


Quantum mechanics and information theory both deal with 
"phenomena" (rather than "noumena" as does classical physics) 
and, in a way or another, with "uncertainty", i.e., lack of 
information. The issue may be far more general, and indeed of 
a fundamental nature to all science; e.g., recently R.E.Kal­
man Ill has shown that "uncertain data" lead to "uncertain mo­
dels" and that even the simplest linear models must be pro­
foundly modified when this fact is taken into account "in all 
branches of science, including time-series analysis, economic 
forecasting, most of econometrics, psychometrics and else­
where" 121• The emergence of "discrete levels" in every sort of 
"structured systems" 131 may point in the same direction. 

Connections between statistics, quantum mechanics and infor­
mation theory have been studied in remarkable papers (notably 
by M.Tribus 141 and E.T.Jaynes 151 ) based on the maximum (Shan­
non) entropy principle. We propose here to show that such 
a connection can be obtained in the "natural meeting ground" 
of geometry. Information theory and several branches of sta­
tistics have classic geometric realizations, in which the role 
of "distance" is played by the 1nt1n1tes1ma1 clltterence oerween 
two probability distributions: the basic concept is here cross­
entropy, i.e., information, which we much prefer to entrop~ 
the latter is essentially "static", while the former correlates 
a posterior to a prior situation and invites thus to dynamics. 
The "information distance" is here "complexified" and genera­
lized in a way clearly forced by the formalism adopted. Quan­
tum mechanics, if presented as "quantum geometry" (as proposed 
in previous occasions by us !6/ ), appears then to be a parti­
cular instance of this wider "complex information geometry". 

INFORMATION GEOMETRY 

Hetric 

L - I <1> <2> <n> I d - I I b t et x = x , x , ••• ,x an z = z(l), z(2), ... ,z (m) e wo 
sets of real variables; in the current literature of statis­
tics or estimation theory x is a point in "parameter space" 
sn, z represents random variables. Thus, in the Gaussian dis­
tribution 
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we read z = lz (1)1' x = lx(1) = f (l) (jL,u), x<2> = f (2) (jl, u) l. This 
interpretation of the roles of x and z is however not essen­
tial, and may be modified whenever convenient (it being a mat­
ter of "identification"), provided formal manipulations stay 
the same. The Kullback-Leibler information 171 (or cross-entro­
py): 

I (1, 2) r p(xllz) lol(x 1lz) dz 
p(x2 1z) 

(2) 

discriminates between distributions at points 
ting x 1 = x, x2 = x + dx one has from (2) 

x 1 and x 2; set-

21 (x + dx, x) = ds 2 = g hk (x) dx hdx k , 

a where (a = -), 
h axh 

ghk (x) = gkh(x) = Jp(xjz) ah logp(xjz) ak logp(xjz) dz 

(3) 

(4) 

is the Fisher /7,8/, or information metric; of course p(xjz) ?:0 
and 

fp(xjz)dz=l. (5) 
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The geometrical representation of a model (or theory, ac­
cording to one's philosophy) requires essentially the choice 
of a metric 'G and a connection riL, and the identification of 
a reference frame; these depend upon the "universe" one wishes 
to model. For purposes of statistics and estimation the most 
general connection is of the form/9/ 
a . . 
rijk = [ ij, k]- ; J a ilogp aj logp ak logp dz (6) 

with a an arbitrary real parameter. The only case of inte­
rest to us, in our comparison with quantum geometry, will be 
a = 0 (non-metricity/10/ does not appear desirable at this 
stage). It is instructive however to consider first the ge­
neral case, on the example of the Gaussian distribution (1), 
which one may writel111as 

[ (1) ] 2 
p (x!z) = expl zx<1)- z2 x<2>-.!.. x + 1.logx<2> -..llogll' I 

Gauss 4 x (2) 2 2 
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then 1111 0 = lg hk I = 2~ta 2 
21Lu2 ) 

41L2a2+ 2u4 . and 

a 
R 1212 = (1 -a 2)u 6 • (8) 

Thus, the choice a = l renders Gaussian distributions as 
straight lines when an appropriate "natural" frame is taken 
in "parameter space" [a = -1 does the same for "mixture distri-

butions": p(x! z) = (1- I x(h)) p 0(z) + I x(h) ph(z) (0 < x(h) < 1 )]. 
h = 1 h= 1 - -

Excepting 0 these cases, and in particular with the metric con­
nection r!L"' [ij;IL) of interest to us, (8) tells that the cur­
vature tensor expresses our lack of information: it vanishes 
only when a=O, i.e., when the position z is known with abso­
lute certainty. Such possibility is the main intuitive notion 
we wish to draw from this example. 

QUANTUM GEOHETRY 

We refer here to the realization of one-particle quantum 
mechanics treated in earlier works 161 ; it will suffice here 
to recall that its main ingredients are: 

I) an Hermitian metric 0 in 8-dimensional relativistic 
.. .. ,... ' 

pua~t::. ~pcu.;.t! \WUl.L.ll UldY UtL..l.Ve .Ll.UlllJ, 

2) an anti-Hermitian connection 1~,· such that the ensuing 
Riemann tensor expresses the Heisenberg commutation relations, 
i.e., our "uncertainty" or lack of information; both position 
and momentum operators become covariant derivatives taken along 
the axes of x. 

3) a quantum frame, whose fixing (or "polarization") is 
a prerequisite and corresponds to "identification" (often ig­
nored by physicists but central to systems theory). 

Statistics, etc., use mainly probability distributions p, 
while quantum mechanics prefers their "square roots", i.e., 
amplitudes. \ole shall need therefore first of all to re-formu­
late information geometry in terms of amplitudes. Information 
and systems theory deal with uncertainties in various ways, 
none of which excludes the theoretical possibility that they 
may be all rendere~~s small as wanted (though this view may 
have to be changed 1 ); quantum physics sets instead theore­
tical limitations to this possibility. In model-thinking, the 
difference may appear less relevant, or not relevant at all, 
depending upon how much of theoretical or technical limita­
tions one wishes to build within the model, or leave out as 
"error". The development of physics is a paradigm not to be 
overlooked by sciences which go from "soft" to "hard". We take 
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the info~mation metric (4) as basic; we wish, though, to treat 
with it also situations in which p(xiz) is not given a priori, 
but has to be determined by means of additional considerations. 
The meaning of x and z will thus depend on the particular 
situation: again, "identification". We start with the remark 
that the metric element (4) can also be written as 

ghk (x) = 4{ ah y'p(xiz) aky'p(xiz)dz (9) 

so that 

1 2 - h ' - k -2 4 ds = {( ah y'p dx ) cak v' p dx ) dz = f ( d v' p ) dz • (I O) 

The variable z may of course take also discrete values: { ... l, 
so that situations can be conceived in which (9), (IO) simply 
express ghk in terms of a holonomic viel-bein. Thus, if 

¢> ~~~ = v' p (xI z =a), (9) reads in the familiar way 

1 · (x) (x) 
- g hk (x) = I a h ¢>(a) a k ¢> (a) 
4 a 

(II) 

Many other situations can be expressed through the scalar pro­
duct (9) (hypercomplete sets of states, etc.); the considera­
tion of this typical "system-model" play will not concern us 
here. 

The wanted generalization of the information metric (to 

include also our quantum metric ghk (x) = g kh (x)) is now obvious: 
it reads (neglecting the irrelevant numerical factor) 

ghk (x) = fl/lh(xiz)I/Jk (xiz)dz (I2) 

if 1/Jh(xiz) = ah¢>(xiz) (12) yields the general holonomic case; 

if ah¢>=~4> we fall back into the standard information metric 
(9) or (4). 

The choice of the connection f' J1. is the next step in the 
geometrical construction of a model, or theory, as was evi­
denced in the discussion of the gaussian and mixture distribu­
tions (a = +I). Comparison with our work on quantum geomet­
ry 161 requires, as already stated, a= 0. It is interesting 
to %ee what happens in this case to the connection (6). 

f'IL reads, in the standard form (4) 
1111

: 

f 2 1 '"k (x) = r p [a .. logpak logp + -a! logp a. logp aklogp] dz. (13) 
IJ IJ 2 J 
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From 
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k -
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2 p j = 1 I ( I4) 
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~ 

one finds 
0 

'2 - -
f' ii k = 4 I a iJ v' p a k v' p dz (15) 

This unexpected simplification can hardly be a coincidence; it 
strongly suggests than (9) is more convenient, or "natural", 
than (4) for the construction of a wider, complexified geo­
metry. It is important to remind also that the addition (if 
we start with (I2)) of anti-hermitian terms to (I5) leaves ds2 
invariant: it amounts to a gauge transformation /12/. 

In this perspective, our formulation of quantum geometry 
obtains by restricting in a suitable way the "complex infor­
mation geometry" sketched here and, of course, by suitably 
identifying its mathematical objects with those typical of 
quantum mechanics (fixing the quantum frame). Obviously, in­
formation geometry is another such restriction. 

We suggest therefore, in conclusion, that "complex informa­
tion geometry" may be an apt tool for attempting "technologi­
cal transfer" among fields of investigation alien thus far 
to one another. As a final remark, we note that "infinitesimal 
distance" ds 2 and "infinitesimal cross entropy" dHc (14) 
now coincide (to within approximate identifications): 

2 h -k h- -k 
ds = dH = g hk dx dx = f 1/J h dx 1/1 k dx dz . (I6) 

Then. the requirement imposed bv relativitv for Particles to 
be physical 11

:.
1 

: 

ds 2 = dt 2 - - 1- dx 2 > 0 c2 - (17) 

coincides with the requirement 

dHc 2:: 0 (I8) 

which phfsical phenomena must satisfy. The issue, whether or 
how 1/!h(x in (I2) can be connected with solutions of (quantum­
mechanical) equations, will be considered in a next note. 

The author is greatly indebted to Professors S.Amari and 
R.E.Kalman for kindly communicating to him their important and 
stimulating results. Warmest thanks are also due to Professors 
N.N.Bogolubov and N.N.Bogolubov (Jr.) for their so cordial 

·hospitality at JINR in Dubna. 
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