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1. ON THE ACCOUNT OF THE ELECTRON-PHONON INTERACTION
IN THE FRAMEWORK OF THE RANDOM PHASE APPROXIMATION

It is well known that the electron-phonon interaction plays
an important role in may processes in solids (see, for
example,”’! ). In investigating such processes one usually takes
into account this interaction in the framework of the random
phase approximation {(RPA), where all interparticle interactions
are involved in the self~consistent field, and so the collision
effects are neglected {see 72/), Consider, for instapce, the
situation in the theory of nonlinear action of high-power
electromagnetic radiation fields on solids. Here, in the opti-
cal region of the spectrum, where the conduction electrons
interact mainly with the optical ghonons, the kinetic equation
for the perturbation part f{@® + 4. t) of the quantum distri-
bution function of electrons
+
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contains the self-consisteng _glectromégnetic field with the
scalar &(r,t) and vector Af{r, t) potentials rather than the
phonon operators b;, bg in an explicit form. In the formula
) a;(ap) is the creation (axmit_;ilation) operator of an elec-
tron with the canonical momentum P and mass m; the symbol
<..>, means the quantum statistical averaging with the use of
the Hamjltonian depending on time in a general case. The poten-
tials A,¢ in their turn obey the Maxwell ‘equations with the
dielectric function corresponding to the solid considered with
its concrete 3phonon structure. The mentioned equation for f is
of the form &
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Here €, is the kinetic energy of an electron, Ko {t) is the vec-
tor potential of the pumping field which is expressed in the di-

pole approximation by an oscillatory electric field Eo(t)=508inmot.

The equilibrium distribution function np(t) = <a;ap>, in this
approximation is set to be of the Fermi ox Maxwell-Boltzmann
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form in the quantum and classical cases, respectively. In the
more general case of the interaction of electrons with phonons
of arbitrary kinds, one has the following systems of equations
for f(5+ E, f;, t) instead of (2) (the retardation effect is
neglected, see’%): ‘
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from which the phonon coordinate Qq(t) = bq(t) + b:q (t}) can be
easily eliminated. In equations (3), (4) 8n, (1) = 3f@E+4p. ) ,

wg is the phonon frequencyjand Lg4 ,the eleetronJ;honon inter-
action coefficient.

Thus, we see that the RPA considerably simplifies the pro-
cedure of solving the equations of motion for all the com—
ponents of the particle system. On the other hand, it is obvi-
ous that a more adequate account of the electron-phonon inter-
action is really essential for the analysis of the behaviour
of equilibrium distribution functions of particles as well as
of the relaxation processes in the presence of external fields.
In the next section an attempt is made to eobtain the kinetic
equation with such an account of the electron-phonon inter-
action.

2. THE GENERALIZED KINETIC EQUATION FOR ELECTRON-PHONON
SYSTEMS INTERACTING WITH HIGH-INTENSITY ELECTROMAGNETIC
WAVE FIELDS '

We shall proceed from the method of elimination of boson
operators in kinetic equations for the dynamical systems inte-
racting with a phonon fields ggveloped recently by N.N.Bogolu-
bov and N.N.Bogolubov (Jr.) . This method has proved to be
effective in the treatment of a set of problems of solid state
theory such as the polaron problem, the problem of electrical

and heat conduction in metals and semiconductors (see /8/),

etc.
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racting with the boson field X can be written in the follow-
ing form not containing the boson operators b: s by s

sp 18(8) 9p(S) " I'(t, 8) O(8) - O(8) I'(t8)
" at i
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Here N, =<h:bk> = [explo, /T) -1 1is the equilibrium boson dis-
tribution; D, 1is the statistical operator of the total

(S8, X) -system (ty is the moment when the external fields and
interactions are turned on), () is the reduced statistical

operator defined as p,(8) =SpD; . Note, that the dynamical

system S with the partial Eﬁ’miltonian TI'{t,8) can include the
action of external fields but should not depend on the vari-
ables of the boson field 3, the interaction between the sub-
systems ¥ and S being expressed by the Hamiltonian of the
form

int
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Now, fqllowing the notation of /5'7/:, we can present the
Hamiltonian of our electron-phonon system subjected to the ac-
tion of a high-power electromagnetic radiation field and a
weak d.c. electric field in the form
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Here czv(ckv) is the creation (annihilation) operator of a
"self-consistent" photon with the quasi-momentum k and polari-
zation vector é’kv 3 ¢ =4nme?q® represents the Coulomb interac-
tion between electrons;

32 = @)’ e(E - 29,

dq
o
where B is the d.c. electric field vector (this field is in-
troduced for embracing the conductivity problem) and &(@ is
the Dirac delta-function;
> - 2ne % + d
Ak) = E(T (Cp *Cpp ) B (12)

v

"is the space Fourier component of the self-consistent field

vector potential; the term e¢t indicates the adiabatic -switch
on of all the external fields and interactions at the moment
t=-w (in the final results it should be set ¢=+0 ). The sys—
tem of units with h=1 is used.

Taking the dynamical operator O(S,) in the form

2 +
O(St) = <a]map+qs>t (13)

(s 1is the electron spin) and using equation (5) with the Ha-
miltonian (7)-(11) (where I'(t, S) = H(t, 8)+H(y)), we can obtain
after some algebraic procedure the quantum kinetic equation for
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the generalized distribution function Ao B a8 Tk
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Here Wp —[i; (e/c) Ko(t)] /2m 5 Jp W), is the Bessel function of
the first kind of the argument A = e(Eo Q)/mwo ;0,07 are in-
tegers. To give a more clear physical interpretation of equation
(14), we write down its solution in the form (1) and perform the
linearization procedure as a result of which we have the follow-
ing equatlons for the e u111b11um distribution function np(t)

and its perturbation f(p+ 4 B,t) under the action of the pump-
ing field:
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The right-hand side of equation (15) defines the deviation of
the distribution function from the usual Fermi (or Maxwell-

Boltzmann) form. In the approximation with =2’ that we call
"the slow oscillation approximation" the collision 1ntegra1 is

considerably simplified, and we obtain the known equation 9/
for np(®): 7
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Here Wp —[p -(e/c)A ®1%/2m Jp ) is the Bessel function of
the first kind of the argument A = e(Eo Q)/mwo ;L ,0° are in-
tegers. To give a more clear physical interpretation of equation
(14), we write down its solution in the form (1) and perform the
linearization procedure as a result of which we have the follow-
ing equations for the equiliblium distribution function np(t)
and its perturbation f(p+ 4, p,t) under the action of the pump-
ing field:
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The right-hand side of equation (15) defines the deviation of
the distribution function from the usual Fermi (or Maxwell-
Boltzmarm) form. In the approximation with £=£’ that we call
"the slow oscillation approximation" the collision 1ntegra1 is
considerably simplified, and we obtain the known equation 9/

for np(t): 7
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Now the relaxation time r can be introduced and determined as
a function of the frequency and 1nten31tg of the pumping field.
Following the calculations performed in we can write down the

formula for r as follows (see also/m/)
; 00l Bt
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where r®% is the relaxation time in the absence of external
fields for the cases of interaction of electrons with optical
(o) and acoustical (a) phonons. The function F(x) is defined
by the formula
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In obtaining (18) the average over all polarization directions
of the field E(t) was taken and the approximation with f =0 was
used, which is valid for the value of Ej and wgy satisfying the
condition A<<1 and also for the narrow-band semiconductors with
the conduction band width A<< w,. It is interesting to note
that the use of such an expression (18) for the renormalized
electron relaxation time r directly introduces some correction
in determining the threshold fields for the parametric excita-
tion of the plasmon—-phonon elgenmodes of a solid under the ac-
tion of electromagnetic waves (see 81y Indeed, the threshold

field Eom must be calculated from the equality
~%
Y Eoprwg) =lryerg) 7, (20)
where 7, is the plasmon damping coefficient which is connected

with the electron relaxation time as r;=2r , and rg 1is the
damping coefficient of the phonon mode (or of the mode of other
nature); y is the parametric growth rate of the given pair of
modes.

Equation (17) has been con51dered in connection with the
conductivity problem in crystals in the high- and low-frequency
limits in 7911/ | An attempt has been made in 712,13/ to obtain
solutions for mn,(t) in particular cases of a nondegenerate so-
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e 3

1lid state plasma interacting with equilibrium acoustical pho-'
nons.

" The analysis of the dispersion pfoper;ies of an electron-
phonon system placed under the action of a strong electromagne-
tic wave field on the basis of equation (16) and the system of
Maxwell equations will be made elswhere. Here, in conclusion,
we present the form of this equation that is convenient for the
above-mentloned purpose. Thus, introducing the new variable
r. f expl~iA sinw gt] and transiting to the Fourier representa-
tion, we come to the following equation:
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Here P(Q, o) = 2 {(n = )Y w+e -¢ + i0) ] is the elec-

pP+q p pt+q

tron polarlzablllty, = £’- ¢ ; the summation over p was intro-
duced and the terms with A(q, t) representing the retardation
interaction in the system were omitted for simplicity.
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| ' | Vo Hong Anh E17-83-293
Electron-Phonon Interaction and the Generalized Kinetic
Equation for Systems Interacting with High-Intensity
Electromagnetic Wave Fields

The generalized kinetic equation for an electron-phonon
system subjected to the action of an intense electromagnetic
wave field is derived on the basis of the Bogolubov method of
& elimination of boson operators, taking into account the elec-
tron—phonon collision effects. The conditions are considered
under which the collision integral allows the introduction of
the relaxation time, and the latter is calculated as a func-
@ tion of the frequency and intensity of the driving field.
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