


As is known, the two quantitatively different pictures arise
when describing the motion of an electron in the ion crystal.
In the first case, when electron is in a weak inter.iction with
the ion lattice of the crystal, its motion is just :he same as
the motion of the free zone electron with the energs shifted
down relative to the bottom of the conduction band, and the
effective mass is replaced by the renormalized one /1/ (weak
coupling polaron). In the other limit case, when el:ctron is
in the strong interaction with the ion crystal, there arises a
whole number of different self-consistent states of electron
and lattice each having its own effective mass and radius/2-4/
(strong coupling polaron).

Although in both limit cases the motion of electron in the
ion crystal is described by means of the Pekar-Frdhlich Hamil-
tonian, each of them requires its special method of research.
For example, in the strong coupling theory the special form of
adiabatic perturbation theory was worked out/2:4/, in which
the translational degeneracy was removed still before the ex-—
pansion in perturbation series. For the present time one succer
eded in comnecting the two described pictures in the framework
of Feynman's variational approach in which the smooth upper
estimate to the polaron ground state energy was obtained for
all values of the electron-phonon coupling constant a (see
the figure).

In this connection the paper/6/ can be mentioned in which

thermodynamical quantities are calculated by a special reduc-
tion of the problem to the calculation of mean quantities of
T -products. An approach, developed in/6/ is more convenient
for concrete calculations than the use of path integrals/5/,
It seems to us that it gives also some advantages in carrying
out general demonstrations concerning the choice of approxima-
ting Hamiltonians (in/%/ it has been illustrated by the linear
model of Bogolubov), analysis of the behaviour of the polaron
in external fields and so on.

1. In paper/7/'a generalized path-integral approach to the
polaron ground state energy has been proposed. The generaliza-
tion consists in that a trial model where the electron interacts
wish*a second particle by means of an arbitrary potential
v({. r’) (and not a harmonic one as in Feymman's approach/3/ ) is
used for variational calculations. The trial action in this
case is given by the formula
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The upper bound to the polaron ground state energy E vs.
the coupling constant . Curve | schematically repre-
sents Feynman's result /5/, and curves Ey@ =-a,

1 (@) = -0, 108542 , E, (a) = -0, 0205a2 , E3(@) = -0. 0083 a2,
respectlvely, represent results obtained from the so~
lution of the extremization problem for the functional
) [Il-’ ul (2).

In (1) the translational invariance of the initial problem with
the Pekar-Frdhlich Hamiltonian is taken into account and the
units are used for which h=m = =1; @ and m being the fre-
quency of longitudinal optical phonons and mass of electron,
respectively. The resulting inequality for the polaron ground
state energy E is/7/:
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where a is the constant of coupling strength, = ——1--—- and
. -u
m . .
=TT is the reduced mass of the two particle trial system.
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In (2) 4 and the wave function of the electron u (?) are treated
as variational parameters. We can see, that ® [y, u] in (2) can
be considered as a modified expression for the Bogolubov-Pekar-
Tyablikov functional /2-4/, into which it turns when , = 1 (the
strong coupling case). The principal moment here is that in

the limit p-+0 @[y, u]l leads to the correct expression for the

ground ctata nalaran enargy B . - in tha woeal counling cacae
(see below). Y

In order to obtain the best upper estimate to E, functional
® [, u) must be minimized with respect to u©: [0,1] and 0

with the condition:
flu(R2dr=1. (3)
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The condition 8[® - &(lu@| d) = 0 leads to the equation 11/
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and the conditions -g—g- 0 and T-‘» lan t

u (';)]!,:] =0 give

the following relation for u:

T-6 ' (5



where T = 5 fdr|VU| The total energy E is related to T and to
the elgenvalue & by the expression E_——(€\+T)

The solutions of this problem are the sets y, @,u(?) satis—
fying (3)-(5). It is not difficult to see that the following
exact solutions hold for alla: a) ug= O; 50-—2a. uo(') const.
This solution gives Eg(a) == b) uy=1, &=6&,, u=y, ),
where &,, un(r) are the solutions of the Pekar equatlons
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du, (r)_.@ u (r) (6)

As is shown in ref./?%, eq. (b) is asymptotically exact in the
a» o 1limit. All the solutions of (6) satisfy (5) in conse-
quence of the virial theorem E =-T. The energies of the four

lower states with u= u, = 1 are /8,9/
E) (a)= -0.1085q2; Ej (@) = —-0.0205a2; N
Eg(a) = -0.0083a%; E, (a) ==0.004542.

We know that Ej(@) and E[(z) are asymptotically exact expres-
sions for the polaron ground state energy in the limiting ca-
ses a» 0 and g- ., respectively. If eqs. (3-5) do not have
solutions with p e (0,1) and energy lower than E. and E, in
some interval of values of a, then the polaron ground state
energy from the ‘variational estimate is simply - for a<gq
and -0.1085a2 for a>a;. The value ¢ can be interpreted as
"ecritical value a " corresponding to the first order phase
transition from the free polaron state (@ <a;) to the self-
localized state (@>ay ), and it is equal to 9.21,

In a recent paper /10/ these results were obtained by solving
equation (4) with the Ritz variational method. Here we see
that no numerical work is needed to reach the same conclu31ons.
The other two solutions (besides Eg and E) ) obtained in/10/
are not solutions of (3)-(5) but consequences of the use of the
Ritz method.

From (7) there also follows the existence of a set a, (0 =2,
3,...) of critical values of a defined by the equations

-, =E_(a,). (8)

For a > ag =48,78 the first excited state is not the free one
but the self consistent localized state of energy Ej (g), for
a>ag= 120,48 the first two excited states are the self consi~
stent localized states of energies Ey(z) and E4(g) and so on.
The full picture is schematically given in the figure.
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It is necessary to point out that we discuss here the picture
arising from (2) rather than how a good approximation to the
polaron energy it gives. As is well known, the numerical esti-
mate of the polaron ground state energy of Feynman's theory /5/
is better except for very large a and does not show any phase
transition—-like behaviour. On the other band, we do not know
yet whether or not other solutions of (3)-(5) with x&:(0,1) and
energy lower than Eg and E] exist. These solutions, if they
exist, do not arise when solving the problem by the Ritz method.
Only exact numerical solution of (3)-(5) can say the last word
about it.

2. From the picture described in the previous section it fol-
lows that at critical transition points such polaron characte-
ristics as effective mass, radius and number cf phonons should
have jumps. The exact path integral representations for the
polaron gound state effective mass M*, radius R and for the
mean number of phonons N in the cloud surrounding the electron
at zero temperature are/5.11/:
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where S[r] is the polaron action functional/®/
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In the framework of the approximation of paper/7/ J& ) is
replaced by
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and the approximate expressions for m*, R and N are:
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When u = O we obtain
m*=1+%. R . N =2.
0° i 0 — 0" 9

When u= | and B=Ej(a) the results are:

me -1+0227a%; Ry <3288, N 0217002,

a
and the corresponding jumps of these quantities at a) are:

Am*= 162.3; AR= 0.3535; AN=13.82.
Analogously, by means of (10) the jumps at all the critical
values a, can be calculated.

3. As was mentioned in section 1, the picture described abo-
ve rests essentially on the proposition that there are no so-
lutions different from solutions pointed out in 1. At u= 1
(@» o) ®[uu] coincided with the Bogolubov-Pekar-Tyablikov
functional, the extremals of which for u (@) describe some states
of electron in the polarization well. The question about the
description of spectrum of electron in the well formed by its
polarization of the crystal at intermediate coupling on the
basis of (6) remains open. Whether or not it is possible to
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construct the solution of (6) close to the Pekar solution at

u <1 should be elucidated by the numerical solution of the
problem (3)-(5). Till now along this way no essential progress
was reached and one should concern the conclusion about the
possible phase transition from the picture of the weak coupling
polaron to strong coupling polaron, made in ref./19/, with
great care.

We are grateful to Academician N.N,Bogolubov, who suggested
us to carry out this investigation, discussed the results and
made a number of valuable critical comments.
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