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I . Due to the recent success of the "soliton science", there 
appear s a possibility of studying wi t h a good degree of rigour 
certain nonlinear effects in the condense matter physics and 
exp l ain some experimental puzzles. In particular , problems of 
CP and of satellites in DSF of ferromagnetics at l ow tempera 
ture as well as of the systems undergoing structural phase tran
sit i on are among them. 

In what follows we consider a class of models descr ibed by 
the Klein-Gordon equation (KGE ) in (J. 1) space-t ime on the ba
sis of the phenomeno l ogical approach, given apparently first 
in ref J 1/ , calculate "longi tudinal " and " transversal" DSF for 
these models defined by so l iton and bion (breather) type exci
tations, and discuss possible generalizations. 

To proceed further note that in the transfer-matrix approach 
usually employed / 1-:11, the field variables ;p and rp and continual 
integral are used to calculate the par t i tion function. The Gauss 
int egral ove r ~ is fi rst calculated, and t hen the comp l i cated 
integr al ove r rP is reduced to the solution of the "Schr odinger
t ype " differen t ial equat i on/2l wit h "mass" being constructed 
with the Hamilton ian (I ) pa.rame t e rs and tempera ture : ( m* 
= (A "'p c 01'1)2 1, 

ThlS procedure probably being natural when appl ied t o non in 
tegrab l e s ys tems seems to be awkwa rd for complete integrabl e 
ones, fo r t here is a transformation to new canonical var iabl es 
in the lat t er case. In these var iables the Hamil t onian of a sys
tem i s "factorized", i.e., spli ts i nto the s um of cont r ibutions . 
For t he sine-Gordon (SG) equation there are three types of exci
tations : phonon excitation continuous in the c l assica l l imit and 
discrete- bion and-kink ones. I t means that in the KG-type mo 
dels, excitations may be cons i dered (in these var iab l es) as 
a mixtur e of three noninterac t ing gases of phonon (magnon), bion 
and kink types. It is also clear that upon integrating over ¢, 
we get the Hamiltonian which cannot be factorized, then phonon 
and kink exci t ations (b ions disappeared !) are coupled strongly. 

Thus, the language of angle-action variables a ppearing in the 
auxiliary linear problem is a natural one for complete integ
rable systems. Here again appears a difficulty related t o the 
Jacobian of transformation from continuous field variabl es to 
spectral ones, part of which being continuous and another part 
discrete. This difficu l ty may be overcome by a t echnique analo
gous to that f or quantizing i ntegr able systems (i. e ., proceedi ng 
into a l attice) . 
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Nevertheless, embo l dened by t he confidence in that the "gas H 
appr oach mentioned is adequate t o t he d iscussed prob l em, we use 
it to ca l culate phenomenologically t he dynamical structure fac 
t ors and i l l ustrate it s action with the systems governed by the 
Hamil t onian 

2 
1 • 2 Co 2 2

H ; AaO:E [ "2.p · + - .pj) + Wo V(.pj )] 	 (I)
j J 2~ (.pj+1 

(see, e.g. , /3/) here ¢j (t) is t he one- component real d imension
less field which takes its value at the site j and momen t t ; 
the firs t term is the kinetic energy , the second one describes 
"gradient inter ac t i on", and the last term stands for t he local 
po t ential. We shal l d iscuss the potential s 

a) V (SG ) ; l - cos.pj, 

4 1 2 2
b ) 	 V(.pj); ""8"(1 - .pj ) 

although another choice is possible. In eq. (J) '1.1 a nd Wo are 
the characteristic parameters of velocity and f r ccJucncy dimen 
sion, respect i vely , and defined by the physical foaLures of the 
system studied ; A is the constant of dimens ion (energy) x 
x ( length)~l x ( time)2 , giving t he energetic Bcn le . The charac
teristic parame t er in (I) is d :::: calwo. so if d ...... UO then we have 
a small variation of ¢j (t) as j alters and ono moy proceed to 
the cont i nual limi t for H. that leads immcd intc l y LO the di ffe
rent ial e quation for .p (x, t ) 

, 2 d V 
1> ( x, t) - co.p" (x, t) - - Wo d.p 	 ( 2 ) 

In what fo l lows our concern will be with SOluL i.ons of kink- and 
bion-types. In particular, kink solution for VCSG) 

2 _I~ 


cos.p; 1 _ 2seCh2 (x-vt+Xo) 
 y = (I--::r) 	 (3)dy·! ' Co 

is localized in the r egion dy~ 1 and decreases with growing velo
city. The solution (3) depends only on s := X - vt I xo' The energy 
and momentum of kink are given by the "relativis tic" formulae 

o 0 2 2 ~ 
E, (v); y E, = [E k + p Co] p = Mkvy, 

(4) 
o 2 A/2.p2 ~ A.J'l ~ 

E, 	= M,c o ' M, = d f I V I d.p= - d- f V(.p)dx . 
.p 1 .~ 

2 

The quantltles Elc
o and Mk are naturally thought of as the energy 

and rest mass of kink, ~1 and ~2 are the values of solutions 
at the minima of the l ocal potential . Solutions (2) may be spe

cified as kinks (d.p )o > 0 and antikinks (d.p )o < 0 and the topol o 
d s d s 

gica l charge N _ N+ - N_is introduced. Here regarding solutions 
(2) as particles of the mass and energy (4), we suppose N+ = N_. 
that is not necessary but gives rise to a simpler variant of 
thermodynamics and statis tical mechanics of the one-dimensio
nal 	lattice gas. 

The bion-type sol utions are gi ven in the SG-model by the 
formula (co ; 1): 

cosO 	 )¢b 	:= 4arctg(a --), K_ aQy(x-vt+x o ' 
COSK 

(5 ) 
-:--:::-:! ---;::, 


8 = yn(vx-t)+00 ' E b = 16 mJ 1 - n , u ; J 1 - n 


In the framework of the ¢ 4 theory such solutions may be found 
but approximate ly in the s~al1 amplitude region (see,e.g . , ' 41 
and the references cited). 

X:=-l+\l lt u sinO _ 2(l2{ l +~)ch~2 K +ola2) . 

3 chK. .l 


(6 ) 

- ? 1/

n ; 	J2 (-.m::....)'
21 + a 

(these so lutions a r e constructed over vacuum ¢ \' "" - I ). 

2 . Following/~1 and using as an example k inks we g i ve a simple 
version of the statist i cal mechanics of such a system that is ba
sed on the introduction of a certain effective Hamiltonian . Gi
ven known liberty , one may consider even the interaction between 
kinks (and antikinks). 

The system is as usually described in the phase s pace of mo
menta and coordinates W,q) under t he assumption that the volume 
in t his space corresponding t o a single Quantum state of the 
system of N identical particles i s NlhN ,N:= Nk + Ny,The integ
ration regions over q and p are respec t ive ly 0 -:. L and (~ oo . +00 ) . 
We consider below the equations 

o.p . sin</> 

and 

3
oX 	; -X+ X . 
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Divide the one-dimensional "volume" into the elementary cells 
(fl E~ )~;~ Noao or in t he /lE~»llimit we have q ~ (2rrM,0) (1 + + ... ) . of size A(v), assuming the number of cells to be N : L / i\ 2A 

with 	No being the amount of sites of the i n itial sys t em. 
Let us suppose fur ther that every cell is either occupied 

with the particle of mass m and velocity v or empty. Then we 
may descr i be the situation with the help of the operators hav
ing eigenval ues 1 and O. 

If t he number of "particles" really existing in the system 
(denote it N ) is less than the cell number N, we come to the 
one-component ideal l attice gas / 6/ . It should be stressed that 
the quantity of kinks and an tikinks occurring in the system is 
in fact defined by external excitation conditions and tempera
ture but when the ratio between the fixed number N in a cano
nical ensembl e and the average one f:J i n the grand canonical 
ensembl e is definite, one may use either of two. Note, that the 
effective Hamiltonian implies this naturally. 

Let us discuss possibilities of constructing effective Hamil
t onians, that allow us to ca l culate in a s imple way equi l ibrium 
characterist i cs of the soliton gas . 

In the genera l case, when the particle energy is governed 
by (4), the effective Hamiltonian is given by a simple formula 
(summing i s over a ll cells ) 

1 	 bql!.Ho :	 ,,1: nr ,,: - oen(-h-) +V ~ - "o ' V. 
r 

o 0 - -2 	 (7) 
E fH: , ( I - J I+y )o 	 ,

V : E, - (7·0 -0 /n(/l hwol. q : -Je d y . 
Co 

The operato r N = rn f ' n f "" 0.1 "numbers " the total number of soli 

t ons 	in the sys t em. 
Expression (7) naturally f ormalizes the i dea of the one - dimen

sional soliton gas (of kinks and antikinks). In getting (7) we 
have used the r esults for the free energy ob tai ned via the trans
fer-matrix technique, and V describes that part of the energy 
which does not depend on momen t um, and the augend stands for the 
"kinetic" energy . Since, according to / 3/ the Goldstone mode and 
bound modes of frequencies ~b determine kink motion and osci l 
lations of its form, we have (-(7·0-0ln(flhw))and in (7)" is multi 
plied by the operator :!: n r ' 

r 
The integral over y in (7) can be expressed through t he McDo

nal d function, so we ge t 
E~ /lEe 0 

q:2c; e KI (/lE,). 	 (8) 

4 

Facto r b : 2 for the SG and b : 1 fo r the ¢' model is r e lated 
to t he fact that in the second case there i s the ordered se
quence of kinks and antikinks (or vice versa), in t he fi rst one 

, 	 it is not essential due to infinite-fold degeneracy of the 
ground state. NoW' if we i gnore soliton-phonon interaction we 
arrive at 

o - .Jl 	 bI!. ~ HQ : - "0 N + "'~, ~ n r. "0: 0 P n [ - (2" M. 0) 1. 	 (7 ' ) 
r h' 

i.e., only the rest energy of soliton contributes to its l attice 
term. So we have for the soliton partition func t ion 

o 	 ,0 
-(3 110 /lYoN - /lf., N 


Z:SP(Oe e [1 + e 1 


Then 	 t he free energy is 

- - /l EO -
Fo :-O·fnZcO.N - ONf n [l + e 'l =- ON. 

where we use the fact that 

, 0 
Sp (:!:nfexp (-/lH o)) _ 0 

r :N: N exp(- /lE,). 	 (9)
Z 

The free energy density is 

Pi m (~) - ONf s 
L -+oo L - - L 

as follows: 


-(3 EO


e' -	 (10)0-- - On. 
i\ 

The rest obtained coincides naturally with that of Krumhansl 
and Schrieffer / 1/ . I t should be underlined that i n the case of 

_ exp( -/lEo)
ki nks we have "pure Boltzmanns" express i on n "" Ie • For 

A 

both models zero approximation of the transfer -matrix method 
(see ref / 3/ ) gives just the same i n t he framework of the model. 
There is however a correc t temperatur e renormalization of n 
(see (11) ) for the complete integrable SG model which is just 
improved by the numerical factor (=1/ 8)in a further approximation. 
As it seems to us th i s shows once more that the zero approxima
tion of the transfer matrix method for the 5G~odel a lready con 
tains a par t of kink - bion interaction. The~efore, in the orthodox 
formu l ation of the ideal l attice gas mode l 6 we have 
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_ Z\ (0) Z J (0) 2MCO 0 MOo 0 
n = - (9 ' ) 

-~- -h- K\(tlE. b .li K ( tl E . ) ~(l +Z\( O)) 

In a general case one has f or t he free energy density of soli 
ton s 

< ~nr > 
[ beG __ (tl EO ~ - tl EO

f s""' - Oo. (I I ) n = ~N'-.-'~'- j2; d k) e k 

- ft hat IS t he same a s - re. /3/In . 
- 4

Upon taking b =2.G=ln 2 f o r SG and b = 1.G = Pn(2J3) fo r ¢ 
model (se e re f /3/ ), we get t he expression for ns in wh ich so 
l iton-phonon inter ac t ion i s a l lowed for. 

The above ITK> del of the idea l l attice gas with effective Ha
miltonian s (7 ) , (9 ) leads not only to simpler calculations but 
also admi t s, f r om ou r poin t of view, interesting generalizations . 

Thus , i n our case there is a mixture of t hree components: 
Nk _kinks, Nr antikinks_and ~l "empty places", then N = Nk+ 
+ NpN\ _The fact that Nk • Nk may simply be included by intro 
ducing the chem~cal 'potentials ""k ' Ilk and using equ ilibrium 
cond i tions. I f N k = t hen IJ. I.: '" Iik . Taking into ac count tha tNr 
kink-k ink and antikink-antikink i nteractions a r e r epu l sive whe 
r eas , kin_k-an t iki~k ~ne ~s att r ac tive ( I.:r< 0 , ~I.:I.: '" crr > 0 
anc! fo r N «N I (N = N I.: + NI)one can, using for Ho formu la of 
type (7) , wr i t e t he effective Hamiltonian fo r suc h a t hree-com
ponent system. Terms , with 11k ,11 k renormal ize v so that a cer 
tai n number enters t he effective Hamiltonian. Such a procedure 
may be done appr oximately by using the resu l ts of impurity prob 

h - d - ,1em ~n - t e I s l.ng model'17 8/ , f or a t wo-lmpur l t y generallze ~n 

ref. /9 / , This yi e ld s a version of the latt i ce ga s model wi t h t he 
neares t-neighbour in t eractions (c kk ). (Ct t" ) .( c r) wh i ch van i sh 
rapidly wi t h d istance / I O~ Parameters o"r the \-Iamil t onian are given 
by combinations o f 11 k ' I1I ' c . • i, j = k , k . 

Now one can f ormulate the ~implest generalization of the ide 
a l lat t ice gas model . 

It i s mor e probabl e t o meet kink-antikink pai r s due t o repul 
s i ve forces ac t i ng between iden t ical partic l es (so l i t ons ) , in 
all o t her respec ts we have a gas of particles " i dent ica l" with 
r e s pec t to t he ir macroscopic proper t ies. In the a pproximation 

' - d - /10 1 

set 'kk = '1 1= 8ni [E(m)+ m K (m) ] , K(m) and E(m) being t he 
o f t h e nearest n~~ ghb our ~~leract ~on - one can accor lng t o re f . 

2 

complete ellip t ical i n t egrals of the first and second type, 
m=4y2( b2 + 4y2 )-J , b =¢ ~ (O) so that 

( k"f" = = 32 exp ( - r ) at h ~c kk -c kk 

6 

~ 

and 

2 rr2 
at r ... 0,ck k (I k = r 

For t he case (kk) at r :: /). there is a 
of t he kink r est mass (see in r ef/10/ 
generalized as fol l ows : 

EO 

H o E ' v ~ nl __k ~ nln •
o I 2 (f. g) g 

potent i a l well of depth 
) therefore, (7 ) may be 

(12 ) 

here summing is over neares t cells. The one-d i mensional system 
with Hami l tonian ( 12) is exact l y so l uabl e, and a l ong with Z al l 
corr e la tion functions <nr > , <n, n > . ... < nf ~J IIi > c an be calcula 

g 

t ed. In particular, since ou r system i s t hat with the a t tractive 
i n t eraction (E~ > OJ.the correlation f unctions descri bi ng pro
babilities of c l uster formation of m k i nks and mantikinks are 
espec ially of interest : 

_ < n1 n2" > 
m 

W(m.m) == <nln~ .. . n 2 m _ l n2~? ._ 1 ( I ) ) 

<nr > 

nj me ans t hat t here is a ki nk in t he i - th cell ~ ana logous l y 

n j means fo r ant i kink . Upon usinS exact expres sions f or <o r > 

< n fn~> / 7 f .we get at rn:Ok »1 


a {l r O 
W(m.iii) " ii. ii = be ({l E~)';e- 'k (14 ) 

J 32. d 
Formulae ( I I ) and ( 14 ) may he ut i lized in ana l ys i ng the expe 
r i mental data on neutron scatte r i ng by qua s i-one-dimensiona l sys
tems whose dynamical properties can be at low temper a t ur es simu 
lated in the framework of the SG and ¢ 4 mode ls, 

3 . Some fine features of dynamical properties of the models 
considered (e.g. , a central peak , peculiarities of transport 
processes and so on) wil l be defined just by soliton and bion 
response to an external action. This wil l manifest in t he quasi 
e l astic scattering of neutrons (light) . When energy transfer 
t o the system is significant, excited soliton states can arise. 
All these questions may be analysed via s tudying the double dif 
f e ren t i al scattering cross-section ug(q,w ) and the dynamical 
structure factor S(q.w) (DSF) . We need then a procedure f or 
their calculations. It is just the point of this section ~ For 
this purpose we shall make use of the Kawfi~,k i idea / l l ~For the 
first time it was ut i lized by Hikeska in I to investigate neut
ron sca t te r ing~ and then by one of the authors in / 13 ZHere we 

I' 
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develop it in a somewhat different way which allows us to get here 
a gener al and simple fo r mula (see (25» for Seq, w) a nd to avoid iAp w 

f (A ) = f<l> (p) e d p , v 0 = II ' ( 18' )complicated intermediate calculations. 
The scattering cross-section o!\ (q, w) is expressed in the ga

and for the so l i t on gasseous approximation through S(q.w) as fol lows: 

S(q,w) = NS I(q, w). ( 19) 
o.<q, w ) = til ~'S(q,w) ~ b 2 ~'NSI(q,w) , q= k ' - k, w= E'- E , (15) ~ 

where the dynamical scattering formfactor of a separate scat 
terer SJ(q, w ) is the Fourier transform of 8 1(x, t) and b is the 
scattering length. According to / 11 / 8 1 (x,t) is cons tructed of so
li ton characteristics <I>(x,t /xo' p,Oo)' <1>(O,O / xo'p, eo) (see 
be l ow) aver aged over al l its possible posi t ions Xo <;; (-L. L),momen
ta p and i ni t ial phases 0o .The phase averaging essential fo r 
bions gives rise to remarkable features that will be dis cus sed 
in detail l ater . 

For S I (x, t) we have 

L -fll: (p) 

( t)=-1 f d x fdp<1> (x, t/xo ' p)<I>(O,O / xo' p )e
SI x, Zlh o- L () 6) 

Zl = ~ fL 
dx ofdP .-llECp) - 2L f -/lE(p)

h _L - 11 · dp_ 

The part1t10n function of the separate scatterer Z I is calcu
lated in the framework of either model by making use of t he cor 
responding Hami ltonian and so l iton-like solutions (see below), 
so that 

SI( q,w ) = _I- ffdxdt S (x t) ;(qx-wtl 

(2.)2 I ' • 


1 L 
= hz fd<ofdp:£(q, wlxo, p).-/lE(p) (17) 

I -L 

:!:(q, w / Xo ' p) = _I_ ffd x d t e i( qx -wI) <I> (x,l/x ' p)<I> (O,O/ x ' p),o o 
(2. )2 

I t is however convenient to obtain first the one-soliton func
tion I(q, w / xo ' p ) and then to average over Xo and p. Performing 

The physical quant ity of the total system corre l a tion function 
(in particular , a sp in component ) i s as a r u l e given by 

<I> (x, t )= <1>0 - <I> (x, tlxo' p,e )' <1>0 = const. (20)o 

so tha t for the overall f ormf actor ( 19) we have 

S(q,w)=[<1>~ - 2n6·<I> i5(q)5(w) + NSI(q,w ) . (21 ) o 

Thus , t he sca t ter ing by so l itons gives r ise to a redistr i 
bution of Bragg peak intensity into the quasi-e l astic component 
given by formu l ae (25) , (27 ) _ 

Notice here, that both equi l ibr ium and dynamical properties 
of soliton gas have been descr ibed as in / 3

/ in t he momentum
coordinate s pace. In the fi rst work devoted to t his, ~~xwel l ;s 
gas has been cons i dered, that l ed t o some vaguenes s in the ZI 
normalization but did not effect t he concrete dynamical for m
f ac tor s . 

4. Le t us illustrate the usage of the above f ormulae by cal 
cu l ating a "pa r alle l" response of the system S· (q. w) related 
to the correlation function < cos r;p (x. t/xo , p ) cosr;p (o.o / xo. p» . 
According t o (8) the soliton contribution is given by averaging 
over the f ol l owing product: 

<) x - vt+x 2 +xo -1 ·1 4 sech - ( . ,' D) scch (~), 6(v) = Yo ~ IL I .. d • 

and for f(A ) one has 

u . 
f(A) 2f exp (iAp) dp 


c h 2p sh~ 

2 

orthis we get 'f 
p' (v )t.2(v ) -/lP.(vo ) 4nq -I

"q 1f(q6(vo »=f(-q6(vO» = ~y(vo ) [sinh 2~ y (vo) (22 )SI(q,w) = 0 0 f(-q6(v »f(q6(v »e (1 8)
2.qZ )h o o 
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o 0 _2
Once p (v)~Mkvy(v ), E(v)~EkY(v) and Ek ~8~, Mk~ 8/. Co we have 

=r1 _ ",2 -X E(vO) ~ EkY(vO)' p '(vo)~Mk Y~ ' YO (23 )
22q ]

Co 

and 

2L -(Hlp) 4LE
O 
k oz, h Ie dp K, (/lE k ) • (24)

cO h 

wi th K1 ( z) being t he above-mentioned McDonald function. From 
(22-24 ) 8(q.,,, ) is as follows: 

-fl Yo ~ 
o 
k

16 ii Yo 
x ]2 _e_--;;,-- "Q (25)8 (q. "') ~ -';;-;;-q x ~ --;:- . 

~ 0 
[ ShX K ( /l E~ ) 2~yo 

where Ii is given by (11) . In the "nonre l ativistic" l imit (v « co) 
Yo = 1 + ",2 / 2Q2"oand at /lE~» 1 this fo rmul a yie ld s t he Mik eska 
result /12~ Other response functions can be as simp l y obtained. 
No te that fo r anal yz i ng the exper i mental data with t he he l p of 
t he f or mulae of tYre (25 ) , it i s necessary to fix exactly the 
system of units t o be su r e of the ri ght coefficient i n (25) 
(see, e .g . , / 14 / ). We think that along with studied experimen 
tally CSNi F3 and (TlIMC) (CH 3) 4NMnCI3 systems, which di sp l a y so li 
ton contri bu tion in quasi-elast ic scattering with a l arge proba 
bi l ity , there i s anot her such quasi-one-d imensional system name
ly the Rb Fe C13crystal (for its parameters J, A see ref. 1 15 / ) . 

6 / fo rFormul a e (18 ) , (19 ) have been u ti lized in " get ti ng 8 (Q.w) 
of the isotrop i c Heisenberg ferromagnet, where the so l iton mode 
is a so l ution of t he 53-equation . In th is case the crystal 
[(CH 3 )4 N )[NiCI3 ] wi th 8 . 1 in the temperatu r e range 1. 6 0 K_790 K 
can ser ve as a possible quasi-one-dimensiona l IIcandidate ll A so • 

liton so l ution has been found in ref. / 17 1 for the anisotropic 
fer r omagne t of t he "easy axisll-type. By us ing th is solution the 
authors of /18 1 have calcula t ed Seq. (tJ) for II slow" magnet i c soli 
tons, i.e., when I pl« Po. and one of t he present author s in 15/ 
has done i t in the genera l ca se ( - PaS Pspo)on the basis of ( 18), 
(19) • 

In this case in addition t o the kink degrees of freedom, 
there appears extra internal one over which aver aging is to be 
done. The latter corresponds t o averaging over t he i nit ia l 
phases 8 O. and as a resul t we h ave < F>~ Z 

~ 
I dMFexp( -/lEb ) 

with Zb~ IdMexp(-/lE b ) and M~ l xo.Oo.v. al'l,eing the set of 
f r ee bion parameters . For the SG-model we shal l be interested 
in t he correlators (see 1 14/ ): 

~
~ 

8,' « I - cos</>X 1 -cos</>0 » . 8 1 ~ <sin</> sin </>0>, 
and hence the functions 


2 
, 

1 - cos't'A. "" 8 (1 t- ( 2) 2 

.A. 4, [ 1 (2' )2]~SIn't'=-- , - -- . 
1 + (- 1 + (2 

Since at low temperat ures (f3 E~ » 1) the 
come f rom small amplitude b i ons « <1 
an accuracy of 0« ( 2) 

I- cos</> = 8,2 . sin</> = 4, . 

ma in contribution wil l 
(or a « 1) , we have with 

Using t he procedure described above one can do ex tra averag ing 
over eo to get 1/ 2 cosO in the correlator (for <sine sin eo > = 1/ 2 cos e). 
Af t e r the Fourier transformation the fol l owing formula may be 
ob ta i n ed instead of (18): 

8,(q.w) ~ Z;"'£ P'(V ; )t/(V;) f2(Q. 6(v. ))exp(-/lE(v . )).

1=1,2 21TQ; " , 


where 

w ±OYI.2 
q, , ~ Q ± O.(v Y)'2 ' v. 

,_ • I Qi 

and v 12 are the solutions of equations obtained upon integra 
tion 01 appropria te S - func t ions: 

\ ,) 
5 . Let us now proceed, following / 21.', to s t udy the contr i bution w + Oy ) and S (v _ w - 0 Y )S(v 

of bion excitations to nSF in the framework of the SG and ~4 Q + Oyv Q - Oyv • 
t heories. The fact t hat such a contribution can be very impor J 
t ant a t low temperatures has been pointed out by many au thors As a r esu lt, we have for the transversa l response 
(see, fo r example. r efs.1I4.201 fo r SG and / '91 for both mode l s ). "'- A~ -2 2 2 

~ (q.",.O) ~ T Ch x.l.[exp(- /lMby+)+sgn(Q -'" )exp(- /lMby)] 
~ -
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2" M b "b L
AJ. (~), b.l = .../QF~ 2 +~ • M b ",, 16m . x.1 "" ----nr Z b 2iil 

(26) 
q' + n~ 

y± 
IqbL ± wlll 

The longitudinal formfactor S ,I contains s everal sunmand s: 
t erms of the orde r of O(u 2 ) only renormalize the coeff ic ient 
in Bragg- s term - 8(w) 8 (q) (to an analogous effect lead s the 
0 (a 4 ) term in the e xpansion of cos</». Since s in 8 = .!.. (1 -cos28) 
t he bion part o f the corre l ator consis t s of two 5~and s (after 
averagi ng over 00 ), namely 

<F>M::::: 16a4 (seCh2Ksech2xo> + 16 a 2( cos 2 0 cos2 8 > <sech 21( 
K 0 0 00 

?
• sech-K > 

o KO 

The augend coincides accurate to 4a
4 with t he l ongitudinal kink 

correIa t or obta i ned above, if one puts in it m"" aO and E~ "" I6 p 
instead of p.. and E ~ "" a ,i.respectively. 

Deno t 1ng . 1t. by S"cpr we hlave 

A", _x_, / qS" cp ( q, w ) = h; ( sh x, eXP(-IlMblJj ) 
(27) 

32a2 Ml: nb ) 2AI = ( - , b , = J q2_ w , x, ~ 
2m" ~202 Zb 

Thi s bion contribution to the central peak is added t o the 
kink one and dominates the latter at l ow t emperatures ~Mk » 1 . 

The addend (name i s a s a tellite one ) being of the fo rm 

" 2 x 2 " + 2 2s!al -
A

( - -r[exp(-{3M bY2)+sgn(q - w )exp(-IlM.y2")l,
sh X2b 2 

?
8a-M b nb 2 2 ., ~ A 2 = 

2 2 (T)' b 2 = (q - w + 40 -) ,x 2 = " b 2 (28) 
" ~ n b 2m 

± q 2 + 402 

Y2 


I qb 2 
t 2!Uv1 

describes the Raman scattering as wel l as Si . Comparing (26) 
and (28) we see that they d i ffer from one another by the pr e
exponent ial fac t o r s and the change {} .... 20, that a l lows us t o in
ves tigat e one of them only . 

From (26 ) -(28 ) i t a l so follows tha t t he pre exponen t ial fac
t ors and hence nSF depend on the mean bion dens i ty nb or mo r e 
pr ecisely on <"bl Zb) which is less sensitive to the assumpti
ons on Db . In our case 

Zb (0) = f 
~ 

dp exp (-Il J p2 + Mt ) ~ 2MbK , (Il Mb) 
-~ 

or after averaging over the internal bion degree of freedom 

g dO d 
Z b = 2 f MbK , (IlM b) = - " ,,[ I o(81l1.)Ko(81l~)1 = 

o J ~2 _ 02 d I' 

(29) 

8"~ [ K , (81l~ lIo (8{3~) - Ko(8 Il~ ) 1, (81l~) 1 

t hat yields at lil r ge z (81l1'» 1) 

" Zb~ 161,1l2 

The quantity nb may be a l so ob t ained from t he mean kink gas 
dens i ty ns by integrating over n and t aking into accoun t t he 
change in the phase volume. For Os t here are a t l east two ver
s i ons (ment ioned abou t earlier), whi ch differ by the preexponen
tia l f ac t or s 

_ ~1 

n s :: 
Il~ ~ 

4~(- ) 
. 

exp (-81l~) Illkeska , .CUrLe et / ' 2 3/a l. " 

" (s = k. b)
-T 
n s :: .3:.. ( :: ) ~ exp (_ 8 Il~) Timomen and Bu!lough / 14/ . 

" I'~ 

The forme r may be ob tained from the l atter by r enormal izing the 
kink energy related to their interact ion with phonons . A forma l 
basis fo r such a renorma l ization is the fac t t hat it comes from 
the t r ansfer matr i x technique (see, however , above). 

The second formul a i s simply a low t emperature expansion of 

ns = .§!. K , (81l~) 
" k 

(
. - k -,

which differ s from Z I by f actor 2" 1.e., (nk/Z,) - (2") ) 
t he phas!, v0'tume PF _, kink in the ideal kink gas. As a result, 
we get (nk / Z,)= ( Oph) and t herefore for bions 

n b 1 1 1 1z;:- 0" 2;. 2; 
4"2 

(30a) 

ph 

or in t he Hikeska, Curie et al. ver sion 
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~, 

n b f3~ 
(30b)

Zb 2,;2 

I n wha t f allows we use (30a) rea lizing that the t r ans formation 
to (30b ) is st r aightforward. Le t us evaluate t he b ion contr ibu
tion to t he CP a t t emper a t u r es 

o 
2f3 Mk » I. (31 ) 

bl 
In this case b ions of mass MIl"","'if give a fin ite contri bu tion 

whi ch upon averaging over the i n t erna l fr equency or the b i on 
ma s s becomes 

~ 

S (" p(q. w ) a I ,"mdm ( sech T1 b 1 )2 -1 6 J1 m y 32 hi 
o \ 11 _ _ m2 2'fiI e 

a 
"It 4 

Th i s integral can be evalua ted v i a the saddle poi nt met hod at 
the point Xo = (rr bl / 16!1 y p.2) 1 ~ : 

128q ,. 3/2 ( 2 )Xo exp - KXO
S cp( q, w) ~( .Jl.) ' K ~ 16 f3'JY ;2"P K (I -exp(-Kx o» 

or since Q=YJ1KX 
2 

/ 17
O

7/ 2 - 21("0 
(K Xo) e 

5 cp 
128(q,w ) 

2- 3 ' 
17 372 112 (1 - exp(-K '0)) K 

(32 ) 
" 

" 0 = (16" {1 q) 

Tt fo llows from (3 2 ) that the main contribution to scat t e r ing 
i s g i ven b y small momenta K Xo ~ 1.2 or (qo/ ~) = (4f3Mk) ol ,and at 
this point 

44.S 0 3 w 2 - 3/' 
-,,) 0S cp(q,w ) :: rr3J2~2 (2/H\l (1
q' 

The longitudinal and transversal satel l ite DSF are ana logously 
ob t ained t o give 

ol • ~ dO -' 
S" s at( q,w)= f~ dO S " (q,(<.l. n ) ; 5 s .. (q, w) =I ~(q.w,m. 

0 2 0 2o V~ 2 _ o V ~ 2 _ 

14 

.LThen using smal l b we expand 5 1 and 52" with an accuracy of 
O(b 1 ) to get 

11 / 2 - 2K-;
• 16 5 2K x (K x) e V.,2 _(20)25 (q,.,) = ( _ + _ _ -= ,

"5/ 2 (,8M k) 4 2 I_ a""x (I - exp( - Kx)Y w" 
(33) 

w - ~ 
K = 16,8~(20 )' x = (2. /~K) . 

whose peak i s at the frequency 

w 5 - )=V"4(20", KX = 2.9 .
" 

In the s ame manner, we get 

_ liz -2Ki 
50l 

su , SN "2 (J!. + ~)(KX) e ";w 2 _ 02 
(34 )

2 OKX(,8 Mk) 1 + e (1 + exp ( _Kx))2 w3 

with the peak being a t the frequency W.l. ~ \/3/2 Q, KX 3.3.Fre:r; 

Quencies 14 :: n. are evaluated with the help of the relation 
'x to be 0 , :: ~( 1 -0.8(f3Mkr2).Formulae (32)-(34 ) mean al s o t he 

bion contributions to both CP and s a t ellites (si t uated at the 
main frequency harmonics) to be of nonactivation types. 

Suppose the situation studied t o keep qualitatively up to 
temperatures fl Mk $ 1 then the sa t el l i tes will move t owards CP 
(s imultaneo_usly broadening) wi th growing t emperature til l full 
fu s ion a t n ... O. This p i cture t akes p l ace in a narrow temperature 
r ange near 13Mk = 1. 

A few words a r e now about the small amplitude b ions in the 
f r amewo r k of ¢4 theor y* 

ox + ~2X _ X.1 O. 

Such solutions have been found in a ser i es of works (see r e 
view ' 4' and references cited therein) 

x = - I + 2.V.! sin 8 _ 2.2 (1 + 1. cos 2 8 ) cho2 K (35)
3 ChK 3 

here now 0 = ~ (_2-2)~ =~(2(1 - .2)) lI, This solution is const 
1 + • 

r ucted over vacuum X = - 1. 
Inserting (35) into S.l. and Sll .we see t hat in addition to 

t he Br agg t erm, there appear terms of the type (26) proportional 

*We should notice that the results obtained below are val i d 
for every field theory massive in a small amplitude limit . 
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2 4to a as well as (27 ) and (28 ) proportional t o u . It means that 
in the case of 1> 4 model , used in ref.' 1/ . to describe st r uctural 
phase transitions we shal l have the picture cons idered above for 
SG, and now S = S cpo + S 1 + S 2 : 

S cp ~ ! S ; Cq,w , !l) , S I ~ ;s SJ. Cq,w ,!l), S 2 ~ 3~ S ~ Cq,w, 2!l) 

with !l ~ /2!lCSG) , Mk = 2J2 ~3 and possible changing o f the pre-
exponential factor. 3 

At sufficiently low temperatures quantum effects wi l l appa
rent l y pl aya role, e.g., will set a lower l imit for bion mass 
in the SG model: Mb (quantim) = CI6~ / g)sin(g/16) if 

2
g/~

g ~ < 8 11 . 

_ g/ S"~2 


6. Let us consider possible generalizations of the above mo
dels in space RD. r Le t 

f J;~.p~ + , VcJ; .p ) (36) 

with ifJ being t he complex o r r eal scalar fie l d in t he simples t 
case. Suppose now t hat we have the following expans i on for 
VcJ;.p) : 

m 2J;.p - gCo[.p )2 + .,. V , (37) 

i.e., a field theory free and massive in the ifJ ... a limit. 
There are now two possibilities 

1) , > 0, (38a) 

2) , < o. C38b) 

In the first case a stable "vacuum" state of the system, over 
which soliton solutions may be constructed, is trivial : ifJ v = 0 *. 
In the latter, a nontrivial stab l e vacuum state is possible: 
[ifJv [2"" m 2/ g therefore, to avoid the appearance of Goldstone; s 
bosons and gauge fields at thi s stage, we take the fie l d ifJ to 
be rea l . Earlier , in the series of computer experiment s /22,23/ 
the ex istence of stable neutral (Q ~ 0) oscillating localized so

*Our concern will be only with classical finite energy solu
tions wel l localized in space. 
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l utions (pulsons) has been demonstrated f or the models of bo t h 
the f i rst and the second type. For the former models there were 
also fo und stable charged (Q;' 0) pulsons/23/ .Moreover, it follows 
from these works that the evolution of var i ous initial per t ur
bations over stable vacuum goes, as a rul e, through the pu l son 
phase, i . e., either stable solitons (if the system has them) 
or weak radiating pul sons of large or small amplitudes appear 
as a result of the decay of initial perturbation s *. 

In ref . / 23/ t here have been stat ed and verified the hypothe
sis: uncharged pulsons exist in a certain model in those phase 
space re gions where appropriate charged (Q" 0) solitons are 
stable (mode l s are supposed non-integrable). 

Letting this hypothesis be valid we cons i der a qua l i t ative 
picture of Q- soliton behaviour. To proceed further let us re
formulate Derrick;s theorem as fo llows: in relativistic (and 
not) classical field theories (without gradient interactions) 
t here are no stable l ocal ized solutions (soliton-like solutions 
SLS) without an internal structure (inner symmetries, time de
pendence and so on) in space of dimensions more than two, i.e., 
C2. I ) and (3. I ) • 

Consider firs t theor i es with the trivial vacuum. In a smal l 
amplitude region (Cd ~ m) radially synmetric solutions for al l mo
de ls of the type (3 7) are given by the expansions 

.p exp( -iwt) ~ R C, ) Q-sol i tons, 
n= 1 n 

¢ n ~ I cos(n", t) R n C, ) pulsons, 

and t he radial function R J s ubjects t o t he known nonlinear 
boundar y prob lem 

2 3(d 2/ d,2 + D-I did, K) R l + f R 0,
l 

RICO ) const , Rl (~ ) 0 , 

~ is a numerical coefficient depending on a model. I t may be 
easily checked the system energy and "char ge" (or the appr op 
r i ate adiabatic i nvariant) are proport ional 

2 D 2- D
Q - E - f RI CK, , ) d , = const. . (39 ) 

where again. 2 = m2 (1 - v 2) , v = wi m. I t foll ows from (39) that 
the sign o f dQ/d", (or dE / dw ) depends at . « 1 on the number of 
space dimensions D: 

D ~ I : d Q /dw< O 

* Pu l sons may a l so be created by the soliton inter actions. 
17 



D 2 · dQ / dw = 0 at w ... m. 

D ~ 3 : dQ/ dw > 0 

Therefore, small amplitude Q-solitons (and pul sons ) a r e 
stable onl y in one - space dimension geometry; when D = 2,3 the 
sign of dQ / dw can al t e r for finite ampli tudes, say, a t W = (v c 

and E "" Ec.i.e., Q-sol i t ons of mas s M > Eo get stable. The va
- 4

lues o f ti:.l c and Ec are model dependent (e.g., in q" theory 
dQ / dw >O everywhere in the SLS existence region); they have been 
found b1' computer fo r v a r ious fie l d 123,26 1 as well as spin (mag
netic) ! 7/ mode ls. Analogous results can be also obtained for 
the second c l ass of models (38b) with nontrivial vacuum (in
cl uding models with broken symmetry descr ibing , particularly, 
structura l phase transitions). Here smal l amplitude solu t i ons 
are const ructed ove r one of the vacua W= Wv ,and the expansions 
look less symmetrical (see (35 ) , review / 4! and refs . cited 
t here). In the region u « 1 the dependence of the integra l 
J(ch-cPv)2d ll x on a (and t hen on pu l son mass) is like that ob
t ained above for Q-sol itons 

2-0 
M - a 

i. e. , small amplitude s t able pu I sons exis t bu t in the one-di
mensiona l sys t ems. I n more d i mensi onal ones, s table pul sons 
(if exist) have a lower critica l mas s Mer and an upper crit ical 
f reqy~?cy W e t. wh i ch are model dependent too (fo r de t ai l s , 
see ) . 

According to the r esult s of various au t hors/22-24f the ob jects 
of pul son-type occur in the systems under perturbation of ener 
gy grea t er than Mer (we wou l d l ike to mention wo rk ,' 251 very in
te r es ting in thi s sense). 

7 . The above techni que fo r ca l cu lating structural sol i ton 
fac t or s may be applied to study more d imensional systems . 

For not too large SLS ampl itudes, we come to the formu l a of 

fo rm (26 ) * 


t1c - tJf.o·y~S(q, w ) = ~(e + sgn(q2 _ w2)e- fHo'Yo) (40) 
Zb 

. . (- /Z -(n+ ! ) 1 x ii(10 Il 
1n wh1ch nb b) = (2.) and Fb = 6 f <t>(T)e d Xo · 

*Ge t t ing (40 ) we assumed aga in ~ - cos(kx -Ot ). i.e., smal l 

amplitude approximation . 
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Taking t he .. asymp totic behaviour of the f unc t ion 4> as 

1 - m r 


€I> - - e . one can cal cu late Fb a s f o l lows: 
r 

4.F b = f di.1 dX3 ( x~ + x;r~ exp(-iii v'x~ + x~ + i qx 
3

) . 
q2 + ffi2 

wi th m = m(1 _ 0 2)X being the effective mass. 
Let us formulate br iefly the re sult s obtained: 

I ) The numerica l studies within various field t heo r ies show 
t hat the appearance of so liton (b ion) - type excitat i ons is no t 
a privilege of int eg rable two s pace - time dimensional systems 
but is a natural behav i our of the systems pos sess i ng stab l e SLS. 

2 ) The l ower ener gy l i mit Ecr for the existence of such 
obj ec t s grows with the number of sys tem dimensions D in the 
fr amework of the models considered and vanishes at D - I (in 
the c l assical limi t ), 

3) Using the hypothesis of d ilute soliton (b ion) gas being 
i n t he thermodynamic equilibrium, the dynamic structure fac t or 
S (q. w} may be ca lculated, which describes scattering of ligh t, 
neut r ons and so on. 

4 ) The functions Seq. w. T) of T a re differ ent for various 0 
in the f r amewor k of the same mode l . When D = I stable solitons 
(bions ) arise at ever y low t emperature T. as a result S cont ains 
the central peak and satel l ites (red and bl ue). 

I n the D > 1 case stable soli tons (bions) and hence CP and 
sate ll ites i n nSF appear only when tempera t ure i s greater t han 
a cer tain cri t ical value Tc :::II. Ecr.The satellites move towards 
CP wi th growing temperature for any D. 

5} Such a behaviour of the sys t em may be regarded as a phase 
t r ansition with r espec t to its clusterization. Temperature of 
t hi s transition (clusterization) vanishes in the one- space di 
mensional systems and is finite in more dimensional ones growing 
with D. 

Note ultimately, t hat an analogous picture has been observed 
i n paper / 27/in which the authors investiga ted the struc t ural 
factor of a certain model by means of molecular dynamic method 
and computer. 

REFERENCES 

) . Krumhansl J . , Schrieffer J . Phys.Rev., 1975, lIB, p.3535. 

2 . Sca l apino D., Sears M., Ferrell R. Phys.Rev.,1972,6B,p.3409. 

19 



3 . 	 Currie J. et al. Phys. Re v . , 1980 , 22B, p.477. 
4. 	llakhankov V. Phys.Rep . , 1978 , 35, p .I -128. 
5. 	Fedya nin V. JINR, P I7-82-268, Oubna, 198 2. 
6. 	Hill T. Sta t ist ical Mechani cs . Principals and Se l e c t e d 


App l i c ations. UcGraw- Hi l l, N.Y., 1956. 

7. 	Tyablikov S. , Fedyanin V. Fiz .Het.Het. , 1967, 23, p . 193 . 
8. 	 Fedyanin V. In: Sta t is t ica l Physi c s and QFTII. Fll Uoscow , 

1973, p.241 . 
9 . Tovbin Yu., Fedyanin V. Fiz.Tv.Tel . , 1980,22 , p.1599. 

10 . 	 Gupta N. , Su therland B. Phys.Rev., 1976, 14A, p.17 90 . 
I I. 	Kawasaki K . Pr ogr .Theor.Phys ., 1976, 55, p .2029. 
12. 	11ike ska A. J.Phys., 1978, IIC, p. L29 . 
13. 	Fedyanin V. , Yushankhai V. JINR , P I7-12896, Oubna, 1979 . 
14. 	Timonen J ., Bullough R. Phys.Lett . , 198 1, 82A, p .1 83. 
15 . 	 Steiner H., Villian J. , Windso r C. Adv.Phys., 1976, 25, 

p.87 . 
16. 	 Fedyan i n V., Yushankhai V. Phys. Let t. , 198 1 J 8SA, p. IOO. 
17 . 	 Kosev i ch A. , Ivanov V. , Kovalev A. In: Non-Linear Waves . 

"Nauka" , Hoscow, 1979, p . 44 . 
18. 	 Fedyan i n V. , Yushankhai V. Fiz.Niz.Ternp . , 198 1,7, p.176. 
19. 	 Hakhankov V. Comp . Phy s .Comm., 1980, 2 1, p. I-49 . 
20 . 	 Schneid e r T . , Stoll E . Phys.Rev . , 1980 , 22 B, p .5317 . 
21. 	 11akhankov V. JINR , P2-82- 248, Oubna , 1982. 
22 . 	 Bogolubsky 1. , tiakhankov V. JETP Lett . , 1976, 24, p.12 ; 

1977 ,25, p . 107. 
23 . 	 Makhankov V., Shvac hka A. Phys ica, 1981 , 3D, p . 396; 

Hakhankov V., Kummer Go, Shvachka A. ib i d, p .344 . 
24. 	 Be lova T. et a l . ZETF, 197 7, 73, p . 161 1; Chr i stiansen P., 

Olsen 0. Phys. Scripta, 1979, 20 , p.53 1; Chri s tians en P., 
Lomdahl P. Phys i ca, 198 1, 20 , p . 482. 

25. 	 Eilbeck J., Lomdah l P. , Newell A. Phys.Lett. , 1981, 87A, 
p. I. 

26. 	 Fr iedberg R., Lee T.D . , Sir l in A. Phys .Rev ., 1976, 13 0 , 
p. 2739. 

27 . 	 Schneider T., Stoll E. Ferroelectr ic s, 1980, 24 , p.67. 

DReceived by Publ ishing De partment 
on 	Februa r y 23,1 983 . 

~eARHHH B.K., MaxaUbKOB B.r. E I7-83-30 
H,geanbHhlH ras l.faCTHIJ,enOA06HhIX B03 6yx<Aemn::t 
npH HH3KHX TeMnepaTypax 

flpeA!lO)t(e li nonycbeHoMeHonorHtfecKHH nOAXOA I< OnHCaHl1JO paBMO
BeCHblX xapaKTep HCTHK "KHHKOB", 6a3HPYlO~HC1l Ha MOAenH p emeT01.l
Horo ra3a. fl onyqeHbI Ii HccneAOBaHbI AHHaM}f4eCKHe CTPYKTypHhle 
~aKToPhl, onpeAenReMNe conHTOHHh~ B036~eHHnMH B p aMKax ypaB 
u eHHR KneAHa- roPAoHa. nOKa3aHO, liTO B036YJK.1l,eHlHI 6HOHHoro THna 
npH HH3KHX TeMnepaTypax BHOCRT OC HOBHOH BKna.c; B ~eHTpanbHblH nHl< 

I KOHKYPHPY~ C BKna,JJ;OM KHI~OB/ , a Ta~e npHBOART K nORBneJrn~ 
caTennHToB Ha rapMOHHKax OCHOBHOA \{aCTOT~ 6HOHOB IKOM6HHa~HoH
Hoe pacceRHHe/. 

Pa60Ta BwnonHeHa B na60paTop HH Bhl\{HCflHTenbHOH TexKHKH 
H aBTOMaTH3aIJ,HH OHRM. 

npen pHHT 06~AHHeHHoro HHcTHTYTa ~~epHwx HccneAoeaHHH. Ay5Ha 198) 

Fe d yanin V.K., Hakhankov V. G. 	 E I7-83-30 
Ideal Gas o f Par t icl e -Like Excitat i o n s 
at Low Tempera ture s 

A phenomeno logi ca l approach t o t he description of the 
equilibrium characteri s tics o f "k ink" gas i s proposed, which 
is based on model of l attice gas . A general simple t echn ique 
for obtaining t he dynamical structure factors (DSF) of solitons 
and bions in the "gas approximation is developed . The DSFII 

defined by sol i ton excitations i n the framework of t he Klein
Gordon equation are got and discussed . I t is shown t hat at low 
temperatures the bion type excitations dominate the contribu
tion to the central peak (CP) as well as give ri se t o the sa
tell ites to appear at harmonics of the main bion frequency. 

The investiga tion ha s been performed at the Laboratory 
of Computing Techniq ues and Automation, JINR. 
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