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The spontaneous formation of self-organized structures out of 

states without any order is one of the most fascinating physical phe­
nomena. We have undertaken the task to investigate in detail how Na­
ture can build all the richness of these structures out of such a 
totally simple microscopic Hamiltonian. That is why we have selected 
the most simple physical system such as it is represented by a gas 
or liquid of structureless and chargeless fermions interacting only 
through their magnetic dipole moments to avoid complications arising 
from the Coulomb interactions and from an influence of a crystal lat­
tice. This problem is relevant,e.g.,for the condensed He3.or for neu­
tron stars. Intuitively we expected that such simple physical system 
could exhibit a simple phase transition from the disordered paramag­

netic state to the ordered ferromagnetic state and nothing else. 
However, to our great surprise, the rigorous applications of the 
first principles and nonperturbative methods have led us directly to 
the conclusion that the considered system can exist at least in four 
d~fferent phases. These phases follow one after another by decreasing 
the temperature of the system. Two out of these four phases exhibit 
totally unique phenomena typical for superconductivity with an un­
ueua..L wuso•ropy spontaneous.J.y se.l.I·-generated l.n the system, as well 
as a new kind of structural singularities associated with topological 

properties of boundaries of the system. Therefore these two phases be­
have like A and B phases He) /1,2/. 

To carry out this program we consider a system of N interacting 
structureless and chargeless fermions confined to a box of the volu­
me V at the temperature T. Each fermion has the mass m and the magne­

..... 
tic moment t' . 
The Hamiltonian operator H of the system is 

l-l=~d3 xJ{(!f ... ,'f), (1) 

where the Hamiltonian density Jt is expressed by the formula 

~ .-~-... ... t ~ .q ... ~ ~ ~ ~r t ~ .... - il l. 'J{(wi ~) = - '¥ <~.i)(-a v )1flx,~)-.2Tr :l['\' CK,tlu'¥lx,t)Ji. 'I' tx,Ou 41<~,{1J 1· (2 > 
T ~m h 

Here ljl{i',fl and 'lJ(x,t) are the creation and annihilation Heisenberg ope­
rators for the two component fermion field, the symbol ~{ \: stands 
for the normal product ordering, ; are the Pauli matrices, t is the 

magnet on of the fermion and [•t<7:,ll i? l.{ltii,~)Jh is the shorthanded nota­
tion for the vector ljl\i',~)cr'l'lx,t) which is explicitly given by 



~ 'f+lx:';tl ~ 4'<x',t) 
[,/(x,~:>flfl"X.~>JL~ = v .,.vx ;:;r 1 ~1 x 1 

1 '" .., ~ I -;- -;•1 

= 'Ar (d~;~IJ h\x:~l;'l'l;',~J.(i'-X'>] ~ .... ) tjl+lx:~>;.y(x',t> 
..,,.\ l lx-x'\s- tx-l\- lt-x'l + 

+ 8: ,1./tX'.o ;'l'<x:td(x-x'> }. 
Perhaps at this point we may intuitively explain why the considered 

system may acquire properties similar to those associated with super­
conductivity. The Hamiltonian density 

(2a) 

is completely equivalent to the Hamiltonian density (2), because it 
gives the same Hamiltonian (1), for in the integral (1) the contri­
bution arising from the scalar product of the transversal and longi­
tudinal parts of the vector !¥f<x,t!i14'<X',tJ vanishes. The Hamiltonian 
density (2a) shows explicitly the attractive four fermion interaction 
which reminds us distantly the attractive four fermion interaction in 
the BCS theory of superconductivity 131. 

The grand canonical partition function '1. of the system is given 
by the formula 

UJ 

-1 
where f> = (kBT) , kB is the Boltzmann constant, ( is the chemical 

potential and N is the fermion number operator. For the explicit eva­
luation of the partition function ~ is very convenient to use func­
tional integration methods /4,5/ instead of the second quantization 

formalism. In quantum statistics formulated in terms of functional 
integrals the partition function (3) is expressed by the functional 
integral 

. ~t 

~ =\~If"~~¥ e.xr \ t S <4'~'1'>}: \~ll{*;(S~ exfH \dt\ix.ll~f~ljl)} (4) 
0 

over the anticommuting variable tt'*(x,"t) and ljiCX',-t.) satisfying the anti-

periodic conditions 

Here the functional $(~~~)is the action associated with the Lagran­

gian density 

2 

-r 1'lrt 1. l.~\~. 't >if'~ t x,"tl). h/'c~,'t)C?~tx,-cil-h+ 7 ~~L<,L )lfl/Z,'t) 
( 5) 

in the four dimensional Euclidean space-time (-;, <::) which is related 
to the Minkowski space by the relation t = - i <:: and Z is a real pa­
rameter. Thus the anticommuting variables 4'* and ~ are enumerated by 
the four vector x=(x, 't ). The symbol ~~.<lt.p means the infinite product 

n l< * ;;;6'¥*.;6'¥ = oi•~\()(.)O~+(x) d~_(><-)d'f_()() 
X 

where the subscripts + and - denote spinorial components of the spi-

nor field, e.g. l.jl4 (x) = Cty:(x),4J:(x)). 
Our next strategy in describing the spontan•,ous formation of mac-

roscopic structures in the considered system is similar to that we ha­
ve developed for the explanation of self-organized structures in elec-

/6/ ~ tron plasma • Namely, that any self-generated macroscopic strucuu-

re is associated with the spontaneous formatj_on of " macroscopic and 
periodic electromagnetic field in the following way. The interacting 
fermions may spontaneously generate the macroscopic periodic electro­

magnetic field. The state with spontaneously generated macroscopic 
field will be a ground state of the system providing that the energy 
o!· the generated t'ield is smaLler than that portion o!· enerGY by which 

the energy of the fermions is decreased in this field. Therefore it 
is necessary to find the electromagnetic field configurations yielding 
the lowest energy of the syste.n under .:;;i ven external conditions. 

One notes that our Lagrangian (5) ducc not explicitly contain any 

electromagnetic field which is the field of the Bose type. 'rhe elec­
tromagnetic field is introduced to our considerations by the following 

formal 
(4) by 

of the 

transformation. We multiply 

a positive number l f • The 
functional integral 

and divide the partition function 
number Z. f is chosen in the form 

where we integrate over a space of real vector functions B'(x) satis­

fying the following conditions 

vi,' = 0 

(6) 



The partition function (4) gets the form 
f.';, 

.y A ~ ~· 41- l ~ \ \ 1 .. fv; *) ~ ~
1
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In the last fuctional integral we make the transformation of the in­
tegration variables 

""' .... [ * -o J J,C.x) ~~C.x)- 4111'-l- If (x)u~()<.) 
l t(" (7) 

where B(x) are new integration variables satisfying the conditions (6}. 
BY the transformation (7) we get the following representation for the 

partition function ~1; 

1 = ~f \ ;i)£~~J>*ot>lll e.v-rt ~ \od'L \clx~J~~'\'.:i)}• 
(8} 

= ~ \ ~io6q~*~~ e.><f> \ ~ s .. t.., (l\'*.l.\l,"i>j , 
:r! 

where if 
1 

( ~¥~ o/, B) is the Lagrangian density of the electromagnetic 
e m 

interaction given in the form 

(9) 
....,.. olo*t .. ,\ •flf'l(\ '- ILt 
(1"''"''"!"'"l 

"" -Ill !"ttl\ r- ,.,(....,\ 
, - " v I .... , 

By the formal transformation (7) one has, in fact, expressed the gran­
dious Faraday idea that the interactions between magnetic moments are 
mediated by the magnetic field B. According to our strategy emphasized 
above, the formation of a macroscopic structure must be associated with 
the spontaneous generation of the macroscopic periodic magnetic field 
B (x) which is determined by the statistical mean value (B(x)) defined 

0 
by the formula 

The last integral can be formally evaluated with the result 

( 10) 

The explicit expression for the macroscopic and periodic magnetic 
field B (x) will be derived in the following way. Suppose one carries 

0 

"' 

out explicitly the functional integration over the anticommuting va­
riables lfi* and 4' in the functional integral (8). After this integra­
tion the functional integrand in (8) becomes dependent only on the 

-+ magnetic field Band is written down in the form 

( 11 ) 

4 
where s (B) is an effective action. The last relation tells us 

eff that the system of interacting fermions can be described by means of 
the Bose field B. All quantum effects due to Fermi statistics are the­
refore completely'implemented in the effective action Seff(B). If the 
fermion system is capable to give rise to a self-organized macrosco­
pic magnetic field B

0 
(x), then this field must be a solut.ion to the 

classical equation of motion 

~ .S•H ($) = 0 . 
~~l:ll) 

( 12) 

For this reason we calculate the effective action. The afore-mentioned 
functional integration over ~lt and ~ in (8) is carried out exactly 

with the result J>-ti 

t =-}- \ :JJi e_xp i- ,~t, \d1: \~1 x i:1
(x)\delc Kli), 

-~ ~ u 

where M(B) is the infinite-dimensional matrix, the rows and columns 
of which are numerated by the four vector x and spinorial index a. In .... 
the Dirac notation the matrix elements of M(B) are given by 

By exploiting the well-known identity det M = exp (Tr ln M), the 
effective action can be written down in the form 

.M; 

> (E)= \ot \ix ~- ..i... ~ -t~L <)(.,a \O.n t-Hi)\)( a.'/ ~~~ 0 L &T o. I ~ • 

The relation (12) gives us the equation 

( 13) 
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4 
for the spontaneously organized macroscopic magnetic field B0 (x). 
Although the last equation is a complicated non-linear integral equa­
tion, we will construct its exact solution. Suppose we know the func­
tion B

0
(x) in an explicit form. Then the inverse matrix M- 1(B

0
) is, 

apart from the minus sign, the Green function D of the non-interacting -fermion gas embeded in the given external field B
0

(x), for the Green 
function D(x 1 ,x~) is· defined by the relation 

The Green function D(x1 ,x2 ) is the matrix in the spinor space with 

the following matrix elements 

Here the subscript o denotes the statistical mean value with respect 
* ~ to the action S0 ( ~ , 4', B0 ) associated with the Lagrangian density 

( 14) 

of the non-interacting fermions embeded in the given external field 
...... 
B0 (x). By using the algebraic reduction 

the equation (13) can be rewritten in the form 

io = 4--rrf <~it(X) (;! 1{'()<.))0 ( 15) 
~ 

The last equation tells us that th~ magnetic field B0 (x) is a solu-
tion to Eq. (13) if 4~~ times the magnetization of the fermions in 
this field is the same as this field. We have found that these requi-.-. 
rements can be satisfied by the field B0 (x) which is given by a super-
position of a static circularly polarised spin wave and a homogenous 

magnetic field as it is explicitly expressed by-the formula 

:no(-:;;') = b c~ :..t..;_.-;: ...... - ;.:>..fx) + ~ .b 
..D,.. -!f=1: E...e +f...e :L .z. ( 16) 
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where b
1 

and b2 are constant parameters, q is the wave vector, ~=±1 
is the helici ty of the spin wave. £ and r· are the polarization vec­
tors satisfying the relations 

The vectors L, £:.,.. and q can be parametrized as follows 

..., ,.. A ( ) £. = - A -i. o · 1i' I I J 

The proof that function (16) is the solution to Eq. (13) or (15) will 
be made by the direct calculation. That is why we evaluate the parti-

tion function ~~ 

'te = \06~¥* ,;a '\I ~"f t ~ \o.-r. \ix ~o(~~'t',i,)~ =. 
• 0 

= \~~11-~<\1 exp l ~ ,So(~*,qJ,i)! 
( 17) 

....... 
with the field B

0
(x) given by the form (16). To carry out the functio-

nal integration in (17) explicitly it is very convenient to make the 
following unitary transformation of the integration variables ~*(x) 

and 4.J (x) 

+;:: C ,/l lU({)a.(l,)))-t'l(~)~(l,\l)]e><flit.))l't.-L(l+~)x] 
'-Vlf (11.) = 1. \ "T-'1/J\ ~ 

integer number, 
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............... ------------------------------
By the transformation (18) we get Z0 in the form 

( 19) 

with the diagonal action 

(20) 

-+ Utwv +'r E_ t"l>)<((r,v)o._l"l,v)J 

allowing for the elementary functional integration of (19). Here 
E+(k) and E_(k) are the energy spectra of quasiparticles given by 

the formulae 

(21a) 

(21b) 

From (19)-(21) one gets the ordinary Fermi distributions 

(22) 

for the quasiparticle associated with the + and - spinorial compo­
nents. In the next step we have to calculate the statistical mean 
value (!f*()C)(i! ~(JC))0 • By elementary calculations one finds the re-

sult 

where the following abbreviations are used 

8 

r• "~ .... 
(

I.. l ) \ d k 1'2,· k - i'l. [ ..... .... ] 'J,t P~,l>.l. =-4lf.~ -ll n (1<.)-n (k) 
(1.11')"11[ ( ... ;+ ).t J.]~ + - • 

'>-!1.:----(, 4-'f~ 

The statistical mean value (23) is indeed of the same form as the .... field B (x) given by (16). The relation (15) requires the following 
0 

self-consistency conditions 
~ _ .ltT.J.(iC n/k)-n_(k) 

.2 rn r .. - l A4j (.2.1f)¥.t [ ( ~;. r-r.~.l+tnf'.z 

- J. r ir >.;.r- ti [ cr (k">l (24) 
- -41rt htT)3f.t[("-k )2 .I.J~ n+ )-~ :.J 

"2: - fl. -+ fA 
to be satisfied. These two relations determine the parameters f1 
and r

2 
as certain functions of the temperature T, chemical potential 

"l and the wave vector q. The free parameter q will be determined la­
ter on from the minimum of the energy of the system. The self-consis­
tency conditions (24) are very similar to the self-consistency condi­
tion determining the energy gap ~ in the BCS theory of supercoducti-

vity /J/. 
In what follows we will restrict ourselves to the description 

,...p +"'"' ....... ,.,. ... .c A .............. A ...................... "'""" ... ..._ .... ........ e ..... .f"-1 ..,., A lt t::\ A.nnT'nTimatinn thnA 
-- ---- ----------- -.,---- --- ---- ---- ----- -o,--. --
ignoring effects of quantal fluctuations of the magnetic field B. 
The effects of the quantal fluctuations will be considered elsewhere. 
In this approximation the partition function (11) is evaluated in the 

form 

All thermodynamical properties of the system can be derived from the 
grand-canonical potential .Q: -J>-1k,'1 which has the explicit form 

.... .... 
where E+(k) and E_(k) are the energy spectra (21). Since the energy _.. 
spectxa (21) have the anisotropy due to the wave vector q, the consi­
dered system must exhibit totally unique anisotropic properties which 

will be discussed bellow. 
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(25) 

must have the minimum with respect to any free parameter at the gi­

ven entropy 

~ = -k.BV~ \~1{Jn<r(C)L-.Lncr(l)]+[A-r\r(l)]in[A-n<r(l)J1. 
This requirement is however equivalent to the minimalization of (25) 
with respect to the wave vector~ at the given occupation numbers 
nv(k). The condition for the energy minimum is gotten with the com­
binations of (24) in the form 

ttL ~1 
- --(t 
.1,...., .L 

where n is the mean density of the fermions. Thus we have obtained 
the complete set of the relations (24) and (26) determining the para­
meters b

1
, b2 and q as certain functions of the temperature T and 

the chemical potential 1 . The relation (26) is used to rewrite the 
energy (25) in the form 

which indicates that the macroscopic periodic structures, associated 

with the parameters b 1, b2 and q, are energetically preferable when­
ever external conditions allow for nontrivial solution to the equa­
tions (24) and (26). 

The detailed analysis of the relations (24) and (26) reveals 
that the considered fermion system can have three critical tempera­
tures denoted by T1 , T2 , T3 and satisfying the relations T

1 
> T2-;. T

3
• 

If the fermion density n is sufficiently high then by decreasing the 
temperature the spontaneously generated macroscopic field B

0
(X) deve­

lops to its most general form (16) through four succesive stages. At 
the first stage, when T>T1 we have no order in the system, i.e., 
b1= b2= q = 0, and the system is in the disordered paramagnetic sta­

te. At the second stage when T1 > T :> T2 we have b 1,t 0, but b2= q =0, 
i.e.,the macroscopic homogeneous magnetic field is spontaneously ge­
nerated. The system exists in its ferromagnetic phase. In this phase 
the parameter b 1 increases by decreasing the temperature. The ferro-

10 

magnetic phase is associated with the simple totally isotropic ener­

gy spectra of fermions 

...... 112 
( k2 E+(k) =- -t; ) ' 2m 

1i2 ... 2 
(28) .... 

E (k) =2m ( k + t, ) 

which are depicted in Fig. 1a. At the third stage when T2 ~ T ~ T
3 

we 
have b1 ,to, q ,t 0, but b2 = 0, i.e.,the static circularly polarized 
spin wave is developed. This state will be referred as to the super­
conducting phase and abbreviately denoted by letter S for reason 
which will become clear bellow. The S - state is associated with 
the anisotropic energy spectra 

(29) 

which are depicted in Fig. 1b. The spectra (29) are symmetric with 
...... -respect to the reflection k ~ - k. In the S - state there is the 

non-vanishing orbital electromagnetic supercurrent With the uensity ... 
j(x) given by the relation 

~..... c __,. _, 
j (x) = 4v V X :E>. 

c nb~ \c ... __,> i.Af.x ( ...... __,")e ... ~.tx-~ 
~1r -yT' \ 1"' £ c. - <t "'r 5 

The supercurrent j(;) must, of course, satisfy the boundary condition 

if.j .. 0 (JOa) 

at the container surface, where Sis a unit vector normal to the 
surface. In addition to the boundary condition (JOa), we must make ...., 
sure that the current j into the wall of a container vanishes. This 
requires that ............ 

(s. V )j • 0 (JOb) 

for those components not going to zero by the condition (JOa). The 
explicit form of (JO.b) is 

f n;_.>< c .... ...... ) -'-"'f·)( 7. = o Cs.£) (f,xf> e + 1.. xi. e. J . 
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The boundary conditions (30) show that the shape of the macro­
~ 

scopic field B (x) is distorted from its original form (16) by the 
0 ~ 

presence of boundaries, namely the wave vector q becomes x dependent. 
In the physics of the superfluid He) such distortions of vector fields 
are called textures / 1•21. The relations (30) require two vectors 
J(x) and q(x) to form the tangent vector fields with respect to the 
container surface. However, tangent vector fields at a closed surfa~ 
ce topologically equivalent to a sphere must exhibit singularities/2{ 
Therefore the considered system of fermions confined in a sphere will --exhibit singularities in the distributions of the vector fields j{x) 
and q{x). These singularities are exactly of the same origin as the 
singularities of the order parameters of the superfluid He) / 1 , 21. 
The vector - .... ...... .(, • j X q t 

which is the normal vector at the surface will exhibit singularities 
which are called disgyrations of de Gennes 12 ,71. The analysis of Mer­
min /2/ applied to our case shows that the fermion system confined in 
a torus may have the textures free of singularities • 

In the S-phase the Fermi surface associated with the energy spec~ 
trum (29a) may change its topological structure. As long as 

L J.. 
l!_ ( l.... -I)',\ / n. 
J_m ' ., u ·I l 

the Fermi surface is topologically equivalent to a sphere in the mo­
mentum space. If q2 becomes so large that the opposite inequality to 
that of (31) holds, then the Fermi surface becomes topologically equi­
valent to a torus in the momentum space. 

At the fourth stag~ when T ~ TJ we have also b2~ 0 and the homo­
geneous magnetic field b2 is developed parallel or antiparallel with 
q to accompany the spin wave. This state of the system is referred to 
as the superconducting and superfluid phase and is denoted by abbre­
viation s~. The SF-phase is associated with the anisotropic energy 

..... 
spectra (21) which are depicted in Pig. 1.c for ~ • '+ 1 and b2 pa-
rallel with q. The energy spectra (21) as it is shown in Pig. 1.c are - ... asymmetric with respect to the reflection k-.- k. Therefore there 
exists an excess of fermions with momenta oriented in a certain direc-

...,. -ticn specified by the vectors b2 and q, and the value of helicity 
~ • :t 1. This :. _ ... se is peculiar for a spontaneous self-ordering in 
the momentum space of the fermions and for giving rise to a macrosco­
pic flow of the mass. Thus the system exhibits, in addition to the au-

13 



perconducting properties of the S-phase, the properties of superflni­
dity. The velocity field of the mass will exhibit the same sorts 
of texture as the supercurrent j(x) in the S-phase. In the SF-phase 
the fermion system confined in a torus may exhibit the superfluid mo­
tion of the fermions. 

What concerns the critical temperatures T1 , T2 and T
3

, they must 
be calculated numerically. In the approximation associated with the 
non-degenerate fermion gas T >> TF one gets, e.g., T1 in the analytic 
form 

(32) 

where TF is the Fermi temperature. 
When the formula (32) is applied to the condensed He3,one gets 

T
1

-:::::, 10-7 K. This critical temperature violates the condition T1 »TF 

and the non-degenerate fermion gas approximation is not admissible. 
In the degenerate fermion gas approximation the calculation of the 
critical temperatures cannot be done analytically, because at T = 0 
the system gets the most complicated structure. 

VIe have demostrated by using merely basic principles that the 
simplest physical system 8xhibits so many different phases with pro­
perties which are as complex as those of any inorganic system. 
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HccneAOBaHa CaMOOpraHH3a~HR MaKpOCKOnH4eCKHX nepHOAH4eCKHX CTPYKTyp B 
CHCTeMe B3aHMOAeHCTBY~HX $epMHOHOB, noKa3aHO, 4TO CHCTeMa He3apR*eHH~X $ep­
MHOHOB C MarHHTH~MH MOMeHTaMH MO*eT HMeTb no MeHbWeH Mepe 4eT~pe pa3flH4H~X 
$a3~. ~Be H3 HHX o6naAaDT CBOHCTBaMH, aHanorH4H~MH CBOHCTBaM csepxnpOBOAR~e­
ro H CBepxTeKy4ero COCTORHHH. 8 paccMaTpHsaeMOH CHCTeMe HMeDT MeCTO CTpyK­
TYPH~e oco6eHHOCTH, nOA06H~e AHCrHpa~HRM B CBepxTeKy4eM He3, 

Pa6oTa s~nonHeHa s fla6opaTopHH TeopeTH4ecKOH $H3HKH OH~H . 

Coo6~eHHe 06oeAHHeHHoro HHCTHTyTa RAePHwx HccneAOBaHHH. AY6Ha 1983 

Noga M., Nagy M. 
On New Phases in Fermi-Systems with Dipole Interaction 

E17-83-674 

Formations of self-organized macroscopic and periodic structures in a 
physical system of interacting fermlons are derived from first principles. 
The system of structureless and chargeless fermions with magnetic moments 
can have at least four different phases. Two of these phases exhibit the 
totally unique phenomena typical for superconductivity and superfluidity 
as well as various kinds of structural singularities such as disgyrations 
in the superfluid He3. 

The investigation has been performed at the Laboratory of Theoretical 
Physics , JINR. 
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