


1. INTRODUCTION

Establishing the existence of non-translational-invariant
Gibbs states describing sharp interfaces is an interesting and
nontrivial problem in the theory of phase transitioms. It is
known that the ferromagnetic Ising model in two dimensions has
no such states’1+2/ while for three and more dimensions the
contrary is true 3%/, The absence of sharp interface in the
two-dimensional Ising model is due to the existence of large
fluctuations in the system, which make the two phases — when
brought 5pto contact - to spread one over the other on a thick-
ness ~L (L is the interface length), resulting in zero mag-
netization profile /1% | On the other hand, the fluctuatiomns
could destabilize the interface in the three-dimensional Ising
model and a roughening transition at Tp<T,(3) has been conjec-
tured /87 |, However, the only models for which a roughening
transition has been established rigorously are either S0S mo-
dels /8/or models with a pinning potential of the sort studied
by Abraham’9/. Thus, thermal fluctuations play an extremely im-
portant role in the phase separation and it is well known that
they are controlled by the symmetry of the Hamiltonian as well
as the lattice dimension and the range of the potential. For
systems with continuous symmetry, the fluctuations are expected
to increase and there is a phenomenological argument 710/ accord-
ing to which the interface should have a diverging width. We
adress ourselves in this paper to disproving the existence of
a sharp interface for isotropic D-vector models and their sphe-
rical limit. In order to suppress the fluctuations and thus
favour the localization of the interface, we considered interac-
tions of the Kac-Helfand type’!!/. Moreover, we try to pin the
interface near one boundary, by lowering there the coupling as
was done by Abraham ’?/ for the two-dimensional Ising model.
Despite this, we found that for all temperatures the interface
is not localized even nearby the distorted boundary; its width
is of an order of the thickness of the sample on the top and
bottom of which we imposed "mixed" boundary conditions. In
this respect we have explicitly calculated the magnetization
profile taking full advantage of the simplification induced by
the long range character of the interactions. In turn, the know-
ledge of the profile allows obtaining the leading asymptotic
term, as the number of layers, M+ =, of the free energy shift



induced by the mixed boundary conditions relative to the homo-
geneous cnes. It turns out that this shift behaves as 6 72.Y.1/M2
(instead of o-1/M in the presence of a sharp interface), as is
phenomenologlcally expected 12/ Here 0 is the angle between
the spin on the upper and lower boundaries. The coefficient Y
is the so-called helicity modulus. If one accepts the D=2 model
as describing superfluidity, Y is related to the superfluid
density. In the models under consideration here we obtain Y
equal to the squared bulk magnetization. We would like to
note that the results obtained for the D-vector model hold
even in the spherical limit and have been previously announced
in the letter ”!3/. As our method relies on establishing a cer-
tain isomorphism (very likely holding only when long range in-
teractions are used) between the magnetization profile of the
D-vector model and that of a "D-vectorial spherical model"
(which under appropriate limits becomes that considered 1n/13/),
there will in fact be no need to study separately the spherical
limit.

The isotropic D-vector model with Kac-Helfand interactions
can be described as follows. COHSldeI a slab con31st1ng of M
copies of a rectangular array ACZ of "spins"; the energy
of a configuration IS c RD: ||S1 I2=D, rcA, 1<i<M}
is taken as:
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where p : R LRis a positive definite function such that
fp(x)dx =1, the scaling factor y> 0 controls the interaction
range,

By =r8,+8, 1.1 » bi=l..M (r>2 (1.2)

and Dilggi is a homogeneous magnetic field acting on the it
layer. To describe the phase separation, we shall eventually
take all h, =0 but h, and hy in terms of which we describe the
boundary condltlons, Namef}, consider the spins in two extremal
layers, i=0 and i=M+1,fixed along two different directions e 1
and &,; moreover, allow a different coupling Jg; <1 at one boun-
dary; then h, = 5,181 = Jy,m+1 82 (I 411 =Jo,1> [lh !l =1).

The model under’ consfgerat1on is the limit as y + 0 of the
model defined by the Hamiltonian (1.1) in the thermodynamic 1i-
mit A+, and it is an inhomogeneous mean field model with M
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D-vector order parameters. In particular, the y+0 limit of the
free energy per Spin and per spin—component exists by standard
arguments 14/ and 1s given by the absolute minimum with respect
to 1€l =1£,:£, € RP, 1<i<M} of the function:
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F(Ixl) =D 'l0g [ aSexpln'"x.8) (1.4)
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is the free energy of one spin in the external field DY2x ,and
has the properties (i)-(iv) listed in App.A. Taking into account
that F has a linear behaviour at infinity (|F7|<1) and that the
matrix J, Eq. (1.2), is strictly positive definite, one conclu-
des that f(ﬁ,[bi -) attains its minimum at a finite distance.
Since F is an even function, ﬂﬁ,!hl is differentiable on
RPM | and hence its minimum points are among its stationary
points, i.e., among the solutions of the system:
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1<ij<Mm.

The minimum point {£! is intimately related to the magnetization
profile. This first” part of the paper (together with the lemma
on convex function in Appendix B, Part II, which seems to be
new, and therefore of independent interest) develops the tech-
niques required for solving Eq. (1.5).

2. THE LAYER MAGNETIZATIONS AND THE MINIMUM POINT

We have seen in Sec. 1 that the model under consideration
has a mean-field character and thus solving it requires finding
the absolute minimum of the function ITB {hi, -) defined by
Eq. (1.3). We are however interested in the phase separation
phenomenon, what requires studying the magnetization profile
across the slab thickness. This is equivalent to the detailed
characterization of the point at which the absolute minimum of
f 1is attained. To be more precise, suppose f(8, f{nl, .) attains



the absolute mnlmum at a unique point f({hl) , where moreover

the Hessian matrix ¢ f/&fmaf is nonsmgular, then the layer
magnetizations, at the given ﬁ and h
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are nothing but m; =¢,(lh}). (< >},Aand t'(m denote respectively
the Gibbs state and free energy deflnedyby the Hamiltonian
(1.1)). Indeed, the minimum is attained on a solution of the
system (1.5). Since the Hessian matrix is nomsingular, for all
{h’l in a neighbourhood of ihi, the system (1.5) has a unique
solution f(ih “}) in the nelghbourhood of £({h}), which depends
dxfferent1ab1y on !h | and is the unique point of absolute mini-
mum of f(8,{h’},.).(For the latter fact, remark that the minimum
point is alw-a'ys in the compact ||£ [|<1, i= 1,..., M, as is
seen from Eq. (1.5)). Thus I(B,{h"li £(h7)) is differentiable at
fh’}={h}. Remembering that f "A (B,1n”}) ~are convex of {b’} and
converge for A+, y; 0 to (B, Th {"(lh 1)), the assertion
follows from Griffith's theorem”18/,

In the next proposition we shall exhibit a convenient domain
for Ih} on which the situation above takes place and suited for
descnbmg phase separation. We start with a few definitions.
Let us fix e€RD and define:

$e=ix < RP: x.e>01,

e~ 2 o . y (2.2)
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where 5} stands for the closure of . For lh*!—lh* yions .h*}G'U
with h*e 0,we define 2

-
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Proposition 2.1. Let {h IGil and B>0be given. Then, the
absolute minimum of (B, lni )" Eq. (1.3), is attained at one
and only one pomt £(1n}).” Moreover:

(i) tf(lhl)@@ and is the unique solution in $

(i1) f(!hi) “is differentiable on1|

(iii) There exists llmgunn for {h} 5 ih*l .

of Eq. (1.5);

{giqég*n‘ug‘ .
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Proof. We proceed in several steps

a) The points of absolute minimum of f are in $“

b) Eq. (1.5) has in .L“ one and only one solutmn

c¢) The Hessian matrix of f is nondegenerate at f f(lhl)
d) The existence of the limit in (iii).

a) For any {hl G‘ue and lél RPM one can write

h, = h‘i +4a e,

-1 -~ 1~

fl =€;+aig, i=1,....M, (2.4)

and 23:-0-

where hi.e={7.6=0;0bviously a (20,1<i<M (23

Let us denote by a ,a GR“ the vectors of components a;,a; res-
pectively. Accordingly, f(8, th}, {£1) can be written as:

18, tnl, lg!) = K(lg'l) + g(ip_'l, !g'l: 3 a),
where

RA£D) = (1/2m) z I & f’ .
=1 4 -

gﬂh i, [f a a)= (1/2M) 2 J nln - ({1/m) E QJ ((Ja+d))
1,j=1 i=1

the functions ®,(x) being defined by:

® @=pFF@EVER P,k =11GE7 40 Il 1<i<M. (2.5)
The setld },.,. ) satisfies the properties (i)-(iv) in App. A
and hence thé& I'emma stated there can be applied to see that

mf gh’l,I£"}; a,a) is realized at one and only one point

tx(hf ‘}) > 0. Considering now a p01nt [Ext at which f(8, {nt,.)
attains the absolute minimum, it is obvious that mr g(ih l [g* !a. a)

is attained at a*, where if“"l la* represenl: the decompos1-
tion of 1£{*}, cf. Eq. (2.4).7 It follows that a*>0, i.e.{*cT,
b) We can restrict from now on the domain of all the Func-—

tions entering into Eq. (1.5) to £ = IofC—.‘CM £ =1N¢l<1,
1<i<M} and define ¢: £ . RM by:
YN =BT FTIENLE L 1= 1M (2.6a)

As for any solution ¢, of (1.5), &y =F- (,8||(J§+h) || 5 the sys-
tem (1.5) is equivalént on £ to:

[diagy (£)) -J1& =, (2.6b)
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where diagy denotes the MxM diagonal matrix & y; . Now, if
lf*le satisfies (2. 6b), the matrix [daagv,[:(lf*'l) - J] trans-
forms the 5tr1ct1y positive vector a* into fthe positive vector
a#0, so it is a strictly positive definite matrix (see, e. Fos
tef.“s‘j. Then, Eq. (2.6b) implies:

£+2 = Udiagy (€*D - D701 P, i=1,.. M, (2.7)

In order to prove that Eq. (2.6b) has exactly one solution
in £, we shall try to find a change of variables under which
(2.6b) transforms into the extremum condition for a certain
strictly convex differentiable function. For this aim, define
G:[0.1]1+R by:

ax?) =715 my/x (2.8)
and remark that

¥ UED = GER),  1=1,M. (2.9)

Keeping in mind the properties of J (see (i)-(iv) in App. A).
one can see that G is strictly increasing, continuous and trans-—
forms [0,1) onto [ﬁ_l,u) besides, G is differentiable and

(G~ 1)’>00n (B!, ) . If H is a primitive of G~!, it can be
defined on [ﬁ_l,eo) , where moreover it is strictly convex. Let
9 be the open convex set:

D =iy erM: disgy ~3>0, >B7Yy (2.10)

and T, : T s R be the following function:

-

M . M
T )= I (disgy D7V b+ = HE), (2.11)
h i,j=1 > ij ~i~j j=1 i

where (b} cU,. As the mapping XX’ lis convex on the set of
strictly pOSlthE definite matrices’!? and H is strictly con-
vex, T, is strictly convex on P. Hence the system:

aT
' c“(y1 ) — [diagy =3 1h)% =0, i=1,...M (2.12)
-~ - 1

i

has at most one solution on T.

Let {£*] be a solution of (2.6b) and let y*=y (I£*}) < ©.
Then y* 1s a stationary point of T, . Indeed,” we Rave already
seen that [diagy (1£*}) = J]> 0.0n the“other hand ;,{;i (1£*}) = G(gi*?-) >

6

>GC¥)>p" ! and thus y*c 9. Accounting that by the definition
of y* 6*2‘ 1(y"‘) and invoking (2.7), it follows that y* sa-
tlsfles (2 12). But Tbhas only one stationary point, and
therefore {£*1Gy (y*J° . Further we shall consider another so-
lution {£**| and note that necessarily ¢ ({ **[=y*. Then
Eq. (2.6b) will provide = = (diagy*-J)"1h =£*.°

¢) The Hessian matrix of f at the point £ = £({h}) is:

M
Ma®t/aE,, 8y, =3y - - Ty F B I,
(2.13)
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where 7 o(Jf+h) and n_=||n ||. The last term in the r.h.s. of
Eq. (2.13) defmes a Rlatr].)? of the form JAJ, and since Fx)/x>
>F(x) for x>0 it can be seen that A is positive definite.
It remains to check that the remaining part is strictly positi-
ve definite. But F°(8p )/n = 1/t ((f) when ¢= £(fh}) and, accoun-
ting that :ﬁ(f (lh!)) T 20, t "can be easily seen that indeed
the first two terms in (2.13) define a strictly positive matrix.
The proof of statement (ii) in Prop.2.1 is thus completed

c) We shall begin by noting that Ty introduced in Eq.(2.11)
is well defined on 9 for all fh] c RMD . We shall denote by Ty
its lower semicontinuous extension to $ which is strictly con-
vex on T (i.e., strictly convex on the set on which T, is fi-
nite) and consequently it has only one point, y(!h!) ~ at which
its absolute minimum is attained. When fh} - {h* T, » Ty« uni-
formly on compacts in 0 and we can apply the T.emma in App.B
(see Part II), to see that y(ih}) » y([h*l)

Let us consider now 1h‘1 E_i"[[ sh*Te=0, 1<i<M and lete  ..e
be an orthonormal basis in the su’Tn]space of RD generated by h*;
1<i<M, Iflhicéh :

P

~ ] 1=~1

p
Eiﬂh'fa_e_, h;=2 h“e ., a>0, 1<i<M. (2.14)

If moreover nﬂg 6 "’U - 2 a, > 0. Note also that p< M . As
i=1

y (Ih}) converges when Ihl +{n*}, Hl!GS nU , every limit point

£ of .f(h) will satisfy: 5

[diagy(ih*?)-uﬂa*-“o: {2.15)

[dldgy(ih*i)nJltf"~h; » l<u<p



and:
Y (lE‘l)=0(a.*B+rf"2) , 1l<i<M, (2.16)

&

where E; =-(hi* 1<i <M); f"' = }?. £*"s. , @ realise the decom—

=1 ~# -Ii ~
position (2.14) of £*, while f*’:(f*’ 1<i<M.

The proof will be completed‘ﬂay sEow1ng "that Egs. (2.15),
(2.16) determine uniquely £* in terms of h*. If [diagy (lh*})-1J]>0,
then Eq. (2.15) provides Tuniquely &* . If however this matix
has the zero eigenvalue (necessarily simple with normalized
eigenvector ¥>0), thenp<M, and h*.v=0, 1< pu<p. Under these
conditions, Eq. (2.15) shows that a qnv(n> 0) and £3*° =A V40,
with u, (u,-v.=0) uniquely determined and linearly mdepena'ent.
To compute n “and Ay, use is made of Eq. (2.16) written in the
form:

6y, (1N =(s SABIVEL2 E A u v + 3 ul,1<icM
e ! p=1 F i p=1H# i p=1 g’ " ="="" 2 17)

Summing over i and using U,y =0, one gets p%4 21 Az ; then
e

Eq. (2.17) becomes a linear system of rank p, which determines

Aps 1<pu<p.

This completes the proof of Proposition 2.1.

In conclusion, it has been shown that whenever the layer
magnetic fields h . are all lying in a half-space (fixed by e)
the Gibbs state could be essentially determined. Calculating
the layer magnetizationsm, when {h}cll is equivalent to fin-
ding the unique solution in SBL; of the system (1.5). Moreover,
it has been shown that whenevér a certain limiting procedure
(closely resembling that through which the usual spontaneous
magnetization is defined) is adopted, one can determine the
magnetizations m; even when{h] 1lies on the boundary of U, .The
importance of this point stems from the fact that in the phase
separation problem the case when [h}cgl, , more specifically
when ‘1}1 and by have opposite directions,while the other magne-
tic fields are zero, has to be considered.

APPENDIX A.
Let |®; :R+R; i =1,... Ml be a set of functions, such that for
all i —1.....M the following conditions are fulfilled:

(i) &;(x) =, (~x), &, (R) C R, , LS es R);
(1i) ¢ x)>0 for x>0 and 11m¢ (x)=1

X-+00

(iii) ®{(®)>0 for every x C R;
(iv) ¢"‘(x)<0 for 2>0.
Let us now define ffq,. MLR by:

1 " M
o @=501.2 -p7 I 0 @x+h)). (A1)

where J is an MxM strictly positive definite matrlx, positive
with respect to the componentwise order in RM (i.e., with po-
sitive entries) and irreducible, while h& RM, h#0 and h>0.
Then:

Lemma. The absolute minimum of r.fq, on RM is attained at one
and only one pomt x(d’) satisfying x( )> 0. Moreover, if
!¢1.1 1,....M} is another _set of functions satisfying_the condi-
tions (i)-(iv) and ¢’>¢' g Y=l M, then x(q’) S

Proof. Let ¢ : RM-»R be defined by:

~

¢, =0 (BUx+h) ) i=1,..M. (A.2)

Now, since J is strictly positive definite and ®; have linear
behaviour at infinity (see (ii)), J¢ attains its absolute mi-
nimum at least at one point, which should be among the solutions
of the system: Vs fo =Jx - T¢(x)=0. But J=JT, and J~! exists,
hence the system can be brought to the form:

X =g (A.3)

showing that the stationary points of F4 are fixed points of b -
The followmg properties of ¢ will be needed:

a) ¢ is 1ncrea51ng on RM (with respect to the order intro-
duced above); its fixed points x satisfy |=4] <1

b) If x<¢(x) (or x> ¢(x)) the sequence ¢°n converges when
n+e to a fixed point of &.

c) There exists n such that ¢°"(ix: 220, x F0hcix:x>01.
In particular, if x>0,x4#0 is a fixed pomt of o x>0.

d) ¢ has one and only one fixed point in the Set “ix:3>0,x40},
namely £ = lim ¢°"(0). e

n—+oc ~

Properties a),b),c) follow easily by inspection. For d),

account for ¢ being strictly concave on x>0 to arrive at:

$; Ax + (1-X)g) > A, (X) + (1-A), (), i=1,...,M (A.4)

with at least one strict inequality; herexy>0, X{y, and
AC(0.1). If x,y are moreover fixed points’ of o, “we T(now by
¢) that x,y»O “As X#y, one can find Ao £[0,1]  and an index



ige {1,..., Ml  such that

5=A.OE+(1-).O)!>_0 and =z H-\nlio-l- (1—A0)y10=0.

lo
With (A.4) we shall have ¢(2z)<z and ¢(z)# 2 . Property c) enabl-
es us to find N such that BO%Z)>0,"while a) leads to 2z >

> ¢°%(z) >0, which contradicts z;, =0.

We are now prepared to prove the lemma. We begin by noting
that if y is an arbitrary fixed point of ¢, then there exists
a fixed point£>0 such that |y, | <&, , 1<i<M. Indeed, let y* be
a vector of components yi=|y;| « Then one has 0<y*<g(y*J
(account that h>0). Hence by b), ¢°"(y*) »{ monotonously in-

creasing, § being a fixed point of ¢ ; thus "¢°" W<§¢ . Further
let ¥y be an arbitrary stationary point of ffq,. Then:
M
ffd,()')=ﬁ b Glcyx)' (A.5)
o i=1
where
0,() = 0/ 0 ()-8, 00w - Ln v, (4.6)

which is strictly decreasing for y> 0 and has the property
G; (5) 2 G;(ly|). Using now (A.5) we have Fy(9)>Fyp (v*)> Ty (£), where
£ =lim ¢°i(y*), Thus, the absolute minimum of Fg is attained

n-soe
¢, E'
- -~

at the only positive fixed point of
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