


This paper accomplishes the study, begun in the first part
(ref/V ), of the phase separation phenomenon in the D-vector
model with Kac-Helfand interactions and in its spherical limit.
Section numbers follow those in/!/ so reference to formulae
and results there will be made without further mention, as, e.g.,
Eq. (1.5) or Proposition 2.1. Section 3 contains the main re—
sult disproving the existence of the sharp interface in the
D-vector model (D 2 2), while Sec.4 indicates how to use this
ve;y/ proof for the generalized spherical model considered by
us/ %/,

3. THE PROPERTIES OF THE MAGNETIZATION PROFILE

in Sec.2, the study of the phase separation in our model has
been reduced to the study of the properties of the unique solu-
tion in T’: of the system (1.5) (fh} ¢ Up,and of its limit when
{h } approaches in a certain way the boundary of U..More preci-
sely, one has to take only h = fﬁ and hM fM 1chffe:rent from zero
to take into account the boundaTry condltlons as shown in Sec.l;
inverting ¥° in Eq.(1.5) and introducing the function:

F) =g 5 @ -rx G.1)

one is left with the following system:
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+€, 1= /ENFED, £, T, , 1gigM (3.2)
with the boundary conditions:

£ordupr ©To0 0= XL 8, <. 04y, 51 (B3)
where f =||£; || . From now on we shall study the properties of
the unlque “solution of Eqs. (3.2), (3.3) and of their limit as
8-> (see Sec.2).
Before proceeding further some simple remarks will be in or-
der. Thus, since ;- e>0,1<i<Mand SD'E'LEMH -e>0,Eq. (3.2) im—
plies

F(£,)> 9, 1<i <M. ' (3.4)



Choosing as positive the sense of rotation of £, over {y , of
angle less than 7, all angles 0; = ¥ ({.{; ) satisfy:

M
Ogifogi-ﬂk‘n. (3.5)

6i ‘:-[0, ‘IT’-

Now, it is easy to see that (3.2) can be written as (1<£1i < M):

$p10080; + & cos8,  =F(£): &, sing; = &;_,8n0;_; (3,6)

wherefrom:

£, €, sind, = £, £, sing, =c, i=1,..,M. (3.7)

i+l

The following properties will be needed later:
(i) The quantity c¢ defined in (3.7) satisfies

0<M+Dc <8 <m. (3.8)

(ii) If the solution of (3.2) has @, [0, /2], 0<igM, then
(€2 ~e¥eD"® v (g - /eN =), =120 (3.9)

(iii) Let g( ¢;x) be defined on 0g fe<x <1 by

g(c:x) = F(x)-2(x 2—c¥x 2)"S. (3.10)

The function g(c; -) is convex on its domain. If
-1
B.=(r+2) : (3=11)

then, for B<B,.. the equation g(c; §)=0 has only one solution
e={=0 and g(c; {&) is strictly positive otherwise; for > 8,
the sign of g and its zeros cannot be simply expressed analy-
tically and Figs.] and 2 provide the missing analysis.,

(iv) Let 1£;:1<i < M| be such a solution of (3.2) that
GEC[O.H/?] »0<i<M. If for 1gig M, i, is a local minimum
(i.e., & 1> &; ) with ¢; > /G, then either g(c-‘fin >0, or
gle, &, )y=0 ~in‘which case ;=& for allOgigM+l. If &)
is a local maximum, then either g(c. €i,) <0, or g(c.&; ) =0
and again ¢&; = & for all D<i<M+1l

(v) Let 8>B. and define the following continuous function:

£ = maxiJe, £(t, cclo,apl, (8:12)

' |
| I
i |
' _i_ (c) :

§(c)
1 ¢ e,
a(p) acp)
Fig.1. The sign of the func- Fig.2, The sign of the func-

tion g(e, &) for B¢ ('Bc.r“l]. tion g(e, &) for B>r -~ 1L

where £(c), £(¢) and a($) have been introduced in Figs.l and 2
(£(0) is taken O when not defined). Let now B>B, and &,. £ yu1
bé fixed as specified in (3.3); then the solution of (3.2) sa-
tisfies for M large enough (depending on g, ¢, and £y ) the
relations:

£ > (@, i=12,..M: 6,G6[0,2/2), i=0,1,...M. (3.13)

Indeed, define two continuous functions £o(1). £y, (¢ T.tcl01]
of constant moduli &) =&o, €, (0 =&y, and such that £,(0) =
= {08, ,§M+1(m'fu+1§ , while L =&q 5 & 1_1(1)=--:§"‘H“‘Fo1: any
t&[0,1], the system (3.2) with boundary cb"nﬂ:Ltions £t 5 Syt (D
has a unique solution lgi(t)! which depends continuously on t.
Let us choose M so large that min {a(g8), foz y 'ffh-l b>a /(M +1).
Recalling (i), one will then have c(t) < min {a(j), 602,.5; 1‘As (o)
is continuous and £(0)=0, one can find My such that the inequa-
lities cm<min1a(5s,gg, £2 (hand £o(t) <minl &y, £y, | hold si-
multaneously for M>M, .A +t-0 the angle between 30(0) and §M+1(°)
is zero, so 0;(0)=0 ,0< i< M, from Eq. (3.5), hence ¢(0)=0.

As £(0)=0, Eq. (3.13) is fulfilled. From continuity, the set of
points t<[0,1] for which (3.13) is fulfilled is open in[0,1]. If,
on the other hand, (3,13) is violated at some point in (0,1], then
there exists t; €(0,1] such that for any t<(0,t,), (3.13) are sa-
tisfied, while for t =t, either:

(A) &gy 2 &5 (t5) = £(e(ty )  and 6, (tg) [0, n/2] for all i; or

(B) &£;(tg)> &(e(ty)  and 6, (ty) < 0; (t) =n/2 for all i
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Suppose (A) holds; then, since ¢(tg) <a(B) , & (i5) = fin(to)-
= £(e(ty)) > Ve(tg) and (iv) can be applied providing either

gletg) , €i,(gN>0 and hence -fio(ln)>§-(0(ln))> ¢ (e(to))
contradicting (A), or {i(ln)-{?io (to) for all i, in which case

=45‘((:(%.‘}‘)-- ¢ o (tg)= £4(ty) = &,, contradicting the choice of M.

Suppose now (B) holds; as MxMy, & , ¢y, > /¢ and &;(ty)> &(ct>
>Velty) for all i, wherefrom ¢; ,,(t5)- &, (tg) > e(ty), which®
0 o

contradicts (B) (c{ty) = ¢ ; +1(tg) &i(tg) as 8;0 (ty) =u/2).

(vi) Let g0 and ¢, , i be fixed, If [g;; 1<i¢Miis the
solution of (3.2), then for M large enough (depending on g8 ,
€0 5 émy1 ) there exists ig=iy(M) ¢ 10,1,...M+1] such that &
is a monotone function of i both on ivip and on igi, .

Indeed, for B<B,one has F(§)>»2¢, and (3.6) provides:

Eina+éiog 2 2¢;, i=1,..M (3.14)

which shows that [¢;] cannot have a local maximum. Thus, either
it is a monotone sequence (in which case ig=0 or M+1)' or it
has a unique minimum at some ig€ {1,....M} For 8> B.and M > My,
with M, as given in (v), one has &;> £(c) and 0;c!0, /2 for
all i. Then, applying (iv), one has that:

fj°> E(C). if jo is a local minimum (3.15a)
‘fj < &(0),if jp is a local maximum. (3.15b)
o

Thus, the sequence |&;;0<i <M 41} cannot have both a local mi-
nimum and maximum, implying that it is either monotone (in
which case ig=0 or M+1), or it has a unique local minimum (or
maximum) which is attained in igc {1,2,.. ML

Having established the properties (i)-(vi), we can pass to
prove the following.

Proposition 3.1. Let B8+ B.and {£;:1<i<M] be the solution
of (3.2) with boundary conditions £o ,§M+1.Then there exist
b>0 , B>0 and M, all depending on 8 , Eo s ,EM“,such that
for M2M,

- —bd;
|é(c)-¢, | <Be i=0,1,... M41 (d; =min {i,M+1-i]). (3.16)

Proof. Let M be so large that (vi) holds. Let B<B_.Then
T (F-202F 0-220"1>0 for x>0 (3.17)

and recalling (3.6), F{{)) < fi+1+'fi--l' wherefrom
Ey g (B o Epq B8 Emlucl (3.18)

For ifig= ig(M) given by (vi), (3.18) leads to

¢ slo/Uroll' & Ustg=0;i & o/l &, tizigH) (3.19)

while, for i=ip, it implies ’inS[“/(l“gm”(fi a+t €
Hence: 2 9

M+1—i

fio S[1+w/(1+2w)]![m/(1+tl,)]i°{.‘0+ [o/(1+a)] €y b (3.20)

Taking b= In(1+1/y), B .2maxffo.:f“ ! and accounting that &(¢)=0,
o M4l
one obtains (3.16).

Let us suppose now B>8_.Then, by (vi), the sequence
{£,:0<i<My 1] either has only one local extremum in iy {1,....M],
or it is monotone.

a) If {£; | has a local minimum at i,, it is monotonically in-
creasing of |i-ip| both for i<i, and for i>i, . Besides, (3.15a)
will provide

max{ & £y V= €2, > E(e), O<igM +1. (3.21)

Remembering that £(¢)>0 and g(c,x) is convex on X3 \Jc.it is
easy to see that, for ¢ > Z(0):

£- £(0) < @ (9 8(e. &), where & (0)=1g" (e, (O < o . (3.22)

We apply this inequality to &;. On the other hand, operating on

Eq. (3.9) (for, e.g., i<i, ), one obtains g(c:.(fj).g(tf-(c)“—c%-'“i
(fl—l + fii—] - 26[) S ( f(c)‘ -02)—%" [(61_1 _'f(c))"( .Ei —E(c))ll Which

gives, in conjunction with Eq. (3.22), &; - E(C)_< IKI{ (& - &)
>

with K =g (0) +(Z(e) —c 2™, wherefrom Eq. (3.16) immediately fol-
lows.

b) If [&;0<i<M+1] has a local maximum in i again by mono-
tonity and (3.15b):

mintéy, éy, 1= €, < &, <&o), 0<icMsil.” (3.23)

By the choice of M in (vi), £ > Jc and the convexity of g pro-
vides:


http:w(e)g(e.fl

E()- £ < -3 (O gc, O where & (=—ge, &, NED)-£,)" (3.24)

valid for £< E(c). Further one proceeds as above.
c) The case of monotone [¢;;0<i<M+1} can be easily reduced
to a) or b) before,

Proposition 3.2. Let [ §,:1<i<M| be the solution of the
system (3.2) with boundary conditions £, , {jy,;. Let 8>f,,
0; =3(&.8i01).0=9(&, €yyp).and d; ,b , B be the quantities
introduced in Prop.3.7. Then, there exist C>0 , My depending
on B, & , &y, only such that, for M2 M, ,

16, -0 /(Ms+1)| <CM™*1InM (3.25)
whenever i 1is such that d; > (1/b) InBM,while otherwise:

8, =0(1/M). (3.26)

Before proving this we give without proof the following

Lemma 3.3. Let ¢, & (0,7/2) and iglrﬁixqs. If there exist A>0,

a>0 and i0 c {1,...N} such that:

asing; < sing; < Asing; i=1,..N, (3.27)
then
(ag/AN)(1-(Ag /aN)?) < sin ¢, < Ag/aN, i=1,..N. (3.28)

Proof. If #=0 , (3.25) is trivially satisfied. So, let
6 € (0,7). Let us choose M; such that, for M>M,, (v), (vi) and
Prop.3.1 hold true. Property (vi) and (3.15) imply:

€ > mint&, £y,q . £(O1= £, (0
~ i=0,1,..M+1, (3.29)
fi = mu’fo- fM‘_ll f(c)i = lf*((!)
while Eq. (3.7) leads to

sinf; = (& ;1 &,/6,€)sme; . iig €01, M) (3.30)

providing
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(£,(00/¢%(e)’sing; | < sing; S(£*(0) /€, () sing; .

In virtue of the lemma there exist two positive constants C*
and C,, both independent of M, such that

C.0/M+D < 6, <C*(B/M+1), +i=0,1,..M. (3.31)

Let now Sy =li: d; » (/b)InBM, 0 <i<M4+1} and let M be its car-
dinal, Sy is nonvoid for M large enough, and

~ =4
M-M)/M =O(M IoM). (3.32)
Besides, recalling Prop.3.1, we have:
1€, -&@)| <d. desy. (3.33)

The Eqs. (3.30) and (.3.33) imply for i.ige Sy :
- - — -2
A sing; <sing, <Asing; , with A-(.f(c}+-n1l~)2(£(c)-%d-). (3.34)

But, since E(c)- E(O):O(c) and ¢ <»/Mi1, one gets
A =14+0(1/M). (3.35)

For ¢, , ic§ the Lemma 3.3 provides, with 0 !iczsmai 3
£ W9 (-(A%F /M) < sing; <FA% m~!

- - - o (3.36)
As 0=3 + lg‘}moig 6 +C*M-M*)/(M+1) =5 + OM ™ 'nM),
0<6-0 =0M 'InM). (3.37)

Collecting (3.32), (3.35), (3.37) and using (3.36), one gets:
6,=0M +OM “lnM), iGS,. (3.38)

Proposition 3.4. Let {{;; 1<i <M} be the solution of (3.2)
with boundary conditions &, , £y, €T, such that £ =0, & .e>0.
Then for B>B.. and arbitrary x< (0,1): -

lim € = Eg(BI(E, /€ cosf x + e singx], (3.39)

M-uo‘—M—ax

where B-Q(ﬁg.;{M“)and EB(ﬁ)- &0} is the bulk spontaneous magne-—
tization.
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i - k - k
Proof. Take into account that §=&0(£/6, Jeos(i_zo 6, )+esin E}::gl ).

Prop. 3.1 ensures that & -+ £(0) =£(f), whenever xG(0,1), while
Prop. 3.2 enables us to assert that

k

lim 2 Gi -8-!
i=0

M-tm,

k/M-> x
wherefrom (3.39) results.

Proposition 3.5. Let fy \ (B) be the free energy of the model
with M layers under boundary conditions as in Prop.3.4 (ob-
tained by substituting the solution {£;}! of Eq. (3.2) into
((B.1h1,1£))  defined by Eq. (1.3)). Then:

Y(ﬁ)alimﬂz[r (B)-t, ()] = £ (B
Mow 02 OM BI= 1o m (BN = £,(B). (3:40)

Proof. Remark that c=8Z(c)2/(M+1)+0(M +1)~2InM)
wherefrom:

0%5(P

£ (B)-£(0) =
8 (M11)2

-1 in
[r+2-1/ BF " (F 7 (£5(BM) + O(M+1) "nM)
Using this, Eq. (3.40) can be checked straightforwardly.

4, CONCLUDING REMARKS

Prop.3.3 shows that looking at a region far away from both
boundaries, the state is translationally invariant. The direc-
tion of the local order parameter is intermediate between the
directions of the boundary fields and depends om how the thermo-
dynamic limit is taken. Also, Prop.3.2 provides the following
information on the behaviour near boundaries:

lim &, = (£/¢, )m (B.&).

Moo

Here m (5 ,£,)>0 are the layer magnetizations of a semi-infi-
nite system with boundary field ¢, (as defined in/3/ ) which
approach exponentially fast the bulk spontaneous magnetization.
In other words, the layers at finite distance from one boundary,
however small the coupling to it, do not feel the phase at the
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other boundary. Then we can conclude that an interface can be
localized neither deep in the bulk, nor near the boundary. The
same conclusion holds also in the spherical limit of the model
we considered here, as announced in/%. To see this, it is suf-
ficient to remark that the function the minimum of which is
looked for in the spherical model is nothing but the limit,
whenigl converges to the boundary of‘UE and D s, of the func-
tion T, (y) appearing in Eq. (2.11) as an artifact of the proof
of Prop.2.1, and to apply the lemma in Appendix B, Thus the

D —vector model and the spherical one can both be solved in
one stroke.

The interface problem has been recently solved for short
range interactions in Ref, % within the spherical model of
Berlin and Kac/%/. They found as well that the interface is dif-
fuse at all temperatures. However, the magnetization profile
there has some unphysical features, which led them to suggest
that the model itself is inadequate for considering such "non-—
translationally invariant" problems. Qur generalized spherical
model is free of this objection and indeed the profile we ob-
tain is physically sound.

Incidentally, Eq. (3.40) also holds for the spherical model
of Berlin and Kac/%, where Y(B) is defined by the difference
of the free energies with antiperiodic and periodic boundary
conditions’®/, We propose to study its status in the generalized
spherical model with short range interactions in a future pub-
lication.

APPENDIX B

Let DCR" be an open convex set and DR a continuous convex
function. Let f be the extension of f to D defined by:

f(x) = liminf f(y), x<D. (B1)
- y+x;y&D

Evidently f and f have the same lower bound and f is lower
semicontinuous on D. For every a>inf f, the set Q(f,a)={x< D:
f(x) < al is convex and closed’?/, and i attains its absolute mini-—
mum on the set Q(f) = 0 ; Q(f.a)=ix<D: f(x)=inf fL Let € be the
set of all continuous convex functions on D, and Gg the set of
all fc € for which Q(f) is nonvoid and bounded. Then, the follow-

ing continuity property holds:

Lemma., Let fc(. For every «>0, there exist >0 and a compact
KcD such that for everygc C satisfying

sup | f(X)—g(x) | <y
x& K



one has g& ¢ and
Qeclz: d(x,Q(f) < e |; |inff —infg|<e , (B2)
where d(x, Q(f) is the distance between x and Q(f).

Proof. Without loss of generality one can suppose inf f=0.
Let V be the set

V =]x: dix,Q(N) <e }. (B3)

Since Q(f) is nonvoid, convex and compact, V is convex, open
and with compact closure, V. As { is lower semicontinuous on D,
it can be asserted’/?” that there is a >0 such that Q(f,d) c V.
Let us choose 8°¢(0,8), 8'<¢/4 and X, ¢ D such that

Ty 3. 0. (B4)
Let us now consider the following set:

Kaxlz: (2 =5, z.G[xO,y]. y&(D~V)aV. (B5)
Then the following properties hold:

(1) KsC VD N

(ii) for every y € DNV, [x,vlnKs¥ ©;

(iii) K3 1is a compact set,
Indeed

i) Obviously KgC Q(f,8)CV. If zc Ks, then zc[xg,y] with y e D\w;

but y cD\Vimplies f(y) >8 and, since %&D then[xgylcD and there-
fore Kgc D,
i) Lek vCD\V as x5¢ VaDand V is open and convex, one
has [ x5,y 1n V=[x4y)), [ %9,y) n(D\V)=[y; .y]l, where y € V(D V).
Evidently, f}[)_ 1 )3 and therefore supposing that [x,y]NK5=@
1‘;

implies 8¢ f([xp,y;)). But since f is continuous on D and
[%.¥;)CcD s f({x5,y;» is an interval and, accounting that
f(x,)=8"<5 it followsf!],‘o‘vl) <d8.Recalling that f is lower

semicontinuous, we shall have

fly) = lim inf f(2) <3
Z*Y]:ZG[:AU.”\

which contradicts f(y)>8. Hence [x, ylnKs5+ ¢.
iii) We know that Kg is bounded. We shall show that K3 is

closed. Let us consider a convergent sequence |z IFKB, + Z.
There exist Ve c(D~VynV and A »..[(J 1] such that
10

Zo= (1~A )%+ Ay¥y - (B6)

But (D \V)NV is compact, and hence there exists a subsequence
!ynk { of ly, | converging to y &€ (D\V)N YEq. (B6) provides:

|"‘uk —Xol = Ay |¥a, -%o [ (B7)

Let us remark that likmlynk-xob 0 (because, otherwise, x;=y

which is impossible since x3€ V but y € D\V), which in turn im-
plies that A, ny 18 convergent. Let A=lim Ap, . Eq. (B6) provides
then z =(1-X)xp+ Ay with xc[0,1], yc(ﬁ\\f‘)ﬁv But, since [z [CKgC
CQ(f,8) » 2€Q(f, )NV, But z< [xg,y], so z €[xy,y]l nV=[x4y)CD. Thus
zC D and therefore is a continuity point of f which leads to

f = lim -
(z) 1im (znk) 5

implying zGKgHence Kg is closed, establishing iii).
Let further consider for «>1 the following set

K={z: z-x°+a—1(x—x0) . xcffﬂﬁi . (88)

Obviously KcVcD and, for a»1, K gets closer to VND; since the

compact K gCVNnD, there exists a>1 which can be safely taken less

than 2, such that KgCKCVnD. Consider now 8 'C such that

supc1 f(D—-g(x|<p, with n<e/4 ,(8-8°)/2,  and remark that for
xGK

x DNV, x=Ax)—(A-1)Xy with X;GK4CK and A> 1. Therefore

B(X) 2 Ag(x) ) =(A-DB(Xp)2 A(F(X )= 7) + (A=D(f (X5 ) +7) =

=8-9+(A=1)(5-5"= 2.

Since §-5>2y we have

g(x)> 8-n> -12-(3+ 5). (B9)
On the other hand

g(xg) < (X )+ n=8"+79 <JE(8+S') (B10)
which together with (B9) implies that inf g is attained on D NV
and therefore g¢ (jand Q(gicV N D.

Let now x& VD, W1th (B8) one can write X=az—(a=1)Xp, with

Z 5 €K and ¢ ¢ (1,2) as previously fixed. Using the convexity
of g, we obtain
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