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A number of recent papers (e.g., see /1-5/) was dedicated to 
a careful consideration of the problem of a single three-level 
"atom" interacting with two modes of electromagnetic field. 
Such a consideration is in a close connection with the problem 
of construction of a theory for a two-mode laser/2/. The exact 
Schrodinger wave function was obtained in ref./2/ for such a 
system with a special initial condition. In other papers /1-3,5/ 
the so-called semiclassical expression for the Rabi frequency 
was used. It should be noted that a quantum expression for the 
Rabi frequency was obtained before for a two-level one-photon 
system in the rigorous investigation of Jaynes and Cummings 161. 
Their result was generalized to the case of a two-level multi
photon system by Buck and Sukumar /7 I. 
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In the present paper we shall examine the 
model of a three-level atom with allowed tran
sitions !3> ... Jl> and 13> --12> and forbidden 
trans1t10n 12> -oil> (figure) interacting with 

2 two resonant modes w1, w 2 of electromagnetic 
field. The exact dynamics will be obtained 
here for operators of the level filling and 

3 of occupation number of photon modes. _...., ____ _ 
The system under consideration can be described by a Hamil

tonian of the form 

(I) 
3 

Here HA is the energy of a free three-level atom HA= !h(}.R ... 
j=d I II 

Operator Rii describes the filling of a j -th level with energy 
hOi. Operator HF in (I) presents the energy of two resonant mo
des of a free electromagnetic field HF=hw 1aja 1 +hw2 a~a2., 
where w1 .. n 3 - 0 1 , w2 =n 3 -0 2 and act<aa) 1s the creat10n 
(anihilation)operator for a photon of a-th mode. In the dipole 
approximation for the energy of atom-field interaction we have 
H AF= -ihg1 (a 1 R31 - a tR 13)- ihg2(a 2R 32 -a 2 R 23 ), where ga = const 
and operator Rij describes the transition from state li> to sta
te li> (i =fj) They obey the following rules 

[R li' Rkf] = Rif 8kj- Rki Bif • RijRkf= Rif 0 ki (2) 

and are connected with the generators of SU(3) group. The states 
lj> form the basis of state space HAij>ehOilj>, <ili>=Oij" 
It is obvious that 
~ R .. z 1. 
j II 

(3) 
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Let us consider the Heisenberg equation of motion for opera
tors Rii(t): 

R11 (t) = g 1A1 (t)"' g 1Ia 1 (t) R31 (t) + at(t) R 1Jt)], 

. + 
R 22(•) = g2 A2 (t) "'g 2[a2 (t) R32 (t) + a2 (t) R23 (t)]. 

The third equation follows from (3). Let Na =;a~aa be 
cupation number operator for a -th mode of the field. 

N a (t) = ga A a (t), a= 1,2. 

From equations (4), (5) it follows that 

Na (t) + Raa (t) = Ma, 

(4) 

the oc-
Then 

(5) 

(6) 

where operator Ma is independent of time t. Now the Heisenberg 
equations (or operators Aa (t) can be obtained in the form 

A1 (t) = 2g 1 (M 1 + 1) [1- 2R 11 (t)- R22 (t)]- g 2 B(t), 

A
2

(t) = 2g
2

(M
2 

+ 1) [1- 2R 2lt)- R11(t)]- g 1 B(t), 

(7) 

where operator 
tion of motion 

obeys the following equa-

B(t) = ~ ga (Ma + 1) Aa (t). (8) 
a 

Equations (4), (5), (7), (8) form a closed system. They have 
, 1 r 

JC::L Q.LlULLlCl.. .LULt::l:)l.ct.l. U.L lUULJ...Vll 

(9) 

where operator K is independent of time t. Operators Ma and K 
are commuting with each other. 

Let us now differentiate each of equations (4) with respect 
to time. Then taking into account expressions (7) and (8) we 
receive 

R.11 (t) + [ 4~2 (M 1 + 1) + g~ (M 2 + 1)] R11 (t) + 3g~ (M 1 + 1) R22 (t) = 

= 2gi(M1 + 1)- ·K, 

.. 2 2 2 R22(t) + [4g2 (M2 + 1) + g1 (M 1 t 1)] R22 (t) + 3g2 (M2 + 1} Rll(t) = 

2 = 2g
2

(M2 + 1}- K. 

( 10) 

One can consider these expressions as a system of differential 
equations for bounded quantum oscillators. 

At first, let us consider a simple single-photon case with 
g 2 = 0. Then from (4), (5), (6), and (9) we have that R22 is 
independent of t and that K = -g2(M + 1) R . Therefore the 

I I 22 
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) 
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first equation in (10) takes the form R.'11 (t) +.4gi(M!+1}Ru(tr 
= 2gi(MI+1)(1-Rzz)· Then for the operator hlhng d1fference of 
levels one and three S 31 (t),[R 33 (t)- R11 (t)]/2 we get 8' 3 I(t) + 

2 S I 1 . . S + 4gi (MI + 1) 31 (t} = 0. ts so ut~on u 3 I(t) = S 31(0} cos2A1t + 
+(S31(0)I2A 1) sin2Ait, where AI=gi(M 1+1)I/2. Th~s is the so
called quantum expression ior the Rabi frequency obtained by 
Jaynes and Cummings/6/, Thus, our system of equations (10) for 
a three-level two-photon system leads to the known result for 
a two-level single-photon system in the special case of one 
resonant photon. 

Now we return to the consideration of the general case of 
a three-level atom with two-phonot interaction. Taking into 
account the corrnuutativity of operators Ma and K we can present 
the system (10) in the following form: 

RI 1(t} = f.li cos ,\t + f3 I sin.\t + ,\ ~[11 2 cos2At + {32 sin2.\t] +PI! (0), (II) 

R
22

(t) = -f.li cos,\t- {3 1 sin.\t + ,\; [f.l
2 

cos2At + {3
2 

sin2At] + P
22

(0). 

Here Aa can be considered as the quantum expression for the 
Rabi frequency in the system (1). They are defined as the fun
damental values for the matrix of linear coefficients of system 

( 10). So A = g iM-~-1, ,\"" v ~ ,\ 2 . Operators P define the "quan-
a a a a a aa 

tum point of equilibrium": P =[A2 A2 +(3A 2 -2.\2)K]I(2.\4
). 

aa a a 

1 2 2 2 ) 2 2 1/ 4 f.li =tA [A2Rll(O}-AIR22(0) +(A2-,\l)K ,\, 

f.l
2 

= !A2[1- 2R33(0}] + K! I (2.\ 4 ), 

2. 2 . 3 
f3I = [.\2R11 (0)- AI R22(0)] I A , 

. . 3 
{3 2 = [~I (0} + R 22(0)] I (2A ). 

Now from the conservation laws (3) and (6) one can obtain 

R33(t) = -A2 [f.l2 (cos At - 1) + {32 sin2At] + R33(0), 

N 1 (t) = fli (cos.\t- 1) + {3 1 sinAt + Ar[f.l2(cos2.\t- 1) + {32 sin2At] + N 1 (0), 

N2 (t) = -f.l2 (cos At - 1) - {3 1 sin At+ A :[f.l2 (cos2At - 1) + {32 sin2.\t] + N2 (0). 

And 

(12) 

Expressions (II), (12) present the exact result for operators 
of the level filling and of the occupation number of photon 
modes. Some conclusions of paper /2/ can also be obtained on 
the basis of expressions (II), (12). We intend to examine some 
consequences of our result in a subsequent more detailed paper. 
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