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I. INTRODUCTION 

The theory of strong-coupling superconductivity in transition 
metal alloys encounters some peculiarities: narrow d -bands and 
Stoner-enhancement factors. Electrons, phonons, and paramagnons 
are affected by disorder. 

Concerning the electron-phonon interaction microscopic cal­
culations of the superconducting transition temperature Tc can 
be based on Eliashberg/1/ -type equations formulated in the 
Wannier representation. Without spin fluctuations there are 
several approaches /2-7/ which differ in performing the configu­
rational averaging. The consequent application of the CPA (co­
herent potential approximation) to substitutionally random al­
loys AcBI-c is necessary to treat the impurity scattering, 
where the standard weak-coupling Tc result/8/ must be obtained 
as a limit. 

In nearly ferromagnetic systems paramagnons must be taken 
into account by the spin susceptibility, i.e., diagrammatically 
via electron-hole bubbles. The Berk-Schrieffer equations/9/ are 
t:ne t:neoret:icai oacKgrounri ior rieLenniniug 'I'c. Fur puLt: liii:!Li:il::; 

(clean itinerant magnets) it has been investigated, e.g., in/10/ 
(for a review see/11/) as enhanced spin fluctuations counter­
act superconductivity. In this paper we are dealing with the 
influence of paramagnons on Tc in disordered alloys. 

The present study of superconductivity in transition metal 
alloys is based on the following model Hamiltonian for the 
electron-phonon system at a fixed configuration of ions: 

(I) 

(2) 

(3) 

(4) 

The 
the 
the 

random Hubbard model (2), the free phonon part (3), and 
electron-phonon interaction (4) have been written down in 
tight-binding representation /l,S,6 / · Here the atomic poten-
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tial c i , the hopping integrals t ij, the intra-site Coulomb re­
pulsion Ui, the ionic mass Mi, the harmonic force constants 

i i -+ -+ 
... q :+-Qo Ri-Ri 

cl>aii., and the dominant two-centre integrals gii .. Ttii ... .. 
p IRj -Rd 

with the Slater coefficient q~ are assumed to be configura­
tion-dependent. R1 denotes the equilibrium position vector 
at the lattice site i. 

2. ELECTRON SELF-ENERGY IN THE PRESENCE OF DISORDER 

Define the electron Green function of the superconductor 
in Matsubara-Nambu technique as 

(

<Trc. (r)c~ (r')> <T c. (r)c.,(1')>) 
A ' It J t 1 It l• ( 5) 
G ii (1-1" ) =-

<T c. (1)c. (1')> <T c"' (1) c. (1')> , 
1 ll. J t 1 1.. H 

where"A" means 2x2 matrix,< ... > qenotes the thermal average. 
The "temporal" Fourier transform G(z) taken as a resolvent at 
z = Z0 = i (2n + 1) 11T obeys the Dyson equation 

(6) 

... Theto-n - ........ • ..,_,... ... ~ ..... n ...... ,.: -~ ... -.: ,....,.....,... • U ,... ... ...,.,.,.l,... 4=...,- •1..-. ····--- . u -- . ., --- ---- ----- ~-----~ ••• v ~--··-~ _., __ .. _ 
dom one-particle contribution of (2),i.e., [Hy] 11 ... c.8 .. +t .. (l-o .. ). 

, I IJ IJ IJ 
The electron self-energy can be decomposed 1nto 

I= Iph + Im (7) 

due to the electron-phonon and electron-paramagnon interactions, 
respectively. For simplicity, the static local Coulomb term is 
omitted. In perturbation theory the phonon contribution is given 
by 

I~.h (z )=-TI I gagf3o'13 (z -z ,) r
3
6 __ (z ,)r

3
, 

IJ n 0 ' 1j i1 Ti ii,)j n n 1 J n 
(8a) 

af3 

.. TI I ga_g~·(D .. (z -z •)+D ... ,..(z -z ,))13G_,..(z ,)138 .. , 
n' l(;l i) i i i i 11 0 0 11 n n i 1 n IJ 

(8b) 

a 

where Dij (1- r') = - <T 1 ui (r) uj (1 ') > denotes the phonon Green 
function. Specially, (8b) 1nvolves the so-called contact appro­
ximation/3-7 I. Cubic synnnetry is presumed so that only D = oaa 
remains. The diagram analysis gives rise to the paramagnon part 
in the random site version (for pure systems cf. /II/) 

£~ (zn) = ui ui ~ Xij (zn- Zn•) 11 Gij (zn') T I' (9) 

2 

Where the spin susceptibility reads X·· (r-r')= <T s:(r) s-:-(r') = IJ T I J 
= < ~ "Ci (r) ci (r') ci (r') ci (r') >. 

Introducing tne spectral representations of the Green func­
tions in (8b) and (9) in a standard way/11/and performing ana­
lytical contibuation to retarded functions by letting Z0 = 
= iw -+w + ic we obtain 

n 

w I w2 
A h oo dw dw cth2T + th2T' 
I.~. (w + i c) !!!:I ~-:-ff I a.( 2 2 ) (Im Dii (w 1 + i c)+ 

l i(,l.i) 1 -oo 2112 w-w 1-w2 +lc 

+ lm Dr-r(wl + id) r3lm 4.-<w z+ id T3 8ij ' 
( 10) 

3. RANDOM BERK-SCHRIEFFER-TYPE EQUATIONS 

The configuration-dependent self-energy (7) can be expressed 
in terms of the remormalization Z and the anomalous part cl> as 

iii (z) = z (1 - Z ij (z)) r o+ cl>ii (z) r 1 , (12) 

wnere r:ne '3 -r:erw i:s uegiel.:LeU W!U.l.:ll UldY u., iu<.;i.uu.,u iui..u ny • 

Now we want to determine self-consistently an effective self­
energy via the ansatz 

- -
:I,eff(z) = Z (1- Z (z)) r0 + cf> (z) 11 (13) 

which results in the following from two p~ocedures, namely (i) 
configurational averaging and (ii) averaging over the Fermi 
surface (in '-sp~ce). A 

By inserting Ierr in (6) instead of I we get/6 •7/ 

-A A 1 o o zZ o o c1> o o -
G[Ierrl "'-(G (0)+0 (-0))r3 +-(G (0}-G (-0)r0 +2ff(G (0)-G (-0)11 

2 20 (t4a) 

(t4b) 

with 0=/(zZ) 2 -ci 2. In deriving (l4a) the identity G 0 (z1)G'tz~ 
ao (zi) _, ao(z2) 

was used with the normal propagator 

(15) 
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Thus, (14a) holds for arbitrary randomness of Hy. Near Tc the 
linearizatio~ of (14a) with respect to the effective gap func-

tion ~(z) .. ~leads to (14b), where 0° (iO) is taken at the 
. (z). • . 

Ferm1 level be1ng the energy or1g1n. 
I~ order to calculate Tc, we start with linearized equations 

for ~ii (z) according to (12). For this purpose we substitute 
(14b) into the r.h.s. of (10) and (II) and use (7) to find dis­
ordered linearised integral equations of the Berk-Schrieffer 
type 

(16) 

oo h ~(w2+id 
<ll .. (z) = [ [K~. (w

2
, z) 8 .. -.K.~ (w

2
, z)] Re dw

2 
, 

IJ -eo II IJ I) W
2 

(17) 

z = w + if, with the kernels 

th~-cth~. 
2T 2T 

( 18) 

.! ·----., • - • , , ,.. .• 

..L..LLVV.LV..L110 LUC .Lc:LUU.VW ~pt::l..LLG\.1. J..UlU .. :.LLUUb 

ph 1 -> 2 0 
r. (w) =? -~ g -(Im Dii (w +if)+ lm D--(w + if)) Im G..:...(iO), 

I 77"' i(,l i) i i i i i i (19) 

m U. U. r.. (w).,- I l 
IJ 172 

0 
.Im x .. (w +if) lm G .. (iO). 

IJ IJ (20) 

The locality of the phonon kernel Ki~ comes from the contact 
approximation; rrh is the configuration-dependent analog of 
the spectral function a2(w)F(w)/ll~However, the off-diagonality 
of K~ must be retained to maintain the paramagnon concept. It 
should be pointed out that the r.h.s. of (17) already contains 
the effective pairing ~(z) which will be determined self-consi­
tently. 

4. AVERAGING PROCEDURE 

The question is how to evaluate Ierr(z). The averagiqg proce­
dure used here does not consist in a simple replacing ~ij 

by ~ ij , where the bar 

4 

"_11 denotes the configuration average. 

J 

• 
Within a single-site averaging scheme we approximate 

(21) 

whereby the local character of the impurity scattering is empha­
sized. After inserting (21) into (6) (with (7)) we impose the 
self-consistency condition 

:-::- A ph.. ::no ~ -l 
G[~]=(zr0 -.Hyr3 -.~ tz)-8~ (z)-<£ (z)>Fs) -

(22) 

.... m """m .... m· 
with the local perturbation 8~ii =(~ii ~u)8ij, and < ..• >Fs 
refers to the average over the Fermi surface. 

Oh CPA basis the prescription (22) can be realized by (Pi =li><il) 

(23a) 

or its linearized version 

(23b) 

~pp~opriate near Tc. Here the conditionally averaged propagator 
Gi [~eul fulfils (14) with of=§+ §Ti0 § instead of 0°, where 

§(z) = QO(z), and TP is the single-sit~~ttering operator. 
A A ph Am Am 

Altogether, we have ~eff= ~ eff + 8~ elf+ < ~ > FS being site-
and ~ -independent, but z -dependent. Furthermore, the Ward­
like identity 

o?czl) [zl- Z2-~(zl) + ~(z2)+~i (zl)-I.i(z2)]G?(z2) .. G?(z2)-G~(zl) (24) 

is employed to carry out averages resulting from (23). The nor­
mal coherent potential ~(z) .. l'. ~i (z) enters into § (z) = 
= (z - H&- ~ (z))-1 , where H& 

1 
is the periodic part of Hv· 

4.1. Averaged Berk-Schrieffer-Type Equations 

By means of (24) we find from (23) (for details see/7/) the 
site-diagonal contributions to i.eu(z) as the weighted averages 

- -l 
Z .. (z) = F (iO) ~ c).l F).l (iO) Zii,i=y (z), 

II ..-A,B 
(25) 
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111
1
0 1 (z) .. p-I (0) l: e p (0) cf>oo 0 (z) (26) 

v v v n,t=Y 

with the notation: F(z) = § 110 (z), F (z) = G~ 00 (z);p(0)=-1-ImF(iO) 
V l=V,Il 1T 

and P. (0)=-, .!.,Im F (iO) as the aHoy and component (i.e., to-
ll 1T v 

tally and partially averaged) densities of states at the Fermi 
level; eA=·e and eo .. l-,e. Further, Zil,i=v and cf>ii,1 .. 11 are 
available from (16) and (17) provided that a v-atom occupies 
the i -th site in the sense of the terminal point approximation. 

Consequently, we arrive at averaged counterparts to (16) 
and (17): 

-
(27) 

- -
00 

- m - Re~(w2+ i£) 
~(z) Z(z) = f [K 11 (w2, z)- K (w , z)- 8Kj'i (w2,z)] dw2 . (28) 

- 2 ~ 

The phonon-mediated !-ernels K.t and Kf~ are ~iven by (!,.8} if 
If is replaced by flph(w) = r (iO) l: e vFv (iO) rJ (w) and r~h(w) = 
= p-I (0) I ev Pv (0) r:h(w). respectiv~ly. The "fluctuating" kernel 

II 
-m -m --;-: 

8KI,II = K ii - K ii is caused by local spin fluctuations, where 
1,11 

is defined in analogy to K1P,h11 , and Ko~ = l: e K
1
om
1
o 

1
0 v· 

tJ H J.l t = ., .. 
4.2. Paramagnon Kernel 

Next we are looking for the paramagnon kernel Km as a func­

tional of~, in the sense of (18). Corresponding to the Green 
function decoupling inherent in (9), we choose the chain fac­
torization to get from (20) the average 

m u2 _, 0 
~~ (w) = - 2'1m x11 (w + id lm G1i (iO), 

1T 

(29) 

where we have assumed uniform exchange U1 =U for simplicity. 
The spatial Fourier transform of (29) 

-:. u2 - ... ... 
~(k, w) = - ~ l: lm x (k - k ', w + i £) Im §.:+,(iO) 

rr-r'l k' "' 

suggests to define 

r,w) .. < r;;ci, w)>FS 

yielding 
6 

the average over the Fermi 
1 - ... 

-';N f Im §"k(iO) ~(k,w,> 

_,....1_ I- Im §;. (iO) 
rrN It It 

(30) 

surface as 

(31) 

) 

rm (w) = ...£:_, _!_, l: Im §.,. (iO) Im §t, (iO) 1m x·(k- ~ ', w + i £), (32) 
,3N2 op(O) "kJ' It 

where N is the number of lattive sites. Note that rm(w) from 

(32) enters into Km of (27) and (28). 
As for an impure metal we adapt the diffusion-pole propagator 

(33) 

being valid in the long-wavelength limit qf<<t,where ~ is the 
electron mean free path. x = x'(q, o> is the static suscepti­
bility. D denotes the spin diffusion constant, which can be 

D D U ( ) /13,14/ h D 1 o typified,e.g.,by .. 0 (1-, pO) ,were o=-·.VF 
3 

with the Fermi velocity vF. From (33) one obtains the Lorentz­
zian /15,16/ 

- ... 0 - Dq2w w ... w 
lm X (q, w + 1£) = x ... - '"" ;~ -'1-- (34) 

q (Dq2)2+ w2 q w~ + w2 
q 

with w ... ~fvFq2 x~ 1 for the diffusive model. The opposite (Lan-
q ) q D 1 II 1 II • -1 dau-damped case qr » for a c ean system w1th Wij'" vFqXq 

is reflected by (34), too /16/. 
The static Xi/ can be deduced on a microscopic footing from 

a Ginzburg-Landau expansion for alloys/ 17/giving rise to the 
Ornstein-Zernicke form 

1 
(35) )( ... .. 

q 1 - U p(O) + em q2 

where em was found to be proportional to the stiffness constant 
affected by disorder. 

5. RESULT AND CONCLUSION 

The Berk-Schrieffer-type equations (27) and (28) are the 
basis to determine Tc. In contrast to the pure case two diffe­
rent phonon-mediated kernels appear. For simplicity we omit 
the fluctuating terms 8Ki,11 hereafter. Adopting the trial-func­
tion approach/18/we can parametrize the integral equation (28). 
The crucial point is the complexity of the scaling factor 

Z(iO)=l+Afh+Am (36) 

due to the complex >.fh unlike the pure system. Hence, the 
strong-coupling result becomes 

• 
7 



(37) 

with the electron-phonon coupling constants 

A ph= 2 00 rr(w) 
,I, cv F (iO) fdw ,, (38) 

I F(iO) v v 0 (I) 

,\Ph = 2 rJh(w) 
where (39) _,I, c p (0) (dw '• .II 

p(O) v "' "' o w 

ph 'h ... 2 r (w) = Jl I. g , c , (b (w) + b ,(w)) p , (0) 
v v' 1111 v 11 v v 

(40) 

with the conditionally averaged phonon Green function bv(w) = 

..... , ... Lim Dii,i=v<w +id, the number n of nearest-neighbours, and 
11 

the electron-paramagnon coupling parameter 

m 00 r"'(w) U2 1 ... ..., 
A =2fdw ,= """'7ti":'_,!,I->y->, where 

0 w ·p(GJ N q q q 
(41) 

1-q ~'f Im §k (iO) Im §J7 ... 4j(i0). (42) 

... , 
By setting l;j "' 10 , 
f- I Tm ~ fH\\ 1\ ~ +- +- l. ~ 

which is finite due to the damping 
u~~~ 1m.~1 ~~+- +=~~~ f'l<;\ ~~,l (/,1\ ' I----- ,--,I' -- _ ... .._ --·--,n-o-- ,--, -· .. - , .. , 

the momentum cut-off qc : 

u2f qcv'cm ,\m~ oq:._(l ... ,v' 1 -Up(O)arctan ), 
2TT2f:(O)cm qcv'cm ,j1-Up(O)' 

(43) 

i.e., .\m remains finite at the ferromagnetic instability 
U ·p (0) = 1. For comparison we quote the result for a pure sys-

tem/1-1/.Then (42) turns out to be Iq= ~ ;a(£F-£k)8(£F-~17 ... .j)= 
k 2 

= ..clQL, J. with the parabolic band £-> = .!._,, giving rise to 
2kF q k 2m 

singular .\ m .. ln (- 1 ,) for U p(O)-> 1. 
1 - U p(O) 

Let us discuss some limiting cases of the modified Tc-for­
mula (37). 

(i) Without paramagnons: At .\ m= 0 the result of 171 is ob­
tained; additionally, in/7/ the Coulomb pseudopoten­
tial was included. 

8 

(ii) Without disorder: The weighted means ... in (38) and (39) 
are cancelled so that ).P1h=A~r and Z(iO) become real-. 
Thus the Tc result tends to the relation given in /ll/. 
Moreover, if Am=O we get McMillan#s form!IB/. 

(iii) Weak-coupling limit: For Z = 1 the second factor in 

I Z(iO)l 2 
the exponent of (37) originated from goes 

Re Z (iO) 
to unity. Thus we are lef~ with the pairbreaking si­
tuation as formulated in/11/, but here the parameters 

in Tc .. expt ... , l lare concentration dependent. Fi-
.\~1 ... ,,\ m 

nally, at .\m=O the Te expression of Weinkauf-Zit-
tartz/8/ is reached. 

As is proved experimentally/19/it is necessary to incorporate 
spin fluctuations in reducing Te. For example, Tc in Nb and V 
came out to be a factor 2 too large/10/if paramagnons were ig­
nored. Diso1:dered materials such as binary or ternary (with -
two transition metals included) alloys and metallic glasses/19/ 
seem to be more appropriate as pure samples for extracting the 
effect of paramagnons on superconductivity. 
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