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This paper accomplishes the study, begun in t he firs t part 
(r e f .l 1l ) , of the phase separation phenomenon in t he 0 -vec tor 
mode l with Kac-Helfand inter action s and in its spherical l imit. 
Sec tion numbers follow those in / l ~ so reference t o fo r mulae 
and r esults there wi l l be made withou t fur ther ment i on , as , e.g., 
Eq. ( 1.5 ) or Proposition 2 . I . Sec tion 3 contains the main re
sul t d i sproving the existence of the sharp i nterface in the 
D-vector model (D ~ 2). while Sec.4 indicates how to use this 

very pr oof for the generalized spherical model considered by 
us /2/ • 

3. THE PROPERTIES OF THE l~GNETIZATION PROFILE 

I n Sec . 2 , the study of the phase separation in our model has 
been reduced to the study of the propert i es of the unique solu
tion in g; ~ of the system ( 1.5) (Ih I G 'll el .and of its limit "'hen 
Ih J appr oaches in a certa in way- the boundary of'Uc.More preci
sely, one has to take only ~ I ;: fa and ~ M:::!§M+l different from zero 
t o take in t o accoun t t he boundary cond ~t ion s a s shown in Sec . l; 
inver t ing J' i n Eq. ( I .S) and intr oduc i ng t he f unct ion: 

-I - I
F (xl afJ l' (xl - ,' ( 3 . I ) 

one i s left with the fo l lowing sys t em: 

_ ~.,+ 1 +(.1-1 =«'/~ . l F U·, l. ~. G T 15 i ~ M (3 . 2) _ _I' - ' . 
with t he boundary condit ions: 

(3.3)5 o.5M+1 G g;~. Oa « fo'~+J)< "' O q'O · ~M+ I ~ I . 

where ej ;IIlle i II. From now on we shall s t udy the properties of 
t he unique-so lu t ion of Eqs. (3 .2 ) , (3.3) and of their limit as 
o~" ( see Sec.2 ) . 

Befor e pr oceeding f urther some simpl e rem~rks will be i n or
der. Thus, since Si' ,<: >0 .1 :5i~M a nd SO· '<:'£M+ • . !; ::: O.Eq. (3. 2) im
pl ies 

F (';i » ~' 1 5 i 5 M. (3 .4 ) 
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Choos i ng as pos1t l ve the sense of rotation of £0 over £M+I of 
angle less than 11. al l angles 0 i satisfy :qS"£"I) 

M 
0, <;[0 . • ) . O ~~O,-O< • . (3.5 )i_O 

Now, it is easy to see that (3.2) can be written as (l~ i '$. M): 

~ '+ 1 cos e, + ~'_ I cosO ' - I - r«( ,); (j+ l SinO j - ~ i-l Bin8 i_ (3 . 6) 1 

wherefrom: 

{i+ l ~isin8i - ~1 (osin80 aC. i_l .... . M . (3.7) 

The followi ng properties will be needed later: 
(i) The quantity e defined in (3. 7 ) satisfies 

o « M+!)e 5 ° < •. (3 .8) 

(ii) If the solution of (3.2 ) has 0, 1; [0 • • /21. O~iSM . then 

2 2 21~ 2 2 2% .
«( . 1- e N.) +(~. I-e If. ) _r(~. ). 1 _1.2.....M. 

1+ 1 1- I I 
(3 . 9) 

(iii) Let g( e;x) be defined on 0 5 !CoS x < 1 by 

g(e;. ) _ r(.)-2(x 2_e2/ x 2)V,. (3. 10 ) 

The f unction g(e ; . ) is convex on its domain . If 

fJ c ~(r+2)-1 • (3. I I) 

then, for {3:5f3c. the equation gee; ()::II: O has only one sol ut ion 
e-cf-O and gee; () i s strictly positive otherwise; for f3> f3 c 
the sign of g and its zeros cannot be simply expressed analy
tically and Figs.) and 2 provide the missing analysis. 

(iv) Let I~, ; I S i S M I be such a solution of (3 . 2) that 
8i~[0,"/2] , 0Si ~ M . If for l S io~M . {io is a local minimum 
(Le., (j j;1?: (i ) with f ioL/c. then either g(C.cfi o »0. or 
gee. ('0):"0 in 

o
which case (, -~, for all 0 5 iSM +1. If ('0 

is a local maximum, then either g~c, (i ) <0, or g(e, cf i ) - 0 
o 0 

and again (i :IE (i for all 0 ~ iSM + 1. 
(v) Let f3">f3 co and define the following continuous function : 

f(e)~maJ(fJC . (c) I e c [0. 'CfJ)J. C3.12) 

2 

\(C) \ (c;\ 
~ 

l(C) 

I 
I 
I 
I 
I 

+ + 
l-Vc''-/C 

£ 
a(~) 

~' 

a (,.) 
Fig . l. The sign of the func  Fig.2 . The sign of the f unc
tion gee. f) for fJ C; (fJc ' r - 11. tion g(e. () for fJ >r - I. 

where (e), (C) and al.iJ) have been introduced in Figs. I <. " d 2 
( ~ ( e) is taken 0 when not defined.'. Le t now fJ>fJ c and £ .,. {M+I 
be fixed as specified in (3.3); tnen the solution of (3.2) sa
tisfies for M large enough (depending on fJ , ((I and ~\f+l) the 
relations: 

~. 
I 

> =~(e). i -1.2 .....M ; 0. 
I 

(; [0••/2). i_D. !,.. . • M . (3. 13) 

Indeed, define two continuous functions £0(t)'£M+I(t)<;;9:",t<;;[0.11 
of constant moduli ~O(t) - (0' (M+I(t) - ~M+I and s u ch that £oCO) ~ 
= ~o!!, (M+I(O) -~~1+I!!.' while ~(1) -So' (M+I (l)-SM+rFor any 
tC;;{O.Il,-the system C3.2) with boundary cond1tions {.o(t) 'SM~I (t) 
has a unique solu tion I(j (t) I which depends continuously on t. 
Let us choose M so large that min la(~) , (02 , e~+ I>u/(M+l). 
Recalling (0, one will then have e(,) < mm I .(fJ). ~02 ,(~ liAs fie) 
is continuous and (0) _ 0, one can find Mo such that th+e inequa
lities e(t) < min I a(,Bi, ~02. (2 I. and (c(tj) < min I (0 . t; MIl hold si-M+I _ ' t 
multaneously for M2Mo.At '-0 the angle between So(O) and £M+I(O) 
is zero, so 0, (0) - 0 ,OS i s M. from Eq. (3.5), hence e(O)_O. 
As (0) =0 , Eq. (3.13) is fulfilled. From continuity, the set of 
points' <;;[0.11 for which (3.13) is fulfilled is open in [0.11. If, 
on the other hand, (3.13) is violated at some point in (0.!1. then 
there exists '0 C; (O.lJ such that for any 'I; [0.'0) ' (3.13) are sa
tisfied, while for t _ to either: 
(A) ~.1 ('0) "- (; 0 (to) - _(eCto» and e.L (t 0) <;; l o. • /2J for all i; or 

(B ) ~,(to» ~(e(to) and 8; (to ) S 0 '0 ('0) - ./2 for all i. 
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Suppose (A) holds; then, since C(IO) < a (fJ) , {; (10) :a. {; (1 0) 
j (c(It> )) :a. JCTlO) and (iv) can be applied providing either 

g(e(lo) ,{;o(to))> O and hence {;o(lo ) > {(e(lo)) > {( e(1 0 » 
contradicting (A), or ( i (to) - ~ io (tal for all i. in which case 

{(c(to))· ~; (1 0 ). ~O(I 0)· ~o ' contradicting the choice of Mo · 
• 0 

Suppose now (B) holds; as M;, Mo, {o , ~M I> rc and ~ ;(1 0) > {(c('t>l)~ 
~ + .•;: vC\!OT for all i , wherefrom .. i 0+] (to) . eio (to) > C(La ), wh~cti 

contradicts (B) (c(IO) · ~ ; + 1( to) (;0(1 0 ) as 0; (to) _"/2) . 
(vi) Let fJ>O and ~o , (M+l be fixed . If I{ ,. °1$I,;M li s the 

so lution of (3.2) , then for M large enough (depending on fJ 
~o '~M+I) there exists i o • io(M) <;; 10.I•....M+II such that ~; 
is a monotone function of i both on i~io and on i:; io . 

Indeed, for fJ:5fJc.one has F(fl ~2~. and (3.6) provides : 

(;+1 + (;-1" 2(; . i _t ..... M (3.14) 

which shows that {~d cannot have a l ocal maximum. Thus, either 
it is a monotone sequence (in which case i o"O or M+ 1)' or it 
has a unique minimum at some ioc;. ll ....-'Ml. For f3>f3cand M ~M o . 
with Mo as given in (v ) , one has (; > (e) and e; <; fo. "1m fo r 
all i. Then, applying (iv), one has that: 

(io> (e), if io is a l oca l m1nimum (3.ISa) 

~. < ~ (c), if io is a local maximum. (3.ISb )
'0 

Thus, the sequence I{i ; O,$.. i ~M + 1 I cannot have both a l ocal mi
nimum and maximum. implying that i t is either monotone (in 
which case io- 0 or M+ 1 ), or it has a unique local minimum (or 
maximum) which is attained in ioC:; 11.2 •...•M \. 

Having estab l ished t he properties ( i ) -(vi), we can pass to 
prove the fo l lowing. 

Proposition 3.1. Let fJ"fJcand 1(;; IS iSM I b e the solution 
of (3.2) with boundary conditions ~ 0 , 5 M+l' Then there exist 
b> 0 , B > 0 and Mo all depending on fJ ' (0 '(M+ I'such that 
for M,Mo 

- -bdj 
I~(e)- (; I<B. i.O .I •. ..• M+I (d ; _ min Ii, M + 1- i I ) . (3.16 ) 

Proof. Let M be so large that (vi) holds. Let fJ <fJc.Then 

.-1 (F(x) - 2x)~ F ' (0)-2 ~ w -I > 0 for ]I: ~ 0 (3.1 7) 
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and recall ing (3.6) , F (~ ; ).,; (;+I+~;- I ' wherefrom 

~; .,;., ((;+1 + (;-1 -2( ;). i _ l .....M. (3.18) 

Fo r i ~ i o • io(M) given by (vi), (3.18) leads to 

i M+l-I 
(; 05[.,/(1+.,)) ~o (i$i o-l); '; ; :5[w/(I-kU)J (M+lli;::io+I) (3.19) 

while, for i-i o . it implies (jo,$'{w/(1+2w)](~io+l+ ( io-l ) ' 
Hence: 

io M+l-i 
~ 

'0 
S[l+w/(I+2w) ]I [w/(I+ w)J ';0+ [wl(l +w)1 ';101+1" (3.20) 

Taking b. In(I+I/w) . B • 2maxl (0.1; I.nd accounting that l(c).O,
M+I 

one obtains (3.16). 
Let us suppose now (3 >/3c' Then, by (vi), the sequence 

l"i ; O~i$M+ll either has only one local extremum in icc; 1l. .... M\. 
or it is monotone. 

a) If 1(; I has a local minimum at 10 , it is monotonically in
creasing of li -io l both for i.,5io and for i~ i ' Besides, (3.15a)o 
will provide 

maxi ';O'(M+I' e 1;*;:: (; > ~(e). Os i SM +1. (3.21 ) 

Remembering t hat (c) > 0 and g(c.x) is convex on x ~v'C.i t is 
easy to see that, for I; ~ l(e) : 

( - f(c):> w(e)g(e.fl . where w(c)-Vg· (e. ~(e» <~ . (3.22) 

We apply this inequality to "i 'On the other hand, operating on 
Eq. (3.9) (for, e.g., i < io ), one obtains gee. (; ).$( (e)4_c2)-'~ 
({;-I + ';;+1 - 2(;) $({(c)4 _e2)- '-' [«(; -1 - (c» -(~; - l(e))]. which 

Kgives, in conjunction with Eq. (3.22), ';; - f(c).5 -I «(;_1 -fCc))
+K 

with K.;;;(c) .«((e)4 _ e 2)- '-'. wherefrom Eq. (3.16) immediately fol
loW's . 

b) If lei; Osi.s: M+l1 has a l ocal maximum in io. again by mono
tonity and (3. ISb): 

minl~o' (M+l I ~ (, 5 '; < (c). O.$iSM+ I.· (3.23 ) 

By the choice of M in (vi), e.'> Jcand the convexi t y of g pro
vides : 
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- -

-	 - I( c ) - ( i -w (c) g(c.eJ.where .;; (c)_-g(c. (. )(f(c)- (,)- (3.24 ) 

valid for ~< (c). Further one proceeds as above. 
c ) The case of monotone I ~i ;OSi.5M + 1 I can be easily reduced 

to 	a) or b) before. 

Proposition 3.2 . Let Iii; JS i"SM! be the solution of the 
system 0 . 2 ) wi t h boundary conditions.fo ' £M+I ' Let {3>{3c , 
~; .. <l«(; . f;+ l l.~-<l«(O'(M+I).and d ;,b , B be the quantities 
introduced- in Prop.3.1. -Then, there exist C> 0 , Mo depending 
on f3 '(0 ' (M+i only such that, fo r M~ Mo . 

I~; 	- ~/(M+l) 1 < CM- 2 InM 0.25) 

whenever i is s uch that d > (lib) in 3M,wh i le otherwise: 

~; _ O(VM). 	 (3.26 ) 

Before proving this we give without proof the fol l owing 
N 

Lemma 3 . 3. Let 4>.<;; (0 ••/2) and ~4>;-4> . If there e xi s tA > O , 
, 	 i_I 

a > O and i <;; tl .....NI such that: o 

a sin¢i .5 sin ~ i ~ Asin¢i i _ l . ....N . (3. 27) 
a 	 a 

then 

(a4>/AN)(l-(A4>/aN)2) s. sin 4>; s. A4>/aN . i _l .....N. (3.28 ) 

Proof. If 0. 0 , (3.25 ) is trivially sa t isfied . So, let 
e C;;(O. 77). Let us choose M} s uch that, for M2:.M) . (v ), (vi ) and 
Prop .3. 1 hold true. Proper t y (v i ) and (3.15) imply: 

f; ::. min 1(0' (M+ I . (e) I . (,(c) 
i :a:O. l .....M+l, (3 .29 ) 

(; i maxl (o' ( M" , (e)l. ('(e) 

whil e Eq. 0.7) leads to 

sin~. ~«(" +1 E· If · ,( ) Sill 0; i .io <;; lO. l .. ...M I (3. 30)
I 0 . '0 1+ I 0 

providing 
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«(,(e)/(*(c))2 SinO ; s. sinO; 5,« ('(e) / f,(e))2 sinO , . 
a 	 a 

In vir tue of the lemma there exist two positive constants C* 
and C :I:' both independent of M . such that 

C .( O/M+l)s. 0; 5, C'(~/M+1), . i.O.l .....M. 0. 31) 

\ Let now SM . li: d; ~(lIb)lnBM . Oii ~M+ll and let M be its car
dinal . SM is nonvoid for M large enough, and 

- - I
(M-M)/M .O(M lnM). 	 (3.32) 

Besides, recalling Prop. 3 . 1, we have: 

I ( 	 - ( c) I < .1. . i ~ S.. . 0 . 33 ), M M 

The 	Eqs. (3.30) and (.3.33) imply for i.io <;; SM 

-I 	 - 2 - -2 
A 	 sinO·, <sinO ·, 5, A sinO; • With A_(~(c)+.l.) «((e)_ .1.) . 0.34)

0 - 0 	 M M 

But, since (c) - ( 0) ~ O(e) and c ~ ~/M+1. one gets 

A .1+ 0 (lIM ). (3.35 ) 

For 	OJ , iI;~t.the Lemma 3.3 provides, wit h () '~\r;,"'2~(}i 


A- 2 M- ' O(1_(A20IM)2) 5, sinO · < 8A2 M- 1 
, 
(3 . 36) 

As O-B + ~ 0; < 0 + C'(M-M * )!(M+ll ~e +0(M- 1nM) . 
;~Sr.! 

O .< O- B _O(M-IlnM) . (3.37) 

Collecting (3.32) , (3.35), (3.37) and using (3.36) , one gets: 

O;-OiM +O(M
-2

InM) . i <;; SM' 	 (3.38) 

} 
Propos i tion 3 .4 . Let I ~;: l .5.i " MUle t he solution of 0. 2 ) 

with boundar y condit ions -.fo ' .fM+ I<;;r!:, s uch t hat {D· ~. O. {M +]' ~>O . 
Then for {3>{3c . and arbitrary xc:; (0 .1): 

lim ~,- (B({3)[(~O /~o)cosox + !: sin~xl. 	 (3.39 ) 
M .... oo. ;, .. x 

where O· <l ({o. £~I+ l )and !;R({3)- ( 0) is the bulk s pon taneou s magne
t ization. 

7 

http:conditions.fo
http:f(c)-(,)-(3.24


k k 
Proof. Take int o account that {L·{,[(~ol(O)coBc.:!: 9. )+eBin(>:O . )J. 

- II; II; _ 1-0 I - i .0 1 

Prop. 3.1 ensures that (k~ (0) -(8(f3j. whenever x 1;;(0.1). while 
Prop. 3.2 enables us to assert that 

k 
llm :!: e· -e·,i-o I 

M .... oo • 

kiM -+ x 

wherefrom (3 . 39) r esults. 

Proposition 3.5. Let fe M «(3) be the free energy of the model 
with M layers under bound'ary conditions as in Prop.3.4 (ob
tained by substituting the solution IS i I of Eq. (3.2) into 
f«(3. I,l! I. If I) defined by Eq. (1.3)). Then: 

2 
Y«(3) " lim ~ [f «(3) - lo.M «(3)J • (8«(3)2 (3.40)M .... ...., (} 2 O,M 

- 2 2Proof. Remark that c.e{(c) I(M+l)+O « M+l)- InM) 
wherefrom: 

2 

(8«(3)-~(c) ~ 9 (8«(3) [,+2-V(31"(1'-\(o«(3)))J+O«M+l)-31nM) 
(M+l)2 

Using t his, Eq. (3.40) can be checked straightforwardl y. 

4 . CONCLUDING REMARKS 

Prop.3.3 shows that looking at a region far away from both 
boundaries, the state is translationally invariant. The direc
tion of the local order parameter is intermediate between the 
directions of the boundary fields and depends on how the thermo
dynamic limit is taken. Also, Prop.3.2 provides the following 
information on the behaviour near boundaries: 

l im {k - (50 1 (0 )m k «(3.(o). 
M~_ 

Here mk(~ , ~o»O are the layer magnetizations of a semi-inf i
nite system with boundary field {o (as defined in/3/ ) which 
approach exponentially fast the bulk spontaneous magnetization. 
In other words, the layers at finite distance f r om one boundary, 
however small the coupling to it, do not feel the phase at the 
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other boundary. Then we can conclude that an interface can be 
l ocalized neither deep i n 'the bu l k, nor near the boundary. The 
same conclusion holds a l so in the spherical limit of the model 
we considered here, as announced in/V. To see this, it is suf
ficient to remark that the function the minimum of which is 
l ooked for in t he spherical mode l is nothing bu t the l imit, 
when Ib I converges to the boundary of 'll e and D -toO. of the func 
tion Th(X ) appearing i n Eq. (2. I I) as a n artifact of the proof 
of Prop . 2 . 1, and to apply the lemma in Appendix B. Thus the 
D -vector model and the spherical one can both be so l ved in 
one stroke. 

The interface problem has been recently solved for short 
r ange interactions in Ref/ 4/ within the spherical model of 
Berlin and Kac/ S/ . They found as well that the interface is dif 
fuse at all temperatures. However , the magnetization profile 
t here has some unphysical features, which led them to suggest 
t hat the mode l itself is inadequate for considering such "non
translat i onally invariant " problems. Our generalized spherical 
model is free of t his objection and indeed the profile we ob
tain is physically sound. 

Incidentally, Eq. (3.40) also holds fo r the spherica l mod e l 
of Berlin and Kac/ 5/ , where Y(fJl is defined by the d ifference 
of the f r ee energies with antiperiodic and periodic boundary 
conditions/ 6/. We propose to study its status in the generalized 
spherical model with short range interactions in a f uture pub
lication. 

APPENDIX B . .
Let DCR be a.n open convex set and f' D .... R a cont1nuous convex 

function. Let r be t he extension of f to 0 defined by: 

C(x) _ lim inl f (y). x t;; D . ( B J ) , - y .... x;y'iD 

Evidently f and f have the same lower bound and f is lower 
semicontinuous on D . For everya>inff. t he set -Q(f. a).lx.c; 0 : 
f(x):$ a I is convex and closed / 7/, and f attains its absolute mini
mum on t he set Q(t) _ >() f f Q(f.a) _I x (; D: f(x)_ inC rL Let E be the 

• 1'I 10 • d e fse t of all cont1nuous convex funct10ns on D, an 0 the set a 
all f,;; e for which Q(t) is nonvoid and bounded. Then, t he follow
ing continuity property holds: 

Lennna. Let f,,('o. Fo r every (> 0, there exist." > 0 and a compact 
Ke D such tha t for every gC; esatisfying 

sup I f(x)-g(x) I < ~ 

x,;; K 
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one ha s g r; e and 

Q(g) ell : d (I,Q(f)) <, I : I iof f - inf g I < , , (B2 ) 

whe r e d (x, Q(f) i s the di stance be t ween x and Q(f), 

Proof . \H t hou t l oss of gener a l i t y one c an suppose inf f -0 . 
Let~e the se t 

v 3 1 x: d(x , Q(f)) < , I. (B3) 

Since Q(O is nonvoid, convex and compact , V is convex , open 
and with compact closure, V. As I is l ower semicont i nuous on D. 
i t can be asser ted/ i f t ha t there -i s a S> 0 such that Q(f , 5) C V. 
Le t us choose 5 ' 1;(0 . 5 ) . /)'«/4 and Xa " D such tha t 

f (xO) - O' . (B4) 

et us now consider the fo l lowi ng se t : 

Ka- 1z: ~(z) _ o , zC;lxo 'yl. yC;(D -"'V) nV. (B5) 

Then t he fo llowing prope r t i es hold : 

(i ) K aC V n D: _ 
( i i) f o r e v e r y y (; D' V , l Xo , y1n Ka"l r): 

(ii i) KS is a compac t s e t . 
I ndeed 

i) Obv i ous l y K8CQ(f,8)C V. lf z~ Ko , then zC;[xo.yl withyC;i)W: 
buty~D'Vimplies !(y» B and, since xot;;;D then[xo.y]CD and t here-
fo r e Ko cD. _ 

ii) Le t y C D \ V; as xo'- V nD and V i s open and c0Il.vex, one 
has [ xo,YlnV~lxo'Y l ) ' [xo,yln(O ,-V)-[YI ,yJ. where y ,C;Vn(ri ,-V). 
Evidently , f II' . I >.5 and therefore supposing that [ xo'y In K o-r)

) 1 ,Y 

i mplies S~ f([xO,YI) ' But since f is continuous on D and 
[~ ' Yl ) C D, f([ xo.y , )) is an i nterval and , accounting tha t 
f( ' o)-a' <a it follow s f l l ) <a. Recalling t hat f i s lower 

~o · y j 

semi con tinuous t we shall have 

£(Y , ) - lim in f f( z) :; ~ 
z-o-Y l;z ' [ x O'Y I) 

which contradic t s f(Y J» B. Hence lXo .yln K 8!~ ' 
i i i) We know that K8 is bounded. We sha ll show that Ka is 

c l osed. Le t us c~nsid e r a conver gent sequence ! zr, I CKB, zn ~ z . 
The re ex i s t Yn~( D '- V)nv and '\ n ~[ O,l ] such that 
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Zn- (I-A,,)XO + AnYn ' (B6) 

But (0 ......V)n v is compact, and henc e there exists a subsequence 
Iy nl I o f IYn I conve r gin g to y C; (O'Vl n iiEq, (B6) provides: 

I znk - "0 1 2 Anl l Yn, -xo I. (B7) 

Let us remark tha t Itm Iy ok.- xol > 0 (because, otherwise, x o-y 

which is impossibl e since xoC;; V but y (; fi,V), which in turn im
plies that Ank is convergent . Let '\,...lim Ank. ' Eq. (B6) provides 
then Z-(I- A)XO+ Ay with AC;[O,ll,yc;(fN/)nV. But, since Iz" 1CKaC 
CQ(f,8) ,zc;Q(f,o)nV, But zc;[ l o,yl, so z (;[xoslnV-[xo,y) C D. Thus 
Z '" D and therefore i s a continuity po i nt of f which leads to 

fez) _ lim fez ) _ a 
, " k 

imp lying zt;KaHe nce Ko is closed, establishing iii ). 
Let further consider fo r a> 1 the fo l lowing set 

-I - K _ I z: Z _ 10 + a (x-xo) , I C; V n D I . (B8) 

Obviously KCV CD and, f or a ... 1, K gets closer to V()D; since the 
compact KoCVnD. there exists a >l whi c h can be safely taken less 
t han 2, such that K o<:K CV"D. Consider n ow g C; 'I:' such that 
sup l f(x)-g(x) I < ~, with ~ <'/4 ,(8-0')12 , and remark that for 

x(;K 

x ,; ·D,-V, X-AxI-(A-I)xo with X1"KaCK andb!. Therefore 

g(x) ~ Ag(xl ) - ( A- I) g (xo ) ~ A ( f(x I ) - ~) + (A-1) (f (xo ) + ~) _ 

-O-~+ ( A-l)( 0-8'- 2~) . 

Since 0- 0 '> 2 11' we have 

g(I» a-~ > .L(a + a'). (B9)
2 

On the othe r h a nd 

g (xo).5 f (x )+ ~~a ' +~ <1-(a+a' ) (BIO) 

whi ch togethe r with (B9 ) i mplie s that inf g is attained on 0 n V 
and t herefo r e _g c. foand Q(g) C V n D. 

Let now x .c;:; V n f> . Wi th (BO) one can write X:::a z-(a- l ) x 0, wit h 
z , xo t;; K an d a ~ ( 1. 2) as previously fixed . Using the convex ity 
of g . we obtain 

II 

http:zC;[xo.yl


g(x):;:: ag(z)-(a-1)g(x
0

) ?; a(f(z)-1j) -(a-1)(f(x0 )+ 7j). 

and since f(z) ~ inf f -0 and a ~1.2)we get 

g(x)~ -3tj-8' ~ - £ . 

As Q(g) CV rO, it follows 

inf g ~ - £. (B11) 

On the other hand, g(x0 ) $. f(x 0) +71 • 8' + 71 -~ ~ + ~ <£ wherefrom 

inf g ~£. (B12) 

Eq. (B 11) and (B 12) read together I inf g I $. £ , providing the last 
part of the lemma. 
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a 

AHrenecKy H., DYHAaPY M., KocTaKe r. 
0 pa3AeneH~~ ~a3 B C~CTeMaX C Henpep~BHOH C~MMeTp~eH. 
np~~nb HaMarH~4eHHOCT~ ~ MOAYnb cn~panbHOCT~ 

El?-83-11 

AoKaaaHo, 4TO rpaH~4a pa3Aena ~aa e ~3oTponH~x D-eeKTopH~x MOAenRx 
C B3a~MOAeHCTB~eM Ka4a-renb~aHAa RBnReTCR A~~y3HOH np~ BCeX TeMnepaTypax 
KaK AnR KOHe4H~x 3Ha4eH~H D, TaK ~ e npeAeneD~~.noKa3aHo, 4TO rpaH~4a 
paaAena ~aa ocTaeTCR HeycTOH4~BOH Aame B cny4ae BKn~4eH~R "np~Kan~ea~ero" 
noTeH4~ana T~na A6paxaMa. HaHAeHo T04Hoe e~pameH~e AnR np~~nR HaMarH~4eH
HOCT~. MOAYnb Cn~panbHOCT~ OKa3~BaeTCR paBH~M KBaApaTy OfibeMHOH cnOHTaH
HOH HaMarH~4eHHOCT~. 

Pa6oTa B~nonHeHa B na6opaTOP~~ TeopeT~4eCKOH ~~3~K~ OH~H. 

Coo6~eHHe 06oeAHHeHHoro HHCTHTyTa RAepH~X HccneAoaaHHH. AY6Ha 1983 

Angelescu N., Bundaru M., Costache G. El?-83-11 
On Phase Separation in Systems with Continuous Symmetry. 
The Magnetization Profile ' and the Hel icity Modulus 

It is proved that the interface in the isotropic D-vector model and 
its n~~ 1 imit, both with Kac-Helfand interactions, is diffuse at all tem
peratures. The interface does not stabilize even when a pinning potential of 
the Abraham type is accomodated. The magnetization profile is explicitly 
calculated. The hel icity modulus equals the squared bulk spontaneous mag
netization. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1983 


