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1. INTRODUCTION 

Several years ago in 1977 we investigated magnetic solutions 
of the Hubbard model using Hartree-Fock approximation/!/. Among 
others we found the surprizing result that for the antiferro­
magnetic case for nearest-neighbour overlap and simple cubic 
lattice the so-called heat magnetization can occur. The Hubbard 
model in Wannier representation is given by 

J{ = J{O + J{ I - 11 N 
( I ) 

describes an s band 

where t 1j 
t if i and j are nearest neighbour lattice sites, 
0 otherwisP, 

and 

( ... = 2t ( cosk a + cos k a + cos kz a) 
k X y 

for s.c.l. (band width W"' 12 t). 

is the Coulomb or correlation term, where U represents the re­
pulsion energy between electrons with spin a and -a at the 
i-th lattice place. N = ~ n 1a is the total number operator of 

ta . . 
1 electrons and 11 denotes the chem1cal potent1a . If we want to 

include an external magnetic field, then instead of t 1J we 
-+ ... 

use t 1j - 0 1. ah (R 1). where h(R 1) represents the z-component 
of this fie\d (in energy units) at lattice point i charac­
terized by position vector R 1• 

The fact that this Hamiltonian (I) in Hartree-Fock approxi­
mation (HFA) for the antiferromagnetic case for certain para­
meter combinations admits heat magnetization is demonstated 
by the following figures 111.Fig.l shows the temperature depen-
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Fig. I. Order parameter x of the afro phase versus tempe­
rature T (in units of kB/W ) in HFA for different values 
of the ratio of correlation energy U to band width W 
and of the mean occupation number n.(l) U/W = 0,3, 
n =I; (2) 0.3, 0.9; (3) 0.28, 0.9; (4) 0.25, 0.9. 

dence of the order parameter x. It is to see that for non-half­
filled band (n ~I) and certain values of the ratio of cor­
relation energy U to band width W magnetic ordering (x ,j, O) 
can appear in a finite temperature region even if for the tem­
perature T = 0 no magnetic order exists. This phenomenon is 
known under the notation heat magnetization. The region where 
this effect occurs is characterized by double solutions of 
the Neel temperature TN (comp. Fig. 2). The temperature depen­
dence of the reciprocal static zero-field susceptibility 
)( - 1 (q = W2) for the same parameter values like in fig. I is 
plotted in fig. 3. ( p. B denotes the Bohr magneton and g is a 
vector of the reciprocal lattice). In the region in which 
x ~ 0 it follows x (q = W2) < 0, i.e., the paramagnetic (pro) 
phase is unstable as against the antiferromagnetic (afm) phase. 
(We remark that for this parameter range no ferromagnetic 
phase exists). Figure 4 represents the difference of the 
free energy per lattice point of pro and afro phases versus the 
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Fig.2. Neel temperature TN (in units of ka/W) in HFA as 
a function of U/W for different values of n. (I) n = I; 
(2) 1.1 and 0.9; (3) 1.3 and 0.7; (4) 1.5) and 0.5; (5) 
1.6 and 0.4; (6) 1.7 and 0.3; (7) 1.8 and 0.2; (8) 1.9 
and 0. I. 
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Fig.3. Zero-field susceptibility p.~ x-1 IY21 /W in HFA 
k 8T 

as a function of--- for the same parameters as in fig. I. w 
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of pm and afm phase in HFA versus temperature T (in 
unit of ks/W) for the same parameters as in fig. I. 

the temperature T for the same parameters as fig. I. One sees 
that the free energy of the afm solution is always less than 
that of the pm solution, i.e., the afm phase is stable, and 
furthermore, that no first order phase transition exists. 
The question which we want to answer here is the following: 
Is it possible to observe this effect of afm heat magnetiza­
tion or 

4 

(i) 1s the heat magnetization destroyed by other exited 
states with much lower energy or, 

(ii) is the heat magnetization an effect of the used HFA? 
In order to answer these questions we investigate in section 2 
the possibility of the existence of further magnetic solutions 
in the framework of HFA and in section 3, we consider another 
approximation (the so-called un~fied theory) u~ing the.functio­
nal integral formalism to take 1nto account sp1n funct1ons. 

2. HARTREE-FOCK APPROXIMATION 

That which one does if one uses HFA 1s a linearization of 
the interaction term 

J{ 
1 

= .1. U I n 1.~n 1 _~ => U I <n t-~> n 1.~ - .l. U I <n > <n > -
2 v v v v 2 ia 1-a (2-) 

Ia ia ia 

I ( n. _.!..u I <n. ><n. > 
ia Ia IU 2 ia Ia I -a 

W1.th L 1 U( m) th1's means exchange field ..!..urn. is 
<· =- n.-a., 2 1 

IU 2 I I 

postulated. n i = < n i't + n u > is the mean occupation number of 
electrons at the lattice point i and m 1 =<nit- n 1 .,> is pro­
portional to the z -component of the magnetization at i. If 
we restrict ourselves to long range order, then in the so-called 
itinerant picture we can put 

fqR I 
and (3a) = n 

Magnetic effects are introduced ad ho~. For q = 0, m ~ 0 we 
obtain ferromagnetism; for q"' y2 = Q, m = x =I 0 1 antiferro­
magnetism;and for m = O,paramagnetism. From (3a) it is clear, 
if we look for further magnetic solutions,we have to inves­
tigate m1 for arbitrary q (commensurable and incommensurable 
modulated phases). 

In the so-called localized picture one assumes (see, 
e. g. 121 ) instead of (3a) 

and m 
1 

= ± m. (3b) 

Then Eia is considered as random variable and the lattice is 

divided in A and B sites with E A = ..1 (n- m) = E B and 
t 2 • ' 

B 1 A • Et =2U(n+m) "'E •. If one uses for the probab1lity P that an 

A -site has a B -site as nearest neighbour P = 0, then it 
yields for m ~ 0 ferromagnetism, for P =I and m ~ 0 antifer­
romagnetism, and for m = 0 paramagnetism. For describing the 
modulated phases the localized picture is not favourable but 
it is possible to describe with this picture the magnetic 
short range order. We restrict ourselves to long range order. 

Summarizing one can give the following interpretation (3) 
for the HFA: It is postulated the existence of an exchange 
field which leads to different band structures for the up 
and down spin electrons and which is itself generated by the 
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Fig.S. Exchange field configurations for the fro case 
in (a) simple model, e.g., HFA and (b) unified model. 

resulting differences in up and down spin electron occupation 
numbers. In the fro case, e.g., (comp. fig.Sa) the field is the 
same at all atoms. It has the maximal amount for T = 0, decrea­
ses for increasing temperatures, and becomes zero at the cri­
tical temperature T

0 
and above T

0
.The exchange field corres­

ponds to the spin ordering, i.e., to the order parameter. Becau­
se of (2) one believes that HFA is reasonable, if at all, for 
u 
~<<I, only. Charge and spin fluctuations are not included 
" because of assumption (3a). 

In the case of arbitrary q we calculate the isothermal static 
zero-field susceptibility 

.... 
x{q) aM(CV I 

ah b = o 

where 

and 
.... -+ 
h = (0, 0, h(R 1 )) 

.... 
with h(R 1 ) 

...... 
iqR i 

he 

denotes the external field in the pro phas~R (The exchange 
field has the same s true ture; m 1 = M (I! i) e iq i ) • We obtain 

2x 0 (Q) 

6 

(4) 

(5) 

and 

.... 
X 0 (q) =--1-l: .... 

k 2N 
1 

-~--{f(Eit .... ,T) -f(Elt,T)!> 0, 
(t .... -+ - l-+) + q 

k+q k 

E -1 
where f(E, T) = [exp{--1 + 1] is the Fermi function 

k 8T 

E k-+ -+ = ~ Un - IL + t .... .... • + g_ ;:; -+ -1 k+ q • 
It X(q) ~ 0, the pm phase 1S 

(6) 

and 

a phase modulated by q ( q phase). 
and q the transition temperature 

IL follow from (6) and (3): 

unstable and goes over to 
For given parameter n, ~· 
T0 and the chemical potential 

(7) 

n 2 - I. f(E .... , T ) 
N .... k c 

k 

At T = 0, i.e., in the ground state, from (7) one gets the re­
sults of Penn (4). For fixed values of n and U/W it yields 
the critical q vector and if n and q are fixed, then (7) gi-

, 1 , 1 , .. ., ,~,., 1 r , 1 1 1 __ _ 

Vt::o:J L.UC L..L .Ll.J...\...cl..L J.cll-.LV U/ n clUUVt:: VJ... Wll.LL.ll LlH::: pUt }-Jllcl,:)t:: u.uc;,:, 

not exist. For a half-filled band ( n = I) one obtains antifer­
romagnetism for each ratio U/W. For non-half-filled bands 
(n ~I) the pm phase goes over to a modulated phase which with 
increasing n(n < 1) or increasing U/W goes over to afm of fm 
phase. Figure 6 shows these results. The model (I) possesses 
electron-hole symmetry therefore the picture is symmetrical re­
lative to n =I. The upper part of the picture represents the 
critical values U/W, at which the pm phase goes over to the 
modulated phase, as function of n and the lower part represents 

-+ • 
the q vector wh1ch belongs to that modulated phase. For 

0.42S n~l the q vector is of the type q = ~(1,1,0; for 
a 

0, 14~ n <_0,42, of the typeq=!!...(l,e,o) andforO~n~O.I4 a 
-+ rr 

we have q =a <e. 0,0) with 0 S e ~I. 
In the range in which we found double solutions f~l TN the 

transition does not occur from pro to afm phase with Q = ..11.. (I, I, I) a 
immediately but at first 
(I , I , e) or q = .!!.. (I , 11, 

a 
phases mostly) such that 
TN is related with the 

to modulated phases with q = -i-
0) where 0 :s e. 1/ ~ 1 (incommensurable 

the existence of double solutions of 
existence of incommensurable phases. 
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Fig.6. Phase diagram 
for the pm, fm, and afm 
phase in HFA at T = 0. 
At the boundary to the 
with m denoted region 
the pm phase (for cer-

tain ~ and n) is 

unstable and goes over 
to a q phase. The lower 
part of fig.6 represents 
the critical q vector 
as function of n. Solid 
lines indicate second­
order phase transitions, 
dashed lines indicate 
first-order phase 
transitions. 

1 0 ... 

Thus, we have found 
the answer to our ques­
tion (i): It is neces­
sary to consider mo­
dulatPd nhaRPR and tn 

discuss the temperature 
dependence of every \ 

t I I 

I I flA,A,,, \\1 

8 

0 ( M(V (M(Q) ; x). Un-

0 Q.'t Q.l A.'t 1\---··--
l fortunately the free 

energy F in HFA can be 
calculated without 

and the afm case (q = Q = .!. ) 
2 

only 

further approximation 
for the fm case ( q = 0) 

thus that the temperature 

behaviour and the region of stability (phase diagram) of modu­
lated phases is an open problem yet. 

Since, on the other, hand, it is known that the values for 
the transition temperatures calculated in the framework of 
itinerant electron theory,e.g., HFA (without modulated phases), 
are too large compared with the observed Curie temperature T 
for iron or the Neel temperature TN for nickel If>!, one must c 
conclude from this fact, too, that it is necessary to regard 
other excited states which are capable of reducing the magne­
tic order. These excited states might be, beside the spinwave­
like collective modes ( q phases) which we have considered 
till now, states in which the atomic moments are no longer 
oriented parallel to each other. In order to take into consi-

deration such states we have to extent the approximation. We use 
the so-called unified theory and we have now to answer our 
question (ii). 

3. UNIFIED THEORY 

The extension of our physical picture 1s represented for the 
ferromagnetic case in fig.Sb. In the ground state, at T = 0 we 
have the same situation like before (comp. fig.Sa), in the 
language of the itinerant picture - the exchange field is the 
same at all atoms or in the language of localized picture -
all spins are parallel directed. Because the exchange field at 
an atom depends on the spin of this atom, the exchange field 
is a vector quantity (in spin space) and it must not be parallel 
at all lattice points but it can vary in direction and strength 
from atom to atom if the temperature T increases. Then above 
T0 the exchange field may not vanish, but it has to be merely 

randomized in direction and strength producing a total zero 
magnetization, this means in the language of localized picture, 
we admit localized moments above T 0 • 

This unified model contains the simple model which we have 
considered before (comp. fig.Sa) as a special case. In the 
language of itinerant picture now we can say, we have to in­
vestigate electrons which move from atom tn atnm 1mnPr infl,Pn­
ce of different exchange fields or under influence of a stochas­
tic potential, and in the language of localized model, we have 
to regard different exchange field configurations which cor­
respond to spin configurations, e.g., like in Heisenberg model, 
but more general because they can vary in direction and magni­
tude. To describe such a physical picture one can use the func­
tional integral formalism. The basic mathematical formulation 
was provided by Schrieffer et a1. 161 and Cyrot 171.0ne writes 
the grand partition function 

Z = sp le-tH< I = e-f30 (8) 

in a functional integral over classical fields using time order 
in r on (0, /3), 

f3 
expl-f3(A +B) I= expr 1- J dr (A(r) + B(r))l 

0 

for [A, B) ~ 0 and the Hubbard-Stratonovitch transformation 
2 -

(9) 

A2 1 f -v A/2 + y 2 AvA 
e = --=- e dv A , (I 0) 

y2rr 
where A is any bounded operator and vA a classical field, to 
transform the two body interaction term J{ 1 = t U I n iuni-u 

iu 
9 



in favour of single-particle couplings with classical fields. 
There are several possibilities to write the interaction term 
in a quadratic form 

J< 1 = U I n 1 t n 1 + = .!.. U I ; 1 - 2U I (S ~ ) 2 

I 2 i I 

(I I a) 

1 U ""' "'2 U ""' (S lz ) 2 • -r ""n - "" 
't I I I 

(lib) 

1 .... 2 1 ... 2 
U I n 1 - - U I (S 1 ) , 

4 i 3 i 
(II c) 

(I I d) 

... 
of the i-th atom, e 1 denotes an arbitrary unit vector and 
one can restore the rotational symmetry by averaging the par­
tition function over all directions of each el. 

If we could evaluate the functional integral exactly, then 
each expression of (II) would give the same result, because an 
exact evaluation is not possible, the results depend on the 
writing of interaction term. This is a fundamental ambiguity 
of the method. Following Moriya and Hasegawa (8) we use the 
expression (lid), which gives the correct Hartree-Fock equations 
for the problem at T = 0 according to our physical picture 
and thus admits to compare with the results of the section 2. 
We make use of the static approximation in which the time 
fluctuating part of the fields v A (r) is neglected and functio­
nal integral can be written as an ordinary integral. In the 
notation of Moriya and Hasegawa (MH) we obtain: 

with 

and 

spsupl-tHJ< 0 -"ml 

... 
e -{36.0 I ll ~ ... 

1 
d77 

1 
e -{3'1' [~. 171 

I 

(12) 

... ... ... 
whet:e the field ~ i = ~ ie 1 corresponds to S 1 and the field 77 1 
to Dt. 
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' 
~ 

... 
'1'[~,771 is the abreviation for 

... ... ... 
'1'[~, 771 = '1' 0 [~, 111 + '1' 1 [~, 771. 

where 

includes all terms which are related with the first term in 
eq. (10) and 

-f30o - ... ... - "' 11 e spexpi-{3(J< 0 -I'ti -I(2c 1 ~1 S 1 +c 2 11 1 n 1) 
i 

describes the motion of electrons in a stochastic potential 

and 

(13) 

(14) 

(IS) 

In a more formal way according to Evenson, Schrieffer and 
Wang /6/ one can write 

• where sp 

- .!.. splln[l - gVll , 
{3 

I and the matrices g and V are given by 
a, £, n 

1 
-N I 

~ 

... ... ... 
ik (R j- R 1> 

e 

(16) 

a a' 

wit: J:.~m (2n :::.0~-(
9

:::~eger) and V J -C, ( ~ [ ~jJ) + 0277 J' 

+ l[ y {3 ~j -~j 
Cj = ~ J ± i~ J • 

If '1'
1 
[~: 711 is known, the problem is solved, this means, the 

grand partition function Z is known and we can calculate the 
static zero-field susceptibility x(q) or the Neel temperature 

TN· 
The method of MH contains several important steps. Firstly, 

one introduces the Fourier transformed variables 

... 
~ ... 

q 

...... 
1 I tje iqRJ 

N J 
(17) 

ll 



The variable TJ q=O = TJo we can neglect since it is absorbed by 
the chemical potential p.. The quantity tq=o=to has a special 
meaning, it is the conjugate variable to the uniform magnetiza­
tion. Secondary, one defines new variables related with the 
average squared local amplitudes of spin and charge density 
fluctuations and their cross term 

= _1 I t:_. t: 

f3 ~qa ~---qa 
N q-+f- O,a 

-
1
- (..!. I ~ fa - (!= o, a ) • 

Nf3 N ja '~ 

(a = x, y, z) 
( 18) 

y and i 
Z=- I~ .,., 

Nf3 q Ia 0 qz -q-+· 

Thirdly, 
ansatz: 

one makes for the functional 'I' 1 [ t TJ] the following 

-+ 
'1'1[~,.,.,]=; l:l.ol~ x;~ejaCqa +2iZ-q~-qz .,.,_(j+Y-qTJ(jTf-({1~19) 

a 
L, X .. , 

.9 
.. c 

solve 
point 
using 
as 

.. 
+ 77N L [~ .. • X • y. z ]. 

q=O a .. 
Yq-+• and Zq are functions of g0 , xa• y, and z. 
cc~LL~cL uur~eives LO pm, rm and s1mple atm solutions and 
the integral over to (or { ... = Q) and X a, y, z in saddle 
approximation. The ansatz (~ 9) was justified by MH 181 

coherent potential approximation (CPA). '1' 1 is expanded 

'1'1='1'1( 1)+'1'12)+ ... , (20) 

where 'I' ln) includes all terms which are related with n sites 
of the lattice. One takes terms up to n = 2, only. The local 
t:,erm 'I' <f) corresponds to L)~~, Xa , y, z] and 'I'<[) gives the 
q-deJ>endent terms of '1' 1 [~,Tf], thus that the functions 
L, X-+, Y-+, and Z-+ are known. 

Weq areq interest'kd in the pm phase only. In the pm phase all 
components x a in ( 18) are equal to x and in ( 19) we can drop 
a and redefine X ... (The rotational symmetry of the problem is 
restored). The qua~tity z is a measure for the spin fluctua­
tions. In order to simplify the numerical calculations for the 
Neel temperature TN 
(a) charge fluctuations are neglected, this means, y = z = 0, 

Y-+ = z -+ = 0, and the static zero-field susceptibility 
xq(q) isq a function of Land X-+, where for the pair inte­

raction coefficient in the pm ~hase it is valid 

12 

X-+= I x0 . e 
q i I 

(21) 

(b) One restricts itself 1n (21) to the nearest neighbour over­
lap, too. It yields 

(-+ 

X q = x 00 + 2x 01 (cosqx a + cosqya + cosqza) = X 00 +12X01 .:w-. (22) 

(c) We use a semielliptical model density of states for the 
unperturbed band 

instead of ~he density of states for s.c.l. 
For q = Q = 77/a (I, I, I) we obtain from the instability of 

the pm susceptibility 

-+ 
X (Q) "' 

- -+ 
x(Q) _ .. 

1- 2Ux(Q) 

(23) 

(24) 

analogously to (7) a system of equations for the Neel tempera­
ture TN and chemical potential p., if the parameter n and 

U are fixed 
w 

1 = ~ (Q; T 
2U 

1 
n = - !. r dE f(E - p.) Im.F(E + iO) • 

1T -1 

-1 
where f(E) = [ exp{-E -I+ 1] 

ksTN 
Instead of (25a) one can write 

with 
1 

<A _.>-+ = f 3p 0 (3r ,.)A .. dr -+ , 
q q -1 'i q q 

where 

T-+= 
q 

(25a) 

(25b) 

(25c) 

13 



is a reduced dispersion relation of pair interaction. xc charac­
terizes the (critical) spin fluctuations at TN. 

oo 1 . H-F 2 
J df - f(f- ,.,.) Im I I 

...,., 2rr [ 1 + LF] 2 (26) 

and 

oo 1 F 1 
X-+= f dE- f(E-IJ.)lml[--- F2] · --=---

Q -oo 2rr z - I [ 1 + LF] 2 
(27) 

are obtained from CPA calculations (comp. (20)). F denotes the 
site-diagonal part of the Green function 

a e 
1 

which takes into account the random potential 

oF F 2 
H = - "' -..::---

ai 1 _...LF2 
4 

and I = z 1 1 ---- -F(z) 
F(z) 4 

For the numerical work 1101, firstly, one calculates F from 
the CPA equation 

..l...F 3 - .J. zF + (z 2 + .1. - b 2 )F - z = 0 
16 2 4 

(28) 

(29) 

(30) 

with F(z) < 0 in dependence on b 2 
= Urrx c, and secondly, one 

has to fulfill the equations (25b) and (25c) by an interaction 
procedure using (26), (27), and (29). 

We remark that for x = 0, i.e. without spin fluctuations 
and therefore at temperature T = 0, it follows I = 0, and from 
(25a) and (25b) one obtains the Hartree-Fock equation like we 
have expected. 

The results for the Neel temperature TN for different valu­
es of the mean occupation number of electrons n as a function 

u h . f. 7 191 of W are s own 1n 1g. . 

The broken lines represent the Neel temperature TN using HFA 
according to (7) for the semielliptical model density (23) 
and the solid lines show TN for the theory of Moriya and 
Hasegawa according to (25). One sees immediately that these 
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Fig. 7. Neel temperature TN (in units af kB/W ) versus 
the ratio of the correlation energy U to the band 
width W for different values of the mean occupation 
number n. (1) n= 1. (2) 1.1 and 0.9; (3) 1.2 and 0.8 
(solid lines- MH, broken lines- HFA). 

values of TN are decreased by nearly one order of magnitude 
compared with those calculated using HFA, as we have expected, 
and that for non-half-filled band (n ~I) double solutions 
of TN exist. For the intervall 6. in which double solutions 

appear it yilds: 6./(~) 0 ·5% (comp. fig.8). Moriya and Hasega­

wa (8) considered the case n = I only. 
Thus we have as answer to our question (ii) that the exis­

tence of double solution of the Neel temperature is not an 
effect of HFA , only. 

From the existence of double solutions of the Neel tempera­
ture we conclude that incommensurable magnetic phase have to 
be included in the magnetic phase diagram for the unified 
theory using functional integral method with HFA as zero-tempe­
rature limit, too. 

Till now incommensurable magnetic solutions were considered 
rather scarcely (by Penn 141 for HFA at T = 0 and by Kubo 
for the strong correlation limit). However, we believe that the 
consideration of incommensurable phases is of fundamental 
meaning independent of the approximation which is used to the 
investigation of the magnetic properties. 
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nHHAHBP Y., WyMaxep B • E17-83-425 
0 MarHHTHWX pa.eHHAX MQAenH Xa56aPAa 

noK838H0
1 
~TO H3 c~eCTBOBaHHA ABOHHOrO peweHHA AnA TeMnepaTypw 

HeenA a MQAenH Xa56aPAB AnA npocToA Ky6H4eCKOH peweTKH c aaaHMOAeHcTBHeM 
6nH•aAWHX COCeAeA B paMKBX npH6nH*eHHA XapTpH-$0K8 H 8 TBOPHH HopHA 
H Xaaeraaa Cn8AY8T H8o6XOAHMOCTb y4eTa COH3MepHMWX H H8COH3MepHMWX $a3 HB 
MBrHHTHOH .. 30BOH AHarpaMMe, MW orpaHH4H8aeMCA H3y4eHHeM TOnbKO MBrHHTHOrO 
AanbHero nOPAAKa, 

Pa6oTa awnonHeHa a na6opaTopHH TeopeTH4eCKOH $H3HKH O"RH. 

Lindner U., Schumacher W. E17-83-425 
To Magnetic Solutions of the Hubbard Hodel 

From the existence of double solutions of the Nee! temperature In the 
Hubbard model for nearest neighbour overlap and simple cubic lattice in the 
framework of Hartree-Fock approximation as well as within the unified 
theory of Horlya and Hasegawa It follows that It Is necessary to conclude 
further magnetic (commensurable and Incommensurable) phases In the magnetic 
phase diagram . We restrict ourself to Investigation of magnetic longrange 
order. 

The Investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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