


1. INTRODUCTION

Several years ago in 1977 we investigated magnetic solutions
of the Hubbard model using Hartree-Fock approximation/‘/.Among
others we found the surprizing result that for the antiferro-
magnetic case for nearest-neighbour overlap and simple cubic
lattice the so-called heat magnetization can occur. The Hubbard
model in Wannier representation is given by

H=Ho + Hy -uN )
= . + 1 s <
if}.a t‘jciacja +_§_U ;;nioni—a‘# ;—&nio ’
-+- .
Ko :ifj;”c’a o= * f‘k describes an s band

t 1f i and j are nearest neighbour lattice sites,
where t,. ={ .
ij 0 otherwise.

el;. = 2t(coskxa + coskya + coskza)

for s.c.l. (band width W=12 t).
H,-Llus
17 % 10“10“1—0

is the Coulomb or correlation term, where U represents the re-
pulsion energy between electrons with spin ¢ and -o at the
i-th lattice place. N= X n;, is the total number operator of

electrons and u denotes %%e chemical potential. If we want to
include an external magnetic fleld then instead of ty we
use tyj ~ 8, <7h(R )}, where h(R ) represents the z-component
of this fleﬁd (in energy ung;s) at lattice point { charac-
terized by position vector Rj.

The fact that this Hamiltonian (1) in Hartree-Fock approxi-
mation (HFA) for the antiferromagnetic case for certain para-
meter combinations admits heat magnetization is demonstated
by the following figures /1/ .Fig.1 shows the temperature depen-
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Fig.l!. Order parameter x of the afm phase versus tempe-
rature T (in units of kB/w ) in HFA for different values
of the ratio of correlation energy U to band width W

and of the mean occupation number n.(1) U/W = 0,3,
n=1; (2) 0.3, 0.9; (3) 0.28, 0.9; (4) 0.25, 0.9.

dence of the order parameter x. It is to see that for non-half-
filled band (n £ 1) and certain values of the ratio of cor-
relation energy U to band width W magnetic ordering (x £ 0)
can appear in a finite temperature region even if for the tem-—
perature T= 0 no magnetic order exists. This phenomenon is
known under the notation heat magnetization. The region where
this effect occurs is characterized by double solutions of
the Neel temperature Ty (comp. Fig.2). The temperature depen—
dence of the reciprocal static zero-field susceptibility

x—l (Qq = g/2) for the same parameter values like in fig.! is
plotted in fig.3. (np denotes the Bohr magneton and g is a
vector of the reciprocal lattice). In the region in which

x £ 0 it follows x (@ = &/2)<0,i.e., the paramagnetic (pm)

phase is unstable as against the antiferromagnetic (afm) phase.

(We remark that for this parameter range no ferromagnetic
phase exists). Figure 4 represents the difference of the
free energy per lattice point of pm and afm phases versus the
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Fig.2. Neel temperature Ty (in units of kg/W ) in HFA as
a function of U/W for different values of n. (1) n=1;
(2) 1.1 and 0.9; (3) 1.3 and 0.7; (4) 1.5) and 0.5; (5)

1.6 and 0.4; (6) 1.7 and 0.3; (7) 1.8 and 0.2; (8) 1.9
and 0.1.
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Fig.3. Zero-field susceptibility wyx ' |&/2]/W in HFA

as a function of

for the same parameters as in fig.l.
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of pm and afm phase in HFA versus temperature T (in
unit of kg/W) for the same parameters as in fig.l.

the temperature T for the same parameters as fig.1. One sees
that the free energy of the afm solution is always less than
that of the pm solution, i.e., the afm phase is stable, and
furthermore, that no first order phase transition exists.
The question which we want to answer here is the following:
Is it possible to observe this effect of afm heat magnetiza-
tion or

(i) is the heat magnetization destroyed by other exited
states with much lower energy or,

(ii) is the heat magnetization an effect of the used HFA?
In order to answer these questions we investigate in section 2
the possibility of the existence of further magnetic solutions
in the framework of HFA and in section 3, we consider another
approximation (the so—called unified theory) using the functio-
nal integral formalism to take into account spin functions.

2. HARTREE-FOCK APPROXIMATION

That which one does if one uses HFA is a linearization of
the interaction term

1 1
X, = U Zngn = UZ<n, >0, -5U0% SLIPEL IR A
io io io
€. n, ——}-U2<n. ><n., >
ig 10 i0 2 io io i~o

. 1 ; ' 1 i
with ‘ia=-2'U(ni_”mi)' this means exchange field —2—Umi is

postulated. n; =<njt+n4,> 1s the mean occupation number of
electrons at the lattice point 1 and m; =<n;s-n; > is pro-
portional to the z -component of the magnetization at i. If

we restrict ourselves to long range order, then in the so-called
itinerant picture we can put

-
iqi
n, =n and m, =me . (3a)

i i

Magnetic effects are introduced ad hog. For 6 =0, m#£0 we
obtain ferromagnetism; for ¢d= g2 = Q, m= x # O,antiferro-
magnetism; and for m = O, paramagnetism. From (3a) it is clear,
if we look for further magnetic solutions,we have to inves-
tigate m, for arbitrary ¢ (commensurable and incommensurable
modulated phases).

In the so-called localized picture one assumes (see,
e.g. /2/ y instead of (3a)

n, =n and m1=tm. (3b)

Then ¢€;, is considered as random variable and the lattice is

divided in A and B sites with (?A = -%(n— m) =¢B, and
+

€? =-é— Un+m) = cf.lf one uses for the probability P that an

A-site has a B-site as nearest neighbour P = 0, then it
yields for m # O ferromagnetism, for P =1 and m#0 antifer-
romagnetism, and for m = O paramagnetism. For describing the
modulated phases the localized picture is not favourable but
it is possible to describe with this picture the magnetic
short range order. We restrict ourselves to long range order.
Summarizing one can give the following interpretation (3)

for the HFA: It is postulated the existence of an exchange
field which leads to different band structures for the up
and down spin electrons and which is itself generated by the
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Fig.5. Exchange field configurations for the fm case
in (a) simple model, e.g., HFA and (b) unified model.

resulting differences in up and down spin electron occupation
numbers. In the fm case, e.g., (comp. fig.5a) the field is the
same at all atoms. It has the maximal amount for T = 0, decrea-
ses for increasing temperatures, and becomes zero at the cri-
tical temperature T, and above T..The exchange field corres-
ponds to the spin ordering, i.e., to the order parameter. Becau-
se of (2) one believes that HFA is reasonable, if at all, for
lg << 1, only. Charge and spin fluctuations are not included
"
because of assumption (3a).

In the case of arbitrary q we calculate the isothermal static
zero—field susceptibility

~ IM
x@ = -—r-@—l , (4)
dh h=0
where
A 1 2 iap—:l 1 +
M(®=~&-%M(Rl)e =-N—- _.20<C'l:+'&,00'k'a>, (5)
ko
and

N - iqR
i = (0,0, h(R})) o

-
With h(Rl ) =
denotes the external field in the pm phas_eﬁ (The exchange
field has the same structure; m, -.M(R e 1Ry ). We obtain

2x o (@

@ = —x0
T T o0k @

and
2 1 1
) == — ¥ — 2 __ _if S, T) -f(E,,T 0, (6)
XO(Q.) 2N l: (6_’ _’—c_’){ (Ef+q ) ( £ >
k+q k

where f(E,T) = [expi-l-(—E—:Tr-l +1]  is the Fermi function and
B
E -a - = -2_ _[.Jn i +e 2 i.
I x@) <0, the pm phase is unstable and goes over to
a phase modulated by ¢ ( q phase). For given parameter n, -U-,
and q the transition temperature T, and the chemical potential

g follow from (6) and (3):

1
U - Xo (q,T ),
(7N

n =2 s tE,,T).
N » kK °©

At T=0, i.e., in the ground state, from (7) one gets the re-
sults of Penn (4) For fixed values of n and U/W it yields
the crltlcal q vector and if n and q are fixed, then (7) gi-
veo Lll!: LL.LL.LK,OJ. Ldl-.l.\.l U/" dUUVC UL Wlll.k,ll LIIC Plll PllODC \-I\JCD

not exist. For a half-filled band (n =1) one obtains antifer-
romagnetism for each ratio U/W. For non-half-filled bands

(n #1) the pm phase goes over to a modulated phase which with
increasing n(n <1) or increasing U/W goes over to afm of fm
phase, Figure 6 shows these results. The model (1) possesses
electron-hole symmetry therefore the picture is symmetrical re-
lative to n = 1. The upper part of the picture represents the
critical values U/W, at which the pm phase goes over to the
modu}.ated phase, as function of n and the lower part represents
the q vector which belongs to that modulated phase. For

0.42< n< 1 the q vector is of the type g = %(1,1.5); for
0,14<n<0,42, of the type E=-';-(1. £,0) and for O0gn <O0.14
we have _(i=-%(¢f, 0,0) with 0<€é<1.

In the range in which we found double solutions for Ty the
transition does not occur from pm to afm phase with Q = -g- (1,

immediately but at first to modulated phases with E = -'5—
, £) or @ =%-(l, 7, 0) where 0 <¢, 5 <1 (incommensurable

phases mostly) such that the existence of double solutions of
TN is related with the existence of incommensurable phases.

1,1)



Fig.6. Phase diagram
for the pm, fm, and afm
phase in HFA at T=0.
At the boundary to the
with m denoted region
the pm phase (for cer-

tain and n) is

=la

unstable and goes over
to a q phase. The lower
part of fig.6 represents
the critical q vector
as function of n. Solid
lines indicate second- .
order phase transitions,
dashed lines indicate
first-order phase
transitions.
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Thus, we have found
the answer to our ques-—
tion (i): It is neces-—
sary to consider mo-
dulated nhases and to
discuss the temperature
dependence of every
M@ M@ = x). Un-
fortunately the free
energy F in HFA can be
calculated without
further approximaQ}on

-+ for the fm case (q = 0)
and the afm case (J::ﬁ = J%) only thus that the temperature

of |

oM |

behaviour and the region of stability (phase diagram) of modu-
lated phases is an open problem yet.

Since, on the other, hand, it is known that the values for
the transition temperatures calculated in the framework of
itinerant electron theory,e.g., HFA (without modulated phases),
are too large compared with the observed Curie temperature T,
for iron or the Neel temperature Ty for nickel , one must
conclude from this fact, too, that it is necessary to regard
other excited states which are capable of reducing the magne-
tic order. These excited states might be, beside the spinwave-
like collective modes (q phases) which we have considered
till now, states in which the atomic moments are no longer
oriented parallel to each other. In order to take into consi-

deration such states we have to extent the approximation. We use
the so-called unified theory and we have now to answer our
question (ii).

3. UNIFIED THEORY

The extension of our physical picture is represented for the
ferromagnetic case in fig.5b. In the ground state, at T =0 we
have the same situation like before (comp. fig.5a), in the
language of the itinerant picture - the exchange field is the
same at all atoms or in the language of localized picture -
all spins are parallel directed. Because the exchange field at
an atom depends on the spin of this atom, the exchange field
is a vector quantity (in spin space) and it must not be parallel
at all lattice points but it can vary in direction and strength
from atom to atom if the temperature T increases. Then above
T, the exchange field may not vanish, but it has to be merely
randomized in direction and strength producing a total zero
magnetization, this means in the language of localized picture,
we admit localized moments above T,.

This unified model contains the simple model which we have
considered before (comp. fig.5a) as a special case. In the
language of itinerant picture now we can say, we have to in-
vestigate electrons which move from atom to atom under inflnan-
ce of different exchange fields or under influence of a stochas-
tic potential, and in the language of localized model, we have
to regard different exchange field configurations which cor-
respond to spin configurations, e.g., like in Heisenberg model,
but more general because they can vary in direction and magni-
tude. To describe such a physical picture one can use the func-
tional integral formalism. The basic mathematical formulation
was provided by Schrieffer et al.’8/ and Cyrot/7/.0ne writes
the grand partition function

Z = sp ¥e'B}( | = o~PY (8)

in a functional integral over classical fields using time order
in 7 on (0, B),

B
expi-B(A+B) | = expr{- [ dr (A(r) + B¢ (9)
0
for [A,B] # 0 and the Hubbard-Stratonovitch transformation
-y 2 ry
eAz ="—1:—-—fe vA/2+\/2AvAdvA’ (10)

where A is any bounded operator and v, a classical field, to
transform the two body interaction term ](1 = ér[JE Nl o
io

9




in favour of single-particle couplings with classical fields.
There are several possibilities to write the interaction term
in a quadratic form

1 ~ z.2

}(1=U%“nnu=7u};~“1-2U§(Si) , (112)
=.i.u>“;£f-u>1:(sf)2. (11b)
=.}U§Ef-%-uzi(§i)2. (11c)
=_1 Ufaf-uyé’ﬁi)z (11d)

. -~ nd . .
with Dy =n;,+ 0t and Szi=—1§-(ni, -n“). S; is the total spin

of the 1{-th atom, 31 denotes an arbitrary unit vector and
one can restore the rotational symmetry by averaging the par-
tition function over all directions of each €.

If we could evaluate the functional integral exactly, then
each expression of (1!) would give the same result, because an
exact evaluation is not possible, the results depend on the
writing of interaction term. This is a fundamental ambiguity
of the method. Following Moriya and Hasegawa (8) we use the
expression (11d), which gives the correct Hartree-Fock equations
for the problem at T= 0 according to our physical picture
and thus admits to compare with the results of the section 2.
We make use of the static approximation in which the time
fluctuating part of the fields v ,(r) is neglected and functio-
nal integral can be written as an ordinary integral. In the
notation of Moriya and Hasegawa (MH) we obtain:

Q =0, + A0 (12)
with
-BQ
e Allo = spsup {-B(H, -uJUI
and
e-BAQ

= f H f"i d’71 e‘BW[&ﬂ]
i

- -+
where the field £,=¢ e
to nj.

10

corresponds to §1 and the field 4

N

o e

w[é’, 7] is the abreviation for

WIE nl =¥ (€, 0] + ¥, [€ 0, (13)
where

W IE n = L SHE - 0)F el (14)

0 f n ﬁ | 'fj ) j

includes all terms which are related with the first term in
eq. (10) and

- 2 -8Q - > - -~
cFHlEm oy exp Bl Ho=wl -2 @ey £y Sy +cpmy 0l (15)

describes the motion of electrons in a stochastic potential

with c.-1 ___(_%J_)% and 52 =(—£g—)% .

In a more formal way according to Evenson, Schrieffer and
Wang 78/ one can write

\Pl [fv 77] = - %Spllﬂ[l— gV]i y (]6)
‘where sp z p) and the matrices gand V are given by
a, £, n
ik(ﬁj—Ri)
o 9, _¢g ,9 , L3z 2 ,
Sjn,ﬂn oo’ ¥ oo N 2 lwn+u—(;
o o
vjn. lr-m omo oao' ojl vj
£ &
. - j ~
with mn-_-._(_z_'_l_i’...ll’.’... (n integer) and Vj =Gy §+ ;z + Cony sy
i 7S

+
£ =Eytigy.
If ¥,[& 7] is known, the problem is solved, this means, the
grand partition function Z is known and we can calculate the
static zero-field susceptibility x () or the Neel temperature
TN&he method of MH contains several important steps. Firstly,
one introduces the Fourier transformed variables

iqR
=.§ ? qje i . an

11

1 > {4R) .
"N'?fje ’ ﬂq

-
> =
q



The variable 1 g=0 =7To We can neglect since if is absorbed by
the chemical potential u. The quantity & __,= fo has a special
meaning, it is the conjugate variable to the uniform magnetiza-
tion. Secondary, one defines new variables related with the
average squared local amplitudes of spin and charge density
fluctuations and their cross term

1 1,1 ¢2 2
x =1 3 ¢ e, - L(1ls -
¢ NB ¥ o.afqa £ Ga NB N ja ‘la £€f=°-a s
(a = XY Z) (]8)
Y=—L27777-> and z=-—l—Ef..17 4.
NB 340 d'-d NB Gdo  dz'-d

Thirdly, one makes for the functional \Pl[f_: n] the following
ansatz:

Foal = L a - 19)
Vil £ X IR Rabp by ¢ gLy, 1 gt Yy ngn g ¢

+rrNI_.[_L , X Ly, 2],
£q=0 ar ¥ 2]

-
L,Xg», Yq-., and Z »are functions of 50, X4 ¥eand z.

We LesiLlici ovurselves fo pm, Im and simple atm solutions and
solve the integral over {, (or ¢ ":d’) and x4,y, 2 in saddle
point approximation. The ansatz (19) was justified by MH 8/
using coherent potential approximation (CPA). ¥, 1is expanded
as

v, =M e® o (20)

where \y(lﬂ) includes all terms which are related with n sites
of the lattice. One takes terms up to n = 2, only. The local
term ‘l’(ll) corresponds to L[&p,xq.Y, 2] and \P(lz) gives the
q -dependent terms of ¥;[£,7], thus that the functions

L, X5, Ys, and Z5 are known.

We are interested in the pm phase only. In the pm phase all
components %, in (18) are equal to x and in (19) we can drop
a and redefine X ».(The rotational symmetry of the problem is
restored). The qudhtity z is a measure for the spin fluctua-
tions. In order to simplify the numerical calculations for the
Neel temperature Ty
(a) charge fluctuations are neglected, this means, y= 2= 0,

Yi»_;_. Z » =0, and the static zero-field susceptibility
x (@) is a function of L and X 3,where for the pair inte-
raction coefficient in the pm phase it is valid

12

igRj

X = % Xo; © . (21)

-
q
(b) One restricts itself in (21) to the nearest neighbour over-
lap, too. It yields

€

= = -9
X(.l. X00 + 2X01 (cosqxa + cosqya + cosqza) x00+12X01 W (22)

(c) We use a semielliptical model density of states for the
unperturbed band

p°0) =2 y1 -2 ®(el - 1) (23)

instead of the density of states for s.c.l.
For 4§ =Q = n/a (1,1,1) we obtain from the instability of

the pm susceptibility
-
x @)

X @ « -
1- 2Ux Q)

(24)

analogously to (7) a system of equations for the Neel tempera-
ture Ty and chemical potential g, if the parameter n and

-9- are fixed
W

Looy@:T) (25a)
2U
o 1
no=-— [ def(e ~ pu) ImF( +i0) , (25b)
-1

-1
where f(¢) = [exp{—5—1} +11]
kTN
Instead of (25a) one can write

U(Xg-X2-0)

T, = =% (25¢)
N
3 c<(1-—1’-»)_1>-»
q q
with )
<A > = 3p°3r J)A Ldr 5,
P ‘i’ ~f p °( (_l,) a» (—1»
where

c.. XA ®gom2g)
a ~X o
$(K o (=X 3)

13




is a reduced dispersion relation of pair interaction. X  charac-
terizes the (critical) spin fluctuations at TN'

SO . H-F?
X4 = [ de == f{e~ p) Tm { e} 26
=0  __ 2or [1 +2F]2 (26)
and
o 1 F 2 1
X 4= de =~ fe-pu)l -F¢] —
g _L ‘217 (e=p) mi[z__2 ] TETSE Q27

are obtained from CPA calculations (comp. (20)). F denotes the
site-diagonal part of the Green function

G = S (28)

which takes into account the random potential

£
H = oF __F° and X =12 - 1. }-FTZ)- (29)
= y_lpe Fzy 4
4
For the numerical work/loc firstly, one calculates F from

the CPA equation

1l -3 1 2 1 2
2 Y e 22 A -b*)F ~2z2 =0
T > 2F + (2% + 1 ) (30)

with F(z) < 0 in dependence on b® =UnrXx ., and secondly, one
has to fulfill the equations (25b) and (25c) by an interaction
procedure using (26), (27), and (29).

We remark that for X =0, i.e. without spin fluctuations
and therefore at temperature T= 0, it follows X = 0, and from
(25a) and (25b) one obtains the Hartree-Fock equation like we
have expected.

The results for the Neel temperature Ty for different valu-
es of the mean occupation number of electrons N as a function
of %% are shown in fig. 779,

The broken lines represent the Neel temperature Ty using HFA
according to (7) for the semielliptical model density (23)
and the solid lines show T, for the theory of Moriya and
Hasegawa according to (25). One sees immediately that these
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Fig.7. Neel temperature Ty (in units af kg/W ) versus
the ratio of the correlation energy U to the band
width W for different values of the mean occupation
number n. 1) n=1, (2) 1.1 and 0.9; (3) 1.2 and 0.8
(solid lines — MH, broken lines — HFA).

values of Ty are decreased by nearly one order of magnitude
compared with those calculated using HFA, as we have expected,
and that for non-half-filled band (n # 1) double solutions

of Ty exist. For the intervall A in which double solutions

appear it yilds: A/(%%)O =57 (comp. fig.8). Moriya and Hasega-

wa (8) considered the case n=1 only.

Thus we have as answer to our question (ii) that the exis-
tence of double solution of the Neel temperature is not an
effect of HFA , only.

From the existence of double solutions of the Neel tempera-~
ture we conclude that incommensurable magnetic phase have to
be included in the magnetic phase diagram for the unified
theory using functional integral method with HFA as zero-tempe-
rature limit, too. .

Till now incommensurable magnetic solutions were considered
rather scarcely (by Penn ’4/ for HFA at T =0 and by Kubo
for the strong correlation limit). However, we believe that the
consideration of incommensurable phases is of fundamental
meaning independent of the approximation which is used to the
investigation of the magnetic properties.
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