


The propagation of short phonon-pulses in crystals has be-
come the standard method to study crystalline materials/L?/,
A theoretical description of this phenomenon was initiated by
Kwok 7%/, However, the influence of the surface of a sample has
not been taken into account so far. This question is the sub-
ject of this note. We report our results for hexagonal crystals.
This is the only case when the Christoffel equat1on has analy-
tical solutions for any wave-vector direction k/‘kl . This
description via anisotropic continuum acoustics is fully justi-
fied at low temperatures, at which phonons propagate ballisti-
cally. Our description of the phonon-pulses propagation is based
on the solution of the Boltzmann-Peierls// equation for the
space= and time-dependent phonon distribution function 8f(o,Kk;r, yt)
in the presence of an external phonon source.A scattering of
phonons by bulk imperfections is considered within the r —appro-
ximation.The sample is taken as a rod having a circular cross-
section with a radius d. The rod axis (z) is chosen to be paral-
lel to the sixth-order crystal symmetry axis(C axis).In heat-
pulse experiments,phonons are usually generated in a crystal by
an adjacent heater (characterized by a temperature Ty )located
at tho front farcoa nf the campla Wa hawa Faund 4:,\11,“"“; DXcnh
and We1s/6/,that the dlstrlbutlon of the generated phonons takes
the form of a product of the Bose-Einstein distribution

n (oK) =ltem (Ko (0,k) /k,T1-1}"1,

and the transmission coefficient 'f(a,E)(taken here approxima-
tely as a constant T 7y,

The heater-sample area is usually small as compared to the
sample cross-section. Moreover, the duration of the phonon-
pulse generation is much smaller than the time for passing the
length L of the sample by a phonon. Thus, one can treat the
heater approximately as a point source and the rate of phonon
production in the sample can be written down in the following
form

(ﬁ‘—) - ATS (D) 5(t)n(o.B). n

where A is a constant.
The solution of the Boltzmann-Peierls equation
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has the form
z
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6f(o,k;x,y,2z;t)=ATe S(r-vt)n(o,k). (3)
Because elastic properties of hexagonal crystals are invariant
with respect to arbitrary rotations about C axis, it is worth
to write down the obtained solution in the cylindrical coordi-
nates (r,¢, z):

z

> m - v, T -
6f(o,kn,zﬁ)=-§£%e z 8(r-jz)8(z~v, t)n(o,k), (4)
n

here j stands for v, /v, with ¥ denotlng the radial compo-
nent of the group veloc1ty vector Vv (o, k)

The presence of the side surface of the sample is taken into
account by introducing the so-called fictitious sources of pho-
nons. We assume, following Fuchs/Bﬂ/, that a fraction p of
phonons incident upon the surface is specularly reflected. Re-
cently, Taborek and Goodstein lo,have shown that remaining pho-
nons are completely transmitted to the liquid helium in which
a sample is immersed. For that reason, we consider only specu-
larly reflected phonons. The trajectory plane of the phonon
(o, k) is specified by its group velocity vector v(a k) The
first two fictitious sources are marked in Fig.l. Taking into

account all directions of wave vectors one gets the loci of fic-

titione comnrrec ac rirrlec of radii 2nd(n=12 3 ...) centered
on the real phonon source. The first circle corresponds to pho-
nons reflected from the side surface, only once, the second one
to those which suffer two successive reflections, etc. The po-
wer of the n~-th fictitious source is p" times as small as the
real source power. Summing up the distribution functions for
all sources one finally gets the complete solutions of the
Boltzmann-Peierls equation in the form
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Bf(o,f:;r,z;t)=

(5)
x16(v;) 2 p“6(r+2nd-]z)+0( v, ) 2 p“B(r-2nd—]z),
n=0
where 0 (x) is the Heaviside function.
The energy flux of phonons of a polarization o falling at
a moment ¢ upon the detector face (taken as a circle of a ra-
dius R ) has the form

o> R
S(o,t)= [~k [ 2rrho (0, B) v, (0.B) 81 (a,Kir,2=1L,1), (6)
(27)3 o
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where o (o, E) ke (o, ﬁ) is the frequency of the phonon (o, K.
The simple form of the phase velocity c (o, k) for transverse
mode (o= T)/

C(o=T, %) =[Ag + (Agg = reg ) (K, /K) 17

has allowed us to obtain S(o=T,t) in the analytical form
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Here K(L)= AT#? (kpTy) L/(SO'B3 Ag4rge) and )& i = Cij /p denote

the reduced elastic constants.

Eq.(7) describes the shape of the energy flux falling upon
the detector area as a function of time. In addition to the sig-
nal corresponding to phonons which have not been reflected
from the sample surface, there exist also weaker signals, cor-
responding to phonons reflected n-time (n=1,2,3,...).

The obtained results are very useful as the analytical guide
for studying the irradiation of the detector face by phonons
of the slow and fast modes. The strong phonons focusing occur-
ring in the slow mode’ " has a dramatic effect upon the shape
of the energy flux. For instance, for some hexagonal crystals
and appropriately chosen length-to-radius sample ratios, the
magnitude of the n=1 peak may be much greater than the magni-
tude of the peak corresponding to the unreflected phonons.
These and other results will be published in our forthcoming
paper,






