic proЬlem 
of the brownian motion of а quantum oscillator. 

The central idea of TFD is the introduction of the Bogolubov 
transformation which, once the degrees of freedom are douЬled, 
transforms the physical vacuum at Т = О in а new temperature 
dependent state 1~> which can Ье considered as the physical 
ground state for systems in thermal equilibrium at Т = О. The 
Bogolubov transformation works here as in super-conductivity, 
when used to obtain the BCS ground-state. Тhе Cooper pairs are 
here substituted with thermal pairs formed Ьу putting together 
each degree of freedom of the field with its douЬled counterpart. 
In the following we shall show that in order to extend TFD to 
nonequilibrium systems, we have to distinguish between two dif­
ferent situations: 

а) stationary systems out of equilibrium for which а gene­
ralized fluctuation and dissipation theorem is valid; 

· ь) time-dependent statistical averages. 
Our main results are the following: 
1) The extension of TFD to stationary systems can Ье accomp­

lished straight Ьу introducing а new Bogolubov transformation, 
whose coefficients are fixed Ьу the generalized fluctuation­
dissipation theorem. 

2) The description of time-dependent statistical averages 
can Ье accomplished Ьу using а statistical mixture of states at 
different temperatures. Therefore, in order to study time-de­
pende.nt averages we introduce а representation of matrix density 
in terms of the 1~ > states. 

In Part 2, reanalyzing the Bogolubov transformation for quan­
tum oscillators in thermal equilibrium, we show how to extend 
the TFD to stationary systems. 

In Part 3 we extend our formalism to describe а damped quan­
tum oscillator. We show that damping does not affect the Bogo­
lubov transformation. 

Part 4 is devoted to the study of the approach to equilib­
rium of а damped oscillator. The correct two-point Green func­
tion is obtained Ьу using а statistical mixture of states at 
different temperatures. 

PART 2. The aim of this section is to rederive the Bogolubov 
transformation, which connects the vacuum state at Т = О with 
the ground state at Т ~ О of а quantum oscillator in thermal 
equilibrium Ьу using the fluctuation-dissipation theorem.This 
derivation allows us а straight extension of TFD to stationary 
systems satisfying а generalized fluctuation-dissipation theorem. 
Let us recall shortly the main s ~~ps of . th_e -ТED-~ism. One 
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considere а quantum system with one degree of freedom 
described Ьу the Hami 1 tonian Н = w а +а • It is assumed that the 
operators а, а+ satisfy the usua1 commutation re1ations [а, а + ] 
=1; [а, а] = О; [а+, а+]=О. The quantities of interest are the 
therma1 equi1ibrium averages of any operator О(а+,а) that we 
denote as 

«О(а+, а) » = ТrО(а+,а) е -,9(1-i-J.l.N) /Tre -13(H-J.l.N). (1) 

The aim of TFD is to express the average (1) as а sing1e mat­
rix e1ement on а suitaЬle temperature-dependent state 113 > 

«О(а+, а)» = «IJIO(a+, а )113 >. (2) 

То achieve this resu1t it is necessary to douЬle the degrees of 
freedom Ьу introducing in correspondence of а and а+ the ti1de 
operator а and а+ which form therma1 douЬlets 

( :.) ; ( ;·) (3) 

The dynamics is determined Ьу the Hami1tonian 

н= wa+a -wa+a. (4) 

In general 

Н = Н( а+, а) - Н(а +,а), (5) 

where the - operation means 

+ -+- -- = 
О( а , а) = О *(а , а); 0 1 0 2 = 0 10 2 ; О 1 = О 1 • 

(б) 

Here* denotes а comp1ex conjugate. The operators а~а commute 
with the operators а+, а and satisfy the commutation re1ations 

- - + - - - + -+, [ а , а ] = 1 , [ а, а ] = [ а , а J = О • (7) 

The Fock space is spanned Ьу the vectors 

(а+ n с+ m 
lnm > = ln> Ф Im > = __ ) __ a_)_ l О , О > , (8) 

n! m! 

а+, а+ and the conjugate operators а' а are tqe creatig.n and 
annihilation operators on the vacuum state 10, О> = IO >siO> .тье 
Fock space so obtained is the physica1 space (in-space) for the 
system at Т = О. According to the TFD, in order to describe the 
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system at Т ~ О, we have to construct а new Fock space, which is 
the physica1 space corresponding to the new boundary conditions 
(Т~ О). Тhis can Ье accomp1ished in ana1ogy with what is done 
in presence of quantum condensation (superconductors, super­
f1uids, ••• ) Ьу а suitaЬle Bogo1ubov transformation which trans­
forms the state 1 00 > (physica1 vacuum at Т = О) in the new 
temperature-dependent state 113 > and preserves the equations of 
the motion and the commutation re1ations. The state 113 > is the 
appropriate ground state for the description of the systems at 
Т ~ О. The expectation va1ues of any operator on this state 
coincide with the therma1 average. 

In the framework of TFD it is assumed that IIJ > is а conden­
sed state of the coup1es а а and а+ а+, Set there 

L = i8(aa - а+а+), ( 9 ) 

where е is а r eal function of temperature; one def i ne s: 

113 > = e 1L 100 >, е iLa(t)e-iL = a(t), e 1La+(t)e-iL=a+(t). (1 0) 

- - + . . . The operators а,а are obta1ned Ьу us1ng the- operat1on. The 
set of operators а, а+ ' а' а+ satisfies the same dynamic 
and the same commutation re1ations as the set а' а+ ' а ' а + 
They are annihi1ation and creation operators on the state 113 > 

а 1 ,9 = а 1,9 > = о . ( 11) 

We note that the equations (10) can Ье written as fo11ows 

-+ + + -a(t) = g
1
a(t) + g 2 a (t), а (t) = g 1a (t)+ g 2 a(t). (12) 

The inverse .formu1as are 

a(t) = g
1
a(t)- g

2
a+(t), a+(t) = g 1 a+(t) - g 2 a(t). (13) 

with 

g 1 = cosh8; g 2 = sinh8. ( 14) 

In previous works the function е was determined Ьу the requi­
rement that the equations (2) were satisfied. We observe that 
8 can Ье fixed more genera1ly Ьу requiring that the f1uctua­
tion-dissipation theorem is satisfied. This imp1ies the wel1-
known re1ation between the commutator and the anticommutator 
of the а, а+ operators 

< IJ I [а (t), а+ (t ')] _ 113 > (2n l3 - 1) = < ,9 1 [а (t), а+ (t ')] + 1 13 > , (15) 
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where in the case under consideration 

1 
n 13 = (16) 

1 - ехр(-{3(ш- J.L) 1 
is the equilibrium distribution function for the quantum oscil­
lator at the temperature kT = 1/ {J. 

From (13), (14) and (15) we have 

g ~ = sinh 2 8 = n fJ ~ 1 ; g ~ = cos h 2 8 = n fJ , (17) 

The well-known two point Green function is obtained immediate1y, 
in fact, from (13) 

G(t,t') = « T(a(t)a+(t')» =< ,8\T(a(t)a\t'))\{3 > 

= [n 
13

e(t -t') + (n fJ -1 )(}(t'- t)] е \ш(t-t') 

More general1y we can write the matrix which contains all the 
two-point functions different from zero 

<{3\ т [(:(t) ) 
а +(t) 

(а+ (t ') a .(t '))] 

with 

\{3 > = 
( 

'011 

'021 

·а 12\ 

'G 22 ) 

'G 11 = G22= G(tt'), 'G 12 = G21 = - v n
13

(n f3 -1) е iш(t- t'). 

It is now evident that the derivation of the Bogo1ubov transfor­
mation here presented al1ows а straight-forward genera1ization 
to systems out of equi1ibrium for which а generalized f1uctua­
tion-dissipation theorem is va1id. In fact, in this case one can 
apply the same procedure and fix the е function appearing in the 
Bogo1ubov transformation Ьу using the appropriate distribution 
function instead of (16) . The app1ication to the case of the 
one-mode 1aser is immediate. 

ГАRТ 3. In this Part, Ьу analyzing а quantum osci11ator 1oo­
sely coupled to а therma1 bath, which is essential1y а macrosco­
pic system in thermal equi1ibrium at temperature Т, we sha11 
show how the TFD can Ье genera1ized to describe systems which 
present а damping effect during the time evo1ution. 

We write the Lagrangian of the system as 

+ + 'L(t) = ·L 0 (a , а) + Л(а + a)Q + L ext •• 

where 

+ ·L
0
(a , а) 
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d + + 
adt а - ш0 а а 

(18) 

(19) 

.) 

.} 

is the Lagrangian of the free oscil1ator; ·Lext• the Lagrangian 
of the macroscopic system; Q~) is an hermitian operator of that 
system; Л is the coupling constant between the oscillator and 
the macroscopic system. То analyze this system in the framework 
of TFD we introduce the tilde operators and write the Lagrangian 
of the douЬled system as 

,.. ~ + -+ ~ -
L =L 0 -L 0 +Л(a +а)Q-Л(а +a)Q +Lext- ·Lext (20) 

We assume that the bath and the oscillator, both in thermal 
equilibrium at temperature Т, are put in contact at the time 
t = о. 

We are interested only in the behaviour of the osci11ator 
and assume, following Schwinger 121, that, after performing the 
thermal average on the variaЬles Q, Q+, Q, Q + of the macrosco­
pic system in the limit of weak coup1ing and neglecting the 
correlation functions of the macroscopic system with more than 
two points,we obtain the effective Hami1tonian. · 

н= (ш- iy)a+a- (а~+ iy)a+a , (21) 

where 

Л lыt 
у = --- ( dt е « [Q(t), Q(O)]+ » . (22) 

2(2n 13 - l) 

The operators а, а+, а 
tions; they can Ье used 

а+ satisfy the usua1 commutation re1a­
to construct the Fock space 

(а +)m (-;+) n _ 
\mn > = -- ---\00 > (23) 

m! n! 

Then, as before, the properties of the damped osci1lator in 
therma1 equilibrium at temperature T,will Ье computed Ьу trans­
forming thermal averages into expectation values on the state 
\{3 > obtained with the Bogolubov transformation (13) applied 
to the vacuum of the а fields. In particular, the two-point 
Green function, keeping in mind (13) and (17), becomes 

+ 
G(tt') = <{3 \T(a(t) а (t')) 1 {3 > = 

lы (t- t ') -у\ t- t '\ 
(24) 

= [ n f3 (} ( t - t ') + (n f3 - 1 ) (} ( t' - t) ]е е 

This is the correct behaviour 121 of а quantum oscillator in 
thermal equilibrium with а bath at temperature Т. Тhere is, as 
expected, а damping in the correlation function. Тhе bath acts 
as а stochastic force. 

The matrix containing all the two point functions is, as be­
fore: 
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(

'011 

'G(t,t') = ·о21 
'012) 

'022 

(25) 

'О 
11 

= 'О 
22

= 'O(tt'), (26) 

О 12 = 'О 21 = - .J n f3 (n f3- 1) е iы (t- t') е -y\t-t'\ (27) 

PART 4. In this Part we show how а proЬlem of approach to 
equilibrium or, more generally, а time-dep~ndent statistical 
averages can Ье treated in the framework of TFD. То describe 
the procedure, we analyze, as simple example the approach to 
equilibrium of an oscillator. The system that we consider is 
the same described previously, but the oscillator, in thermal 
equilibrium at the temperature т0 , is put at the time t = О in 
thermal contact with а bath, which is essentially а rnacroscopic 
system in equilibriurn at the temperature Т 

1 
different frorn т0 • 

In this case statistical averages are time-dependent and cannot 
Ье cornputed as expectation values on а pure state, obtained 
through а Bogolubov transformation, as before. The boundary con­
ditions are such that the statistical average depends on the 
two ternperatures Т 0 and Т 1' and on time. 

То treat this type of situation we propose to consider the 
system as а statistical rnixture of states at different tempe­
ratures. 

Thus if we indicate with \{3 > the equilibrium state at tem­
perature kT = 11/3, the time-dependent averages are expressed 
as follows: 

«O(t 1)0(t 2 ) »n.e. = Tr(O(t 1)0(t 2 )p(t 4 )), (28) 

where 
{31 

p(t) = { \/3 > W(JH) < {3\ df3. (29) 
f3o 

The time-dependent quantity W(fjt) gives the probability of fin­
ding at time t the system in the state at temperature kT = 1/ {3 ; 
{3 0 and{3 1 correspond respectively to the initial and final tem­
peratures. The state \{3 > is obtained Ьу using the Bogolubov 
transformation (10) 

\{3 > = е 8({3)(а а - &+а+) 100 > . 

It is worth putting into evidence the relation between 
the distribution function; frorn (28) and (29) we have: 

n (t) = « а \t) a(t) » n.e. 
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{31 
( W(f3t) nfjdfj, 

f3o 

W(fjt) and 

(30) 

where nfj is the equilibriurn distribution function at ternpera­
ture kT = 1/{3. Let us show how this procedure, when applied 
to approach to equilibrium of а darnped oscillator, gives the 
correct two-point Green function. In this case it is sufficient 
to assume that the oscillator can Ье either in the state at ini­
tial ternperature Т0 or in the state at the ternperature of the 
bath T 1 .Тherefore 

W(f3t) = w(t)8({3 -{30) + (1- w(t)) li(fj -{31 ) (3 1) 

and 

p(t) =\f3 0 >w(t) < ,80 \ + \f3 1 > w(t)<f3 1\. 
(32) 

In order to fix w(t) we use the equation (30) 

w(t) = (n(t) -n~ 
1
) / (nf3

0
-n f3

1
), (33) 

where n13 , Пfj are respectively the equilibriurn distribution 
function~ for 1the oscillator at the initial and final ternpera­
ture. 

Ву rernembering 12 / that for the damped oscillator n(t) = n {3
1 

+ 

+ (ПQ - ПQ )e-2Yt 
1-'Q ,., 1 

we have 
w (t) = ехр (-2yt) • (34) 

The computation of the two-point Green function is irnmediate; 
infact Ьу using (24), (28), (32) and (34) we have: 

O(tt') =е iы(t-t')e-y\t-t'\ [nf3
1
8(t-t') + (nf3

1
-1)8(t'-t)] + 

' -y(t + t') 
+ (nf30 - nf3 1) е 

(35) 

The rnatrix, containing all the two-point Green 
ferent from zero, is 

functions dif-

'G(tt') =('0н 
'0 21 

where 

'012 ) 

G22 

'G 11 = G 22 = 'G(tt')), 

'G 12 = 'G 21 = -exp[iы(t . -t')].[.Jnf3 1(nf3cl) exp(-y\t-t'\) + 

+ (.jnf3
0
(nf3

0
-l) -.,Jrnf3

1
(nf3

1
-l))exp(-y(t+t'))]. 
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In conclusion, the procedure proposed to computation of time­
dependent statistical average gives the correct two-point Green 
function for the damped oscillator. А simple extension can Ье 
used to compute two-point Green functions of free particles. 
Тhе extension to the study of interacting particles system and 
n -point Green functions is not trivial; work in this direction 
is in progress. 
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