


The critical properties of the quantum—mechanical X-Y model
in a longitudinal magnetic field were investigated by several
authors/1-3/. As a finite temperature these properties corre-
spond to those of the classical X-Y model/2:3/, but when the
temperature is equal to zero they are characterized by new spe-
cifically quantummechanical exponents/!/. Considering the
critical line I'c =T, (T) one can expect quantal-to-the-clas-
sical crossover behaviour in the vicinity of the multicritical
point [T =0,T; =0]. Such a crossover has been described by the
Hartree-Fock approximation/!/ and recently by the modified
field-theoretic renormalization-group (R.G.) method/4/.This me-
thod, previously used to the quantal crossover of the Ising
model in a transverse field/58/ contains some additional re-
normalization, which removes singularities as 7 ,0. In the
papers treating quantal crossover in the X-Y model /1-4/  only
the ;situation, when I'>T_, has been investigated and the order
parameter, which is transverse magnetization, was found to be
equal to zero.

In this letter we report some results concern1ng the equatlon
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2<d< 4 when I"=1¢. and a nonzero perpendicular magnetic field
B is applied. The spin operator Hamiltonian of our system is
the following:
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where Sf::S; +isy, S?(a::x,y) is the «-th component of the
spin operator referred to the i-th site of d-dimensional simple
hypercubic lattice, B¥ - B, *iB, , Bg (a=1x,y) is the a-th

component of the applied transverse field and I;; denotes the
exchange integral.

The Landau-Ginzburg-Wilson functional with the Matsubara
frequencies can be written as follows:
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where

.. [ al 8@ =en’s' @),
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A=n/a is momentum cut-off, a denotes the lattice constant, r,
is linear in the longitudinal field dev1at10n, h=-T,)/T, ,»
t~TA2 ug ~ A2-d is a constant for small T, HY. ¢1/2 p* and
b3, m is the Fourier transform of the classical spin field
@, (1) depending on the Matsubara time 0<r<f8.

Now we introduce the functions WH™, H™) and I'M*, M7) corres—

ponding to the free energy and thermodynamic Gibbs potential per
unit volume, respectively

-S(g},H", HT)
WH*, H )= - In fd(d)e , (3)
MY, M )=-W+H*M™ + M H' =T'(™M), (4)
where [d(¢)... denotes the integration over fields ¢>;m ,
Mi: JW (5)
oH? N
and M= M| =M2 +M )1/2 . Equation of state
ar
H= —, (6)
dM

where H= |H™| , formulated in terms of nonrenormalized theory,
cannot be considered in the limit A~ or t - O since the sin-
gular terms arise. For that reason we pass to the renormalized
theory introducing new fields 3 m> dimensionless coupling
constant g and renormalization momentum p, cfo, e.g. 74/ | The
set of transformations (g, u)» (8 ) under which physical content
of the theory remains invariant is called renormalization group
(R.G.). We define ¢6,m ,g n and R.G. operation as follows

q%l’m _ r‘1/7(t/,ﬂ) Z_31/2¢6,m’ 102
ugt = (/w2 232 = W /D2, 252, ®)
and

r~rc=,L2Z2h:ﬁ2i2hei , C))
wherer =r lp_.o » Z; (& t/u* Ay (i =1,2,3) are renorma-

11zat10n constants determlned by conditions glven in ref. /4/,

¢ denotes the R.G. parameter, = 4~d, Z; = Zl(_g, t/u2, A/u)
(i =1,2,3) and f=f(t/u2), where f(x) is an arbitrary func-
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tion which has the following asymptotic properties

lmf(x) ~ x,

x>0 ( 1 O)
limf (x) = 1.
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The introduction of f(t/u?2) corresponds to the additional renor-
malization removing the singularities as t- 0. In order to
obtain the crossover scaling form of the equation of state, only
asymptotic properties (10) of f(t/u ) are relevant. Now, let

us define the renormalized dimensionless magnetization

. Jd.
MR= Z_l/zfl/%t/uz)p.l—TM (l l)
and function

= £(t/u?) T (12)

with I' defined by eq. (4). Using the R.G. operation we can write
the equation of state as follows

dlg (MR)

Hll: OMp =M F‘(gMz,g, h, t/p2) =
d (13)
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where
, d
and
- = 1/2 / -5
M= Mg @02 @272 '~ 2 (15)

Because we consider the equation of state for I'=T[, (h=0) it is
convenient to use Mp as the basic scaling variable imposing
the following condition

EOMp(D) =1, (16)
which leads to the equation

o di _ 28u
Mr B2 - /i) + n(E /TD)]- B, t/H2)

17



where

- _olnz _ JlnZ
18, t/52)= p ——= + BB, t/82) 3 (18)
o Jg

fulfills the following equations (c£./4/y:

w38 _pE vad) (19)
dp

and

d Inf (t/p2) ‘
de/i?)

In our method ¢(t/E2) can be considered as a formal expansion pa-

rameter assuming the following asymptotic values e¢=4-d when

t/i250 and ¢'= 2 -4 when t/7250. The solution of eq. (17) for

¢ << 1 has the following form in the scaling limit My -0,
t/3%2-0 , z = const)

e(t/12)= e - 2(t/52) (20)

- /B
kMp) = My X (@), 21
where v, = 1/2 and Bq = 1/2 are multicritical exponents
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X(z)=1+1- g/gq ) (e/e% ]l (22)
x4 (m)” 2
gcl 5 "0, e+ 0(e°), (23)

Q4 is solid angle in d -dimension.
g = 4 - 2) + 0l - 71, (24)

z:(t/uz)M“qS/’gq and ¢=¢/2 1is the crossover exponent /4/. Here
gg (23) and g* (22) denote the coupling constants associated
with nontrivial fixed points classical and quantum, respecti-
vely. Notice, that the multicritical behaviour for 2<d< 4 1is
governed by the Gaussian fixed point g*=0 and g* (24) in eq.
(22) plays only the role of some constant. We can obtain the
equation of state evaluating Tk Mp) in the one-loop approxima-
tion., In the scaling limit we get

Hp = M3¥(2), (25)

where

g54q
3
x (5 - 7In2 + 4.5103) X2 (2)].

¥(2)-g( - 8/g} YIx2@) (1 + a- g/g’;)‘l x

(26)
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The effective magnetization exponent 8 g VS z/(1 + z)
for t/u? =T/, =102,

A convenient visual description of the crossover can be obtained
by introducing the notion of an effective exponent .4 defined
as follows:

) )
H=M %@ -M Ty,

This gives

g (2. /W) =3+ e ,
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