


INTRODUCTION

In the past few years the transport properties of the quasi-
one-dimensional organic compounds have been extensively studi-

ed/1/. Special attention is paid to various nonlinear

trans-—

port mechanisms due to solitons/2/. A number of exact classical
and quantum models that have been suggested allow one to inves-
tigate the system dynamics in detail/3/. The organic salts like

TTF-TCNQ have two subsystems: donor and acceptor chains. In
the present paper the model describing excitations in such

a system via the Hubbard Hamiltonian with an electron-phonon
interaction is suggested. When taking into account the electron
correlations on the ground state only, an integrable system of
nonlinear Schrédinger equations with U(1,1) isogroup appears.
The composition of the paper is as follows. In Chapter 1 the
foundation of the model as well as the getting of the main equa-
tions is given. Chapter 2 is devoted to the statement of the
Cauchy problem and to the choice of boundary conditions, Chap-
ters 3 and 4 deal with the solution of the Cauchy problem via
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dary conditions. Chapter 5 is devoted to the investigation of
the interaction between '"colored" solitons in the stable medium,
In Chapter 6 the solitonic mechanism of the charge trans-
port in the organic salts is presented and the existence of the
structural phase transition through the power constant is dis-

cussed as well.

1. THE MODEL AND THE MAIN EQUATIONS

The Hamiltonian of the system under consideration’/# is:

M=K, + M+ K,
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Here, c:(,(c;w) is the creation .(annihilation) operator of an
electron with spin ¢ in a Wannier state of the.z n —th atom, 1
is the transition amplitude between nearest neighbours, U 1s
the repulsive interaction between elect.:rons of the same atom,
# denotes the chemical potential, M is the mass of an atorsl
in the chain, « denotes the power constant, R, =}%.0 AT is
the position of the j —th atom, u; is the deviation from the )
equilibrium position Rgg, I denot-:es the power of the elect:rond
phonon interaction, ng =ct c;; is the number <.)pera'1tor, A .ar/ls/
B denote’ proper molecules of the homogeneouAs d1mer%zed chain/9/,
The Heisenberg equations of motion for ¢ (t) sgive:
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In the quasiclassical approximation /6/ we subtract from the
operator ¢,, a small operator addition a,,:
(6)

Cio = Pig* %" Halﬂ” <o

where ¢. is a c-number (not Grassman) state function*. The
'a 3 3 .
Hamilton equations of motion for ¢, (t) are:
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It is necessary to complete these equations by the lattice oscil-
lations /4/:
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To understand the possible mechanism of the cha1:'ge transfer in
the system (1) let us consider a long-wave contlnuous approxi=
mation when a - 0/4/:

I SRR

) =_EJ - _R'.lQ. - u(x, t) - X,
a a a

*It is interesting to note that for an integrable Fermi sy;‘:—
tem the quasiclassical S})ectrum coincides with the exact one
as in the Bose systems/8
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In such a way the equations of motion (7) and (8) become:
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To emphasize the role of the electron-phonon interaction in the
mechanism of charge transfer, we neglect the Coulomb repulsion
of electrons (U <<t) at the first approximation, taking elect-
ron correlations on the level of the ground state*. For the
antiferromagnetic ground state this leads to the connection:

B
-0

é =¢:;¢a. (10)

In the quasistationary limit/!8/ the first integral of equation
(8°) reads:

21
u_(x,t) -~ ;—;—:E (¢% ¢_, + c.c.) = const, ()

Due to this approximation equation (7°) gives the Hartree-Fock-
like system with the self-consistent potential/ll/:

id’at = Td’-axi+ [T — (_2-!*?2?'(‘#;’ b gt c.c.)l b_ kb, (12)

where T=t4+Ia (1 -const), o=(t,+).
Introducing the amplitudes of mixtures spin states:

¢, (x,t)= @, (x,t)t ¢, (@x0), (13)

one obtains the system of two bound nonlinear equations:

*Note by the way that the integrability of the considered
nonlinear system admits a more correct consideration of the
neglected Coulomb contribution to the transfer mechanism by the
multisoliton perturbation theory.
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e, =Te, +(20~E2(e, |2 lc_|le, —ue,
“ (14)
e =Te  + (2T - (Eh2(le, 12~ c_|Ble_+pe_ -

a
Some special single-soliton solutions of the system (14) have
been discussed in papers /4:9:17/, By the gauge-scaling transform:

c, (x, t)-.E+(x, t)=c, (VTx, t)e' (15)
and going to the new variables:

$x 1= ( j;') € 0=(F) @ (16)

the system (14) takes the canonical form of the U(1,1) NLSE
model/9/:

i, + ¥y, k(e 2=y, 12 -0y, <0, (7

1y, + ¥t < (¥, 12 ~19,12-pPy, =0,
where g - (21/\/;)'2' 'P2=—2/K.

In what follows we shall study the above system via the In-
verse Scattering Method (ISM) in detail.

2. THE CAUCHY PROBLEM AND THE CHOICE
OF THE BOUNDARY CONDITIONS

As is well-known/!9/the ISM allows one to set and investigate
in detail the Cauchy problem under the proper boundary condi-
tions. Because of the main interest to the dynamics of the phase
transition from the antiferromagnetic ground state, it is na-
tural to consider the nonvanishing, (constant) at both infini-
ties, boundary conditions:

q(x, t) + q+ (18)

q (x,1-+0 (19)

Here, more convenient variables are introduced:

q(x, t) = ( :l ) (X, t) = \/—.E::-gb(x, t), (20)
2 K

for which the matrix realization of (17) reads:
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Iy +aq, . +2A@G) - pPq=0, (21
where (@ =lq;1% ~lg,1%, T=a*y,, y, = diag 1,-1).
It is easy to check that from (21) by virtue of (18) and

(19) it follows that a correct setting of the problem implies:

@,9,)-@ q)=p2. (22)

The possibility of the complete study of the system (21) comes
from the corresponding linear problem:

¢, = Ug, (23)
¢, =Ve, (24)
where :

U(x, A) =-ir Z + Qx),

2 ; T-T
4ir°-i@a —pD) 2T -T.

V(x, A)=( ),
RAQ+q i(qe G- ip21,
) YR S N Q(x)=(-—9......:ﬁ&.=), 1. =(10y,
o -, ~ia(x) 0-1, 2=(py)

The integrability condition for the system (23)-(24) generates
the nonlinear model (21)-(18)~(i9).

3. THE DIRECT PROBLEM

Let us consider the spectrum problem (23) on the axXis —e <X <o,
Introduce the matrix Jost solutions ¢, (x,)) which are deter-
mined by their asymptotic behaviour:

¢t (x, A) -;-:-5;0 Xt(x, A), (25)

where

X (x V= x, NeM, AL disg (<¢, 2,0,

A+d A-¢ 0

Xy )= ey 4y Ty,

Qg 4y 9%

det @, (x, A) = det X, (x, A) = 2¢ pZe'** .



Since the Jost solutions form the Fundamental system of so-
lutions, <b+ is a linear combination of b :

¢ (x,))= (I>+ (x, )V S(¥), . (27)

where S(A) 1is the scattering matrix for problem (23). Let us
examine the symmetry properties of the Jost solutions. Consider
for that the conjugate to (23) equation:

&t (x, N) (i 3 a, +@" (@) = A* O (x, A).

Due to the non-Hermitean character of the linear problem (23)
its spectrum in general is complex.

Having used the fact that in our case: ' - -Q, I'=diag(1,1,-1),
and hence 9/0x (I"d*(x, A) é(x, A) =0 for real A and {(A) we
have: I'®d+(x, ) ['® (x, A) =-A. By the appropriate choice of the
Jost solutions/15/ the last equation becomes:

Fx, »ox, =1, &=I¢TI. (28)
It means by the way that for real A and {(A) the Jost solu-
tions ®+ belong to SU(2,1) group. From (26) and (28) we have
the unimodularity condition:

det S(\) = 1 (29)
and the pseudounitariry ome:
S S =1, S=I8'T. (30)

Besides, from (27) and (28) it follows that:
S, W=, &N, &N @31

We have so far considered the properties of the S -matrix and
Jost solutions for real A and ¢(A). Let us define their analy-
tic behaviour in the A -plane. Note that the function {()) =
= VA2 +p2 (p2<0) is defined on the two-fold Riemanian surface
whose first sheet is glued with the second one along cuts (-=,-p)
and (p, +=). The analytical properties of the Jost functions
can be derived from the following integral equations:

+

@, N =X, N+ [ dy X, (& DX, ¢, D@, Q) &, ¢, A) (32)

which are equivalent to equations (23) under the boundary con-
ditions (18) and (19). Supposing that the potential Q(x) tends
to its asymptotics Q+ fast enough, one can then ensure that
the Jost solutions ®,, and ®_; can be analytically continued
on the upper sheet of the Riemanian surface (Im ¢>0), solutions
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®,, and ®_,are analytical functions of A on the lower sheet
(Im¢ < 0), and the solutions ®i3 are defined on the real axis
(Im A =0) only and have no analytical continuation. From (31)
it follows that the function 8, A ) is analytical on the
upper sheet (Im />0).

The spectrum of the problem is more complicated than in the
case of U(0, 2) NLSE /15/  but has the same peculiarities.

The discrete spectrum lies in the gap (-p, p) between cuts
and is defined by zeroes of the function s8);(A, ¢{). In the ge-
neral case of non Hermitean operator U there are no limita-
tions on the number, location and multiplicity of the zeroes
of 81 ()t, O.

The continuous spectrum consists of two parts. The first
lies on both the cuts of the Riemannian surface apart from the
gap (-p, p). The second one may appear on the real axis of the
A-:plane, leading to interference with the zeroes of the gap
and generating the peculiar soliton-like solution /11,12/. At the
points of the discrete spectrum we have:

Q—l &=, An) = c2n ®+2(x' All) + c3n (I)+3(x, An) (33)
with 8)) ()‘n' én) =0, Copn =82 ('\n' én)' C3n= 83 (An'én)'

So, the independent set of the scattering data for the prob-
lem (23) is:

g (A% 1g (A) Gg o, Gg AL, B2 L2, N, (34)
with ry) = 8y1/8)1. T3 =83/81; -

Now let us obtain the time evolution of the spectral data.
Using the results of paper/13/, one gets:

i8, (A, 1) =[N, 8, 0], (35)

where MI(X) = diag (A+ 2, (A 02, 0).

Due to the fact that eigenvalues A, as zeroes of 8]] are
independent of time there is an infinite series of ‘the local
conservation laws.

The first three of these are/13/:

I, =/dx (@ -p? @ b,

1, = Tax @,) . o), (36)

Iy = jax(Qq_, + @2 - %) @, v.




Note, that the first two integrals are the particle number and
momentum of the system, respectively. And its energy is the
following linear combination of I and I;:

H=1; -20°1,. (37)

So, the condensate density p2 plays the role of a "chemical
potential"” in the many—particle system under consideration.

4, THE INVERSE PROBLEM

Here we consider the problem of the potential reconstruc-
tion with respect to the known scattering data (34) evolving
according to (35). From (32) one can derive the triangular
representation for the Jost solution @ :

<b+ x, \) =X, (x, }) _{{ ds K(x, s) X+(s, ). (38)
Inserting (38) into the linear problem (23), we get the diffe-
rential equation on kernel K(x, y):

LK (x,y)+K (xy) I =i8x) K=, y) - iKx, )@, (39)

with the boundary conditions:

[K(x, x), 3] = i@, - Q)
{ (40)

K(x,9)»0, y-oo, where

0 —i® aq3®
6(x)=- ql(x) 0 0 , 6t = lim -Q'(x).

x-+ +0

q,x) 0 Y

One may then express the potential q(x) through the elements
of the kernel: K(x, x):

q, (X)=q+l+ 2 K, (x, %) @1

q, (x) = Q.+ 2i Kal (x, X).

In addition: Kt,(x, x) = -K, (x, %), K{; (x, x) = K3, (x, x).
To get the ﬁarchenko equation following Zakharov and Sha-
bat/14/ let us integrate the relation:

1 1 ily 1
e (et LA = X, (XN = (D, (%, N —
oné (s“()\) _1 (2,0 &A)e P, (@, N

SR @A ) By @ N 1 () B (x, e T

along the infinite circle at the complex A ~-plane on the upper
sheet of the Riemanian surface (Im {>0). One can apply the re-
sidue techniques at points A, to the left hand-side of this
relation (under condition y >x ).

The result is as follows:

¢, = A) 'eigny i Ce @ o(x, An)+c§!¢+3(x, An) o iay _

4'nsl'l()‘n'é'n). " 4-nsil()‘u' Cn)
oy ]

- Dg ¢ i
=3 W, & A+ kP (x4 e

The right hand-side can be represented in the form (supposing
the existence of the corresponding limits for ®.,; and ry,
at least near the Bargmann strip):

0 Fi@ 9+ iFY ey 0
1
K@ o, |+ q+lF2“_)(x +y) + F; ‘@, y) a, |-
IR}
\ %2/ \ q Ll (x+Y) / \ a3
Fl“)(s+y)+ in(l)(s+y) 0
K Qa a
Jask @9 q, FyMts +y) sFlao | «, )|
Q ‘
q, Fs +y) 0,
where
(l) o0 .
F, (z)-.-_l..;[dfbl(é)eléz ,
277 -0
(n i€z

1 o0
Fp (&) = o= [€by(He™™",

(1 1 dx ix + &)
F X, ¥) = . [ S2T, A, e ’
3 =B 00

b (€)= S0y 41y (-2, B,

1
by @ = ko lryy 0 O -1y (A D) £=Rel



"Finally, the Marchenko equations become:

0 'F‘]’(x+y)+iF‘2’ @+y) 0
Kx»nf aq,, Q. F @+ y) +F eyl o,
1, 9 2Fy X +5) a, 42)
. F] (s+y)+iF’2’(B+Y) 0
-,xfds K(z, 8) q+lF‘2 B+y) + pa s, ) q:-z =0,
where U2y (49 qil

PP - -5 uV ) eidnz,

(2
Fy )(z) - -E u(,.])e i€yz ,

(2) 2) iA_x+ )
Fa (x' y)=-§ #(n)e n* Cny ,

F, =F.F?, o.1.23.
When deriving the equations (42) the interference between disc-

rete and continuous spectra (mentioned above) is neglected. Phe~
nomena dua tn tha ovarlan oo n11 o~ oL

"  =m2 owerlap oo owell a5 thiir wost pivvabie peie—
ration mechanism will be discussed below.

) In the case of reflectionless potentials the Marchenko equa-
tions reduce to the system of 2N (where N is the number of
zeroes A, ) linear algebraic equations, which admit the exact
solution. So, we look for a solution of (42) in the form:

N
K(x' y) = llznl Kll (x) Yll (Y. All )0 (43)

v.vhere Ka(x) is the column vector, and Y(y,Ap)e eié"y (a, b, c)
1s the row vector. In particular, the single-soliton kernel
(N=1) assumes the form:

iCx . ilx
Kj)(x,x) = ae'¢ (qH“leé +q12uze”“)

T

d-. - 2ilx " . i
a(A-)+ bq+]+cq+2]§iﬁél_e _:(bq+2+cq+1 )i—(f;zz)‘ eI+ x

. (44)
Ka](xvx)-Kzl(x' x)'q+l-' q+2y d-bq+l+cq+2-

1 ¢ . . . .
Here (1 ={, )‘.l = A, 4.1(1) =uyp u(f)=u2- Since it is difficult
to analyze this solution in general, we consider its special
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reductions. The most interesting solutions, appearing when

a=- b=gq* , = —q* =p2,
A+, q c=-q%,., d=p

+1
are:
ot 4 S o2 22 iA-Ox
= 9= lug e B _Hy :
ql ’ q+l 24- + A_{ q+2 :
1+ S o7 14+ 5. e 2K (45)
lul lp,l
q,(x, 1) =q (z1)]
2 1 9Gh1” %2
A+

where e\? - .is the condensate phase, and
)\_:2_

1y @ = ) (0) e~4AG

. 2
by 0=y @ TTA+OT,
We note that the solution (45) is a complexificated version of
the "drop-bubble” solution/19/,But the real reduction of solu-
tion (45) (Im A=0) leads to another well-known "double-bubble"
solution /19/:

q(x, t) = L {(A —ip th vz), where (46)
X -— ill

0
qT=(q1.q2). Z=x_2At_x0. 821’!0: ”l() ,

v

{=iv, p2=-()\2+ v2).

It is quite easy to explain this fact if one remembers that
under the Hermitean reduction there takes place the interference
between the second branch of the continuous spectrum (a weak
background) and zeroes of the discrete spectrum from the gap
(kink). As a result of this "interaction", a peculiar (in the
framework of the ISM) soliton-like solution ("'bubble-drop')
appears. Surely, to obtain such a specific soliton generation
via the ISM it is necessary to take into account (when getting
the Marchenko equations) the existence of a spare continuous
branch. In fact, this leads to the "renormalization" of the kink
solution (46) on the constant factor and to the generation (due
to the plane-wave "tail" eiA* ) of a new "drop"-like soluti-
on/19/.

Finally, quite a stable bion-like configuration is generated:

q(x, t)=\/_.§=[_ﬂt. (A-ivth Vz)+_.il:. o q* e'? sech 1z ], 47)
2 A-iv A-fv 1 7+ .

-1y
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¢_ 1@ v 2 :
8" = :\/—TT = V= =1,
B is the "switch" parameter. v m © B

When B.=2 the interference between background and kink
“disappears.

Note that the parameter 8 may be connected with the power
constant x leading to interesting consequences/12/.

Concluding the section it is important to underline that
a weakly distorted (|r,,| <« 1, frg1] << 1)  "double-bubble" (46)
asymptotically (when to to ) tends to the pure soliton solution
as 1/t/16/. A5 is pointed out in paper 715/ this fact is due to
the "medium" of a finite density p2, which accelerates the re-

leaze process of perturbed soliton from a weak continuous back-
ground.

where @=M-(AZ-02)t —ig,

5. THE SOLITON INTERACTION

Let us consider the traditional application of the ISM, na-
mgly the soliton scattering. First of all consider the colli-
sion of'two "colored" kinks moving with velocities 20 and 2),.
res?ectlvely, so that A;>A, (i.e., the possibility of bound
§ol%tons is excluded). To study the two-soliton interaction
it is sufficient to consider the asymptotical behaviour of the
two~soliton solution. That is:

2 . 2"2l 21 x

e X+ A 40+ 1 )= (A 4y, ) ( 1,8 5. i 1.¢e
1 17 %2 Wty V) ) (et )= (A iy )= ot e )
ql(x,t)=q++2iq+yl+y2 1 Vo U)2 2" "2 v e ,

2le 2v9x
ALy, e, 2 (P2 = MAy = 151)
M1 En Yao Ky v+ vy? ?

where qT . 9y, qy).
When t > e the solution in fact decays into separate kinks:

1t i
q (x,t)»q' (x ~2At, xt, + Tix - + +
Hq+£ 1b X1 9, ap) + @ (X - 22,8, 33, q, a}),

qll (x,t) » q' (z - 2Alt, x'l", q;, a;') + ql (x - 2;\2t, 12"; q;’ a;)-

15 -0

As a result of the elastic two-kink scattering we have the fol-
lowing effects.

A. The Center-of-Mass Translations

The first kink (having highgr rate) admits the positive shift:
1 G+ uz)2 (A l'”’lz)

12 W A A?

le =vx-; - xl-:a

(48a)

and the second, respectively, the negative one by the amount:

2,2 2
G +1,) As+uy)
5x2=x2"-x2‘=-. 1 na"%’ "2 2 (48b)
%y W Ay-vyd))

Due to: p2=-=(A2l +u12) =—(A22+u22) from (48a,b) there follows
the conservation law of the soliton center-of-mass:

v 9% + 1 8%, = 0. (49)

Note that in the limit q,;(0rq,y) » 0 and when A;=0 the rela-
tions (48a,b) render the Zakharov-Shabat results/!4/.

B. "Color" Change

Like in the case of U(2,0) NLSE solitons studied by Mana-
kov/16/we also may say about the "polarization" (or "color")
of the solution (46). Nevertheless, the nature of this degree
of freedom is quite different in both cases. In Manakov's case
it is determined by the coefficients c¢,; and ¢33 of the Jost
solutions (33). In the case of "colored" kinks (46) its appea-
rance is due to the presence of the condensate, i.e., it is
influenced by the nonvanishing boundary conditions (g4 #.0).
This leads to the specific "color" change via the U(l) trans-
form:

> [ lﬂz
q+ q+ _q+e (50a)
for the first kink, and similarly as:

a,+9q] = q+eml (50b)

i A+ iy
a n n
for the second one. Here e " =

-, D =i, 2 is the proper

‘ Ag=iv,

one-kink condensate phase.
We note that in contrast with the Manakov case /!6/the ef-

fects of "color" exchange are absent. This is due to the va-

nishing of the coefficient sy3 when Hermitian reduction (46)

is performed.

C. Phase Changes

As a result of elastic soliton scattering the kink phases
are changed as well:

+ - . . i A
3al=al -a, =q -(-a2 -:11n(1+—§izz —K::L )] (513).
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al = + - - '—11[] E—i_; Az A
i.e.,
Sa. ma+iln@s+ 2 52y 5
1 pz' A T e’ (52)
2
LG I Sa L - i ,
where A, v Ag =2l (Agrivg) = vy (Mgt ivg)l .

P20y +1p)2 ve+ vy
}.lere, a=aj+ag is the two-kink condensate phase. In particular,
it follows from (52) that da 1is proportional to a.

One should expect that the interaction picture mentioned
above becomes more complicated when bion-like solitons (47)
takg part in the collision. Indeed, analyzing the two-bion so-
lution, one may show that in addition to the effects (A,B,C),
we obtain the "renormalization" of the "drop" amplitudes:

_ A
34, =.¢:- ¢ =In 2 , (53a)
A +iv)) @y -vy,) \/-Kr'
- A V
B¢2 = ¢'2+— ¢2 =1n 2 (53b)

()«2+ 1) v, - vz) ‘/Z-l A

Wt-a note that due to (47) there follows from (53) the "renorma-
lization" of the parameter 8 as well

6. DISCUSSION

Let us come back to the initial problem and discuss the re-
591ts obtained above on the language of electron amplitudesl
Slnce.the analysis of the "controlled" soliton (47) is rather
complicated and requires a special treatment, we concentrate
our attention on the kink solution (46) only. Performing step
by step the transforms (20), (16), (15) and (13) for spin up
and down state amplitudes one gets:

6, 0 = vE O™ (@ @ )+ ayx 1),

é,(x, )= \/:g-=°_'m(‘ll (=, t) - %, (x, ). G
Using the explicit form of solution (46), we have:

2 K 2
16417 = 2%+ 2th% 1) (lg, )12+ 10,512+ 21, 1g, 5] c08 D) 55)

2 K (22 2.2 2 2
io, | =§-()‘ st m) (g 1% gl -2lq | la,, | cos ),
with Q =argq, -argq, -
14

So, the time evolution of the average occupation number n(x,t)
from the initial state n, is

n(x, 0=l 12+ |o, |2 = —setem (A2 4 12102 v2), (56)
* 2242
where n4 =x1312: (x,t). Besides: n =n_= n0=.7';..(|q+1| 2, la, o 12).

Similarly, for the time evolution of the average spin density
(magnetization) we have:

=612 e 12 =t 02 + 02 %02), (57)
+ A2 + 2
= li = = = K.

where m, _xlimiz(x, ), m =m_ =m, = 5 .|q+1| lq+2| cos (}.

We note that n(x,t) is the localized charge density wave (CDW) .
It plays an important role in the nonlinear mechanism of the
charge transfer for the model of organic salts under conside-
ration. The figure displays the density n(x,t) as a function
of z-x + 2M for a soliton moving with the velocity v=-2A,
The specific dependence of the soliton amplitude on its veloci-
ty is due to the hole-like behaviour of the considered solution.
To that the soliton velocity has an upper boundary vZ _ 422 g4p2,
and the maximum soliton amplitude is n,.
Using the quasiclassical ap-

i proximation one may calculate

v the soliton distribution func-
tions through their amplitudes
and velocities. In addition to
charge transport in our system
there is a "spin transport' via
the localized spin density wave
(SDW) m (x,t). It has a form simi-
lar to the CDW one. Note that
maximum density of "spin trans-
port" takes place when argq,,

arg q, o - In the case when arg q,, - arg q+2=,1_ the charge

transport is via the spinless kink.

In conclusion we note that the integrable model of the
U(1,1) NLSE considered above may be the simplest exactly sol-
vable model that permits the structural phase transition. This
unique property is due to the noncompactness of the symmetry
group U(1,1). The noncompactness leads to the co-existence in
the framework of the model of three different phases. They are:
(1) "double-drop" (U(1,0)e U(1,0))

(2) "double-bubble" (U(0,1)e U(O,] ))
(3) "drop-bubble" (U(1,0) #U(0,1))
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