


A number of recent papers (e.g., see /'=5/ ) was dedicated to
a careful consideration of the problem of a single three-level
"atom" interacting with two modes of electromagnetic field.
Such a consideration is in a close connection with the problem
of construction of a theory for a two-mode laser /2/. The exact
Schrédinger wave function was obtained in ref./2/ for such a
system with a special initial condition. In other papers /1-3,5/
the so-called semiclassical expression for the Rabi frequency
was used. It should be noted that a quantum expression for the
Rabi frequency was obtained before for a two-level one-photon
system in the rigorous investigation of Jaynes and Cummings /6/.
Their result was generalized to the case of a two-level multi-
photon system by Buck and Sukumar /7/.

1 In the present paper we shall examine the
model of a three-level atom with allowed tran-
sitions |3>+ |1> and |3>+|2> and forbidden
transition |2>-11> (figure) interacting with
two resonant modes w;, w, of electromagnetic
field. The exact dynamics will be obtained
here for operators of the level filling and

3 of occupation number of photon modes.

The system under consideration can be described by a Hamil-
tonian of the form

H=Hp +Hp + Hap. 3 1€))
Here Hy is the energy of a free three-level atom l{A=.2|]QjRjr
l=
Operator R;; describes the filling of a j -th level with energy
hQ;. Operator Hp in (1) presents the energy of two resonant mo-—
des of a free electromagnetic field Hr=hw a%ja| +hwga%ha,,
where w) =03 ~ Q) , wy =03 -0, and aj(a,) 1s the creation
(anihilation)operator for a photon of g-th mode. In the dipole
approximation for the energy of atom-field interaction we have
Hap=-ihg)(8R3;~-81R| 3 — ihga(a R 32 ~a4Ry3 ), where g = const
and operator R;; describes the transition from state |j> to sta-
te |i> (1 #i). They obey the following rules
Ry Rl =Ryg 8yj - Ryj 80, RyjRip=Ryf Oy (2)

and are connected with the generators of SU(3) group. The states
|j> form the basis of state space H,|j>= hQilj>, <iH>==8”.
It is obvious that
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Let us consider the Heisenberg equation of motion for opera-
tors Rjja):
Ry =g A (1) =8,[a, (1) Rg )+ af ()R 0] , “
Rgz( N = g9 A2 1) = 82[32 (2] R32(t) + a; ® R23(t)]-

The third equation follows from (3). Let N, EaZaa be the oc-

cupation number operator for a-th mode of the field. Then

Ng(=g,A,1), a=12. (5)
From equations (4), (5) it follows that
N, 1)+ Ry, ()= Mg, (6)

where operator M, is independent of time t. Now the Heisenberg
equations ¢ or operators A, (1) can be obtained in the form

A ®)=2g, (M, + D1 — 2R (1) — Ryy(t)) - g4 B, -

A, (1) =28,M, + D1 - 2R, (1) R O] - &, BO,

where operator Bgalaf2R2l+aTa2 Ry obeys the following equa-
tion of motion

Bt)=2g,(M,+ 1) A, (). (8)
a

Equations (4), (5), (7), (8) form a closed system. They have
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g 8,B() — 8 M, + DRy, ) 82 (M, + DR () =K, (9

where operator K is independent of time t. Operators M, and K
are commuting with each other.

Let us now differentiate each of equations (4) with respect
to time. Then taking into account expressions (7) and (8) we
receive

Ry y(0) + [4g2M; + 1)+ g3 My + DIR () +382(M) + 1) Ryp (1) =
=2e2(M -
262(M, + 1) - K, (10
Ryp(t) + [485(My + 1) + 87 (M, + 1)) Ryy(t) + 3g2(My + )R (1) =

=2g2(M, + 1) - K.

One can consider these expressions as a system of differential
equations for bounded quantum oscillators.

At first, let us consider a simple single-photon case with
g9 = 0. Then from (4), (5), (6), and (9) we have that Ry, is
independent oft and that Kz_g%(Ml +1)R22. Therefore the
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first equation in (10) takes the form l'%.“(t) +4g%(M1+1)R”(t)=
= 2g%M; +1)(1-R,). Then for the operator filling difference of
levels one and three S8g;(t)=[R33(t) - Ryj(t)]/ 2 we get Sy (1) +
+ 4g12 My + 1)S3,(t) =0. Its solution is 84,(t) =8 41(0) cos2A;t +
+(8,,(0/2A) sin2xjt , where A;=g;(M;+1)1/2, This is the so-
called quantum expression for the Rabi frequency obtained by
Jaynes and Cummings /6/. Thus, our system of equations (10) for
a three-level two-photon system leads to the known result for
a two—-level single-photon system in the special case of one
resonant photon.

Now we return to the consideration of the general case of
a three-level atom with two-phonot interaction. Taking into
account the commutativity of operators M, and K we can present
the system (10) in the following form:

R1 l(t) =, cos )\t.+ B 1 sinAt + ,\%[u ZCOSQM + 32 sin2At] + P1 [ ), (11)

Ryo(t) = ~1; COSAL — B SinAt + ,\22 [, cos2xt + B, sin2at] + P, (0).

Here A, can be considered as the quantum expression for the
Rabi frequency in the system (1). They are defined as the fun-
damental values for the matrix of linear coefficients of system

e

(10). So A, =g, V/_ﬁ;::f s A=y % )\i, Operators P, define the "quan-
tum point of equilibrium': P . ™ [/\: 22y (3)\: - 2)\2)K] / (2)\4). And
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ny = WPIZR, () = ATRy, (0 + (A% - ADKI/ Y,

u, = 221 — 2Ry5(00]) + K} / (20 %),

B, = [AZR},(0) — X5 R,p(0)] /A%,

By = (R (@) + Bpp(0)] / (2A°).

Now from the conservation laws (3) and (6) one can obtain

R g5(t) = -A% [y (cOSA — 1) + B, sin2M] + Ry4(0),

N (t) =y, (cosxt — 1) + B sinX + A;z[u2(cos2xt -1+ 8, sin2xt] + N, (0), (12)

Ny (t) = —u, (cosAt — 1) — B sindt + A Jlu, (cos2Xt — 1) + B, sin2at] + N, (0).

Expressions (11), (12) present the exact result for operators
of the level filling and of the occupation number of photon
modes. Some conclusions of paper /2/ can also be obtained on
the basis of expressions (11), (12). We intend to examine some
consequences of our result in a subsequent more detailed paper.
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