


1. INTRODUCTION

The theory of strong-coupling superconductivity in transition
metal alloys encounters some peculiarities: narrow d -bands and
Stoner-enhancement factors. Electrons, phonons, and paramagnons
are affected by disorder.

Concerning the electron—-phonon interaction microscopic cal-
culations of the superconducting transition temperature T, can
be based on Eliashberg /1/ ~type equations formulated in the
Wannier representation. Without spin fluctuations there are
several approaches /2=7/ which differ in performing the configu-
rational averaging. The consequent application of the CPA (co-
herent potential approximation) to substitutionally random al-
loys A_B,_. 1is necessary to treat the impurity scattering,
where the standard weak-coupling T, result/8/ must be obtained
as a limit.

In nearly ferromagnetic systems paramagnons must be taken
into account by the spin susceptibility, i.e., diagrammatically
via electron-hole bubbles. The Berk-Schrieffer equations/9/ are
the theoretical background for determining T,. Fur pute meials
(clean itinerant magnets) it has been investigated, e.g., in/10/
(for a review see /11/) as enhanced spin fluctuations counter-
act superconductivity. In this paper we are dealing with the
influence of paramagnons on T, in disordered alloys.

The present study of superconductivity in transition metal
alloys is based on the following model Hamiltonian for the -
electron-phonon system at a fixed configuration of ions:
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The random Hubbard model (2), the free phonon part (3), and
the electron-phonon interaction (4) have been written down in

the tight-binding representation/3:56/. Here the atomic poten-
ym“.ir‘y;-» £ SRS I,
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tial ¢; , the hopping integrals t;j, the intra-site Coulomb re-
pulsion U;, the ionic mass M;, the harmonic force constants
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®,. , and the dominant two-centre integrals gi.=q9 qot de

af 2 IR, -R;|

with the Slater coefficient qo are assumed to be conf1gura-—
tion-dependent. ﬁ.l denotes the equilibrium position vector
at the lattice site i.

2, ELECTRON SELF-ENERGY IN THE PRESENCE OF DISORDER

Define the electron Green function of the superconductor
in Matsubara-Nambu technique as

) <T. e, (dec, (r)> <T.c..(de. (r')>

Glj (r_..r’)=- T is is T it W (5)
<Tr cu(r)c“(r’)> <Tr c“(r) c“(r’)> s

where ™’ means 2x2 matrix, <..,> denotes the thermal average.

The "temporal" Fourier transform G(z) taken as a resolvent at

2=z =i +1)nT obeys the Dyson equation
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dom one-partlcle contribution of (2),i.e., [Hyl “=cl8”+t (1-8; )
The electron self-energy can be decomposed into

$.Sph $m (7)

due to the electron-phonon and electron-paramagnon interactions,
respectively, For simplicity, the static local Coulomb term is
omitted. In perturbation theory the phonon contribution is given

by

Eph(z)-:-TE 3 g2gBpab (z, -2 )rG__(z 3o (8a)
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where D (r— )==<T, uy; () u; (+r)> denotes the phonon Green
functlon. Specially, (8b) 1involves the so-called contact appro-
ximation/3-7/. Cubic symmetry is presumed so that only D= Daa
remains. The diagram analysis gives rise to the paramagnon part
in the random site version (for pure systems cf./11/)

@)=, 5 xij (B = 20 1y Gy @) 1y (9
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where the spin susceptibility reads X; (r-r)=<T, Si+(r) Sj-'(r') =
=<T ¢ (Ney (r)c (r)c (z")>.

Introduc1ng the spectral representations of the Green func-
tions in (8b) and (9) in a standard way/l11/and performing ana-
lytical contibuation to retarded functions by letting 2z, =
= ie »o+ic we obtain
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3. RANDOM BERK-SCHRIEFFER-TYPE EQUATIONS

The configuration-dependent self-energy (7) can be expressed
in terms of the remormalization Z and the anomalous part & as

iii (=21 = Z,;@) 7o+ O @7y, (12)
where the rg-term is negiected wiich may be iuciuded iuiv iy,
Now we want to determine self-consistently an effective self-
energy via the ansatz

3 (@)= z(l—Z(z))r +d>(z)r (13)

which results in the follovung from two procedures, namely (1)
configurational averaging and (ii) averaging over the Fermi
surface (in K -space).

By inserting Xeff in (6) instead of 3 we get/6 7/

ClZerr] = 3@ @)+ (03 + 22 @ @-6" -0y + 5 C@- G-y
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with Q=+ (zi)z-&;z. In deriving (l4a) the identity Go(zl)G(kz-‘,)=

G0z~ Go%y) ,
= .. . was used with the normal propagator
Z) — 2y
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Thus, (Ma) holds for arbitrary randomness of Hy. Near T, the
11nearlzat10n of (l4a) with respect to the effective gap func-

®(z)

tion A(g)= leads to (14b), where GO (i0) is taken at the

Fermi level being the energy origin.

In order to calculate T, we start with linearized equations
for 2 (z) according to (12). For this purpose we substitute
(14b) into the r.h.s. of (10) and (11) and use (7) to find dis-
ordered linearised integral equations of the Berk-Schrieffer
type
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The locality of the phonon kernel Kp comes from the contact
approximation; FP is tI"e confi uratlon-dependent analog of

the spectral functlon a (w)F‘(a,) 11/However, the off-diagonality
of KT must be retained to maintain the paramagnon concept. It
should be pointed out that the r.h.s. of (17) already contains
the effective pairing A(z) which will be determined self-consi-
tently.

4. AVERAGING PROCEDURE
The question is how to evaluate f.e“(z) The averaging proce-
dure used here does not consist in a simple replacing 2

by 2 , where the bar '"-" denotes the configuration average.
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Within a single-site averaging scheme we approximate

f’ij "f'ii 5ii+§'ij(1‘5ii)' (2])

whereby the local character of the impurity scattering is empha~
sized. After inserting (21) into (6) (with (7)) we impose the
self-consistency condition

————r—
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(22)
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with the local perturbation 83§ =(Ef - £1)8i;, and <...>pg

refers to the average over the Fermi surface.
On CPA basis the prescription (22) can be realized by (P <[> <)

S, = G [3qp) (rg ~ (8P 3™ 528 88000, G, (£ D7 (23a)

or its linearized version

G (3, ;) GPPy sEm_3Ph_58m ) P, G, [ze“] =0 (23b)

qpproprlate near T.. Here the condltlonally averaged propagator
G; [E.¢] fulfils (14) with G? =84 8TPC instead of G?, where

S(2) =G°(Z), and T,-O is the single-site scattering operator.

3 sph & 2 . .
Altogether, we have Sett=2 201 + 8Sn+ <2™> pg being site-
and R -independent, but 2z -dependent. Furthermore, the Ward-
like identity

G? (2))[2) - 2y -2 (2)) + 2@+ 5, (2))-5(2 ]G (2)= G2 -Gl (2)  (24)
is employed to carry out averages resulting from (23). The nor-

mal coherent potential 2(z)=- 22 (z) enters into Sz =
(z—Ho 2 (@)~!, where HB is the periodic part of Hv

1. Averaged Berk-Schrieffer-Type Equations

By means of (24) we find from (23) (for details see /77y the
site-diagonal contributions to 3_g(2) as the weighted averages

(2), (25)
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q» @ =50 2 ¢, 0,0 @, (2) (26)

ii,i=p

with the notation: F(z) = §;;(2), F,(2) =G?

=p,ii

(z); p(O)—--ImF(lo)
and p, (0)_-=-ImF (i0) as the alloy and component (i.e., to-

tally and partially averaged) densities of states at the Fermi
level; cpa=¢ and c¢g=1-.c. Further, Z24,icy and Py j., are
ava1lab1e from (16) and (17) provided that a v-atom occupies
the i -th site in the sense of the terminal point approximation.

Consequently, we arrive at averaged counterparts to (16)
and (17):

2(1 - Z@) = = KT (g0 2)+ K" (wy , 0 + 8K1 @y .2y, (27)

Reg(a)2+ ie)
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A(z) Z(2) =»_L[K" (wg, 2) ~ Km(wz. z) - 8K{j (w,, )] dew, . (28)
The phonon—med1ated kernels K! and !~{"h are %1ven by (LB) if
I‘i" 1s replaced by Fl bw) = F~1 (i0) 3 ¢, F, (i0) P w) and Fﬁ (o) =

1o 2 c, pV(O) Fp (w), respect1ve1y The "fluctuatlng kernel

3K|," =Klii"— Kii is caused by local spin fluctuations, where

ol m . . : i -
K‘“" is defined in analogy to Kf,h", and K —,2‘3 K.T i=p*
e

4.2, Paramagnon Kernel

————

Next we are looking for the paramagnon kernel K™ as a func-

tional of l" in the sense of (18). Corresponding to the Green
function decoupling inherent in (9), we choose the chain fac-
torization to get from (20) the average

——

m p2, - 0
rl. (w)='-=-—-=1m x”(w+!e)lm G..(IO), (29)

where we have assumed uniform exchange U,; = U for simplicity.
The spatial Fourier transform of (29)

m o 2 - 2
™K ) = ——3 In ¥ (K = X", 0+ 1 Im G (i0) (30)
Nt k

n
suggests to define the average over the Fermi surface as

—_— —, - Im G2 (i0) T™(k, )
_."N;_‘ m k(10)

yielding
6
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where N 1is the number of lattive sites. Note that '™(y) from
(32) enters into K™ of (27) and (28).

As for an impure metal we adapt the diffusion-pole propagator

-

S Im (3_. (i0) Im Qi (0)Im y' (K — K% @ +ic), (32)

- A - qu

X(Q.a)+l£)=-xa m (33)
being valid in the long—wavelength limit @f <<1, where ! is the
electron mean free path. x =x ‘4,0) is the static suscepti-
bility. D 'denotes the spin diffusion constant, which can be

typified, e.g., by D=Dg (1 -:Up(O))/la’”/,

with the Fermi velocity vp. From (33) one obtains the Lorentz-
zian 715,16/

where Dg = .l.:?vp
3

I Dq ® . Osw
My (@ w+ie) =x,— cm oy, b (34)
9 (Dq2)24 2 1 w242
q

with wg -YVqu ;:l‘ for the diffusive model. The opposite (Lan-
dau-damped) case 4'>>1 for a "clean" system with wg = VFq)(_‘.l
is reflected by (34), too/16/. 1

The static xg can be deduced on a microscopic footing from
a Ginzburg-Landau expansion for alloys/!7/giving rise to the
Ornstein-Zernicke form .

1
-»> & 2 iy (35)
T §-Up@+c™q

;,

where ¢™ was found to be proportional to the stiffness constant
affected by disorder.

5. RESULT AND CONCLUSION

The Berk-Schrieffer-type equations (27) and (28) are the
basis to determine T,. In contrast to the pure case two diffe-
rent phonon-mediated kernels appear. For simplicity we omit
the fluctuating terms 8K| n hereafter. Adopting the trial-func-
tion approach/18/we can parametrize the integral equation (28).
The crucial point is the complexity of the scaling factor

Z(0) =1+ APh, xm (36)
due to the complex )«Ph unlike the pure system. Hence, the
strong—-coupling result becomes



1 (1 +A™+ Re AB!) 2 4 (Im ABh) 2
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with the electron—phonon coupling constants
ph
2 oo T (w)
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0 v V'V o ©
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with the conditionally averaged phonon Green function b (o) =

- _1.=Im Dii'i___v(w +ie), the number 1 of nearest-neighbours, and

n
the electron-paramagnon coupling parameter

o _F;'-( ) v 1 - -
m ®
A= 2 d —————— T =——=2 I-» >, h . 4]
({w - ) N3 Xg where 41
T 1 @ ¢ .
I3 =;2ﬁ‘% Im §3 (i0) Im Q;_E(lo). 42)
By setting f; = f&, which is finite due to the damping
(~1Im 3 6GMIY “ar #ho Formi lovel, wo got from (35) and (A1) wieh
the momentum cut-off q.:
i sz ——:————-—o-c- q ;:—E
AT = 03¢ (1 _ V!t Uf) . arc tan _...'i\l.._.....-'), (43)
2n2g0)c™ g ve™ VI=U,0)

i.e., A™ remains finite at the ferromagnetic instability
Up()=1. For comparison we quote the result for a pure sys-

/1y _1ls -2 )0 (cmenr =
tem .Then (42) turns out to be I,= % 3 (e €2 )8 (e e )
N g F K Free-¢d

= —%gg—:z}: with the parabolic band €7 =~%au giving rise to
F

. 1
lar A™«In (— ) for Up(0)- 1.
singu (1 U0

Let us discuss some limiting cases of the modified T;-for-

mula (37). 1
(i) Without paramagnons: At A™=0 the result of is ob-
tained; additionally, in/7/ the Coulomb pseudopoten-
tial was included. .
(ii) Without disorder: The weighted means_in (38) and (39)
are cancelled so that APP=~A§? and Z(i0) become real.
Thus the T, result tends to the relationvﬁgyen in/11/,

Moreover, if A™=0 we get McMillan"s form

spin fluctuations in reducing T,. For example, T,

(iii) Weak-coupling limit: For Z=1 the second factor in
1Za0)| 2
Re Z (i0)

to unity. Thus we are left with the pairbreaking si-

tuation as formulated in/!!/, but here the parameters

in Te expl-:-«fL—K:;iare concentration dependent. Fi-—

AR
nally, at Xm=OQIthe T, expression of Weinkauf-Zit-
tartz/8/ is reached.

As is proved experimentally/!9/it is necessary to incorporate

in Nb and V

the exponent of (37) originated from goes

came out to be a factor 2 too large/lo/if paramagnons were ig-
nored. Disordered materials such as binary or ternary (with
two transition metals included) alloys and metallic glasses/lg/
seem to be more appropriate as pure samples for extracting the
effect of paramagnons on superconductivity.
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