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I. INTRODUCTION 

The models describing irreversible processes help to clarify 
many qualitative fundamental problems (cf Foch and Ford 111 ).In 
particular, the Lorentz model has been used for reconciliation 
of the microscopic reversibility with the macroscopic irreversi­
bilitl (Hauge 121 ) and for studying the effects of high densi­
ty 13• 1 • Our paper is devoted to a much more modest end. We 
shall study the different methods of solving this particular 
model and compare the obtained results with the exact solution 
given by Hauge /2,3/ . 

We begin our account in sect. 2 by presenting the exact Hauge 
results. In sect. 3 we show that the Zwanzig-Mori projection 
method gives the exact equation for the local density of partic­
les n(r, t). Section 5 is devoted to the method proposed by 
Zubarev and Khonkin /6/ for solving the Boltzmann equation. The 
results obtained in this way correspond to a series expansion 
of the exact solution. The Appendix describes the familiar 
Chapman-Enskog method (cf. 181 ) • This approach yields series 
expansion of the solution obtained in an elegant way by Hauge/2~ 

2. EXACT SOLUTION OF THE DETERMINISTIC LORENTZ MODEL 

In this model a number of stationary spherical scatterers 
are distributed randomly over a three-dimensional volume under 
the restriction that they may not overlap each other. A number 
of light, mutually noninteracting point particles, having velo­
cities of constant ma~nitude, are reflected specularly when 
hitting a scatterer 14 . We shall confine ourselves to the case 
of small density of scatterers, D8 ,and to a rarefied gas of 
light particles 12 • 3 ~ Then, for infinite space with no external 

.... .... 

forces the one-particle distribution function r~. ~t) obeys 
the Boltzmann equation 

a c ........ 
-+vVC=-BC, (I) at 

where v is the particle velocity. In the case of spherical scat­
terers of radius a the collision operator B has a simple form 

1 . 
B =---(1- ~o ), 

T 
_,.,:....--~~' (2) 
~ (~ 

:.~ 

1 

:., r' ~ 

.. 



where the' relaxation time r is related to the quantities des­
cribing the scattering in the following way 

( 2 )-1 T=D 8 VaTT, 

The operator ~0 , responsible for averaging over all directions 
of velocity, e.g., 

<l! ... ... 1 ... ... 1 .. 
Jo t(r. v, t) = -4 r d!lv·f(r, v', t) = -n(r. t) 

1T 4TT (3) 

defines the only hydrodynamical moment of the distribution func­
tion, namely the local density of particles n(f: t). Clearly, in 
view of Eq. (2), the Lorentz model can describe only the relaxa­
tion of the angular distribution of particle velocities toward 
an isotropic distribution, so it does not describe the relaxa­
tion toward the complete equilibrium. A natural field of applica­
tion of the model is the description of motion of neutrons in 
matter 171 • 

The operator P 0 is idempotent 

p~ = p 0. (4) 

An arbitrary angle-independent function is the collision inte­
gral, e.g., 

a, -+ -+ 
BJ0 f(r,v,t) = 0. 

By applying the Fourier-Laplace transform 
-+ -+ 0() • ........ -+ -+ 

cl>(k,v, z) = f dte-zt f d3re 1kr f(r,v,t) 
0 

one obtains the following form of the Boltzmann equation 
...... -+.... ........ -+-+ 

(z- ikv)cl>(k, v, z) = Bcl>(k, v, z) + h(k, v), (Sa) 
-+ ... 

h(k, v) being the Fourier transform of the initial distribution 
function. Hauge 121 has found the exact solution of Eq. (Sa) 

-+ ... 

cl>(k, v, z) 
1 -+ -+ -+ 1 kvr -+ -+ -+ -+ 

= ,- ~ (k, v, z)[l- -arctan(--}]~0 (~(k,v,z)h(k,v) )+ 
k vr 1 + r z 

(6) 
-+ .... -+ -+ 

+ ~ (k, v, z)h(k, v), 

where ~dL ;, z) is the resolvent 

2 

.. 

.. .. -1 ...... -1 !R(k. v. z) = (z + r -ltv) . 

.. .. 1 1 
Thus, 41(11:, V, z) has a simple pole at z = 1ltv-..,, a cut from Z=- r -ikv 

to Z=-: +ikv and, for kvr ~ ; , a simple pole at z=}[k:vrcot(kw)-1]. 

The first pole reflects one-particle "chaotic" motion, and cor­
responds to the continuum of eigenvalues 

1 
A =- -(-1 + ikVr~£), I' r -1_5~t:S1. 

The second one, hydrodynamic pole, corresponds to a discrete 
eigenvalue 

1 A(t) .. - [kvr cot(kvr) - 1 ], 
r 

, 
0 :S kvr ~ "2 

obtained for the Fourier transform of the Boltzmann equation (I) 
by Zweifel and Case 171• For small It, i.e., kvr«l, A(k) defines 
the diffusion constant 

2 A(k) .. -k D, 
1 2 

D .. -v r. 
3 .. 

The long-time asymptotics of n(k, t) is dominated by the hydro-
dynamic pole 

n(k,t)- eA(k)t 

This means that after laps of time longer than r the density of 
particles obeys the equation 

an ~ Bp 22p 2p 2p-t< v2 )P < .. t) 0 - + "" -- v r - n r, = 
at P-:1 (2p)l 

(A« L, r « t) , (7) 

-1 
where A = vr , L= (k/2TT) , Bp are the Bernoulli numbers: Bt=l/6, 
82-1130, etc. The Fourier transform of this equation defines 
the k -dependent diffusion coefficient D ct<Ct). It is seen from 
Eq. (6) that for t > 0 the t-th moment of the distribution 
function 

..... ... ... kv 
fcllv¢(k, v, z)Pt (coatJ), cosO"'-

ltv 

does not exhibit the pole corresponding to one-particle motion. 
It can be shown that the contribution of the above-mentioned' cut 
to t(k,~,t)represents this kind of motion. 

3 



3. DYNAMIC EQUATION FOR THE LOCAL DENSITY OF PARTICLES 

As the considered system is isotropic, the distribution func­
tions depend on one angle 0 only. For any function of 0 one can 
write 

- -1 
!1'0 A(O) = P0 (P0 ,P0 ) (P0 • A), 

where P0 (~) is the zeroth Legendre polynomial. We introduced also 
the scalar product 

1 
(A, B) = f ~A* (~) B (JL) , 

-1 

where 

ll = cosO. 

Introducing the operator :20 = 1- P
0 

, which obeys the obvious re­
lations 

c 2 
~o + !I' o = 1 • ~o Po = Po ~ o = 0 • ~ o = ~ o 

we can rewrite the Boltzmann equation (Sa) in the following 
form: 

-+-+ 1- -+-+ ...... 
(z- ikvll) W(k, v, z) =-;:- 220w(k, v, z) + h(k, v) •. (Sb) 

Let us introduce the projection operator onto f-th Legendre poly­
nomial P f (ll) 

- -1 
P e A<"'> = P e <"'> (P e • P e ) <P e • A) · (8) 

This means that the multiplicity of degeneration of the spectrum 
of collision operator B is infinite. One of the eigenvalues is 
equal to zero and corresponds to the eigenfunction Po. The other 

eigenvalues are equal to- f- and correspond to P1 , P2 , P 3 ... 

The Legendre polynomials form the orthogonal set 

2 
(Pf ,Pm) = 2f+18f,m (9) 

Our goal is to derive the equation for !I' 0 Ill using the Zwan­
zig-Mori projection technique /8,9/. Projecting both sides of 
Eq. (Sb) onto P0 {ll) and eliminating ~ w we obtain an exact 
equation for (P 0 , Ill) 

0 

4 

.. 

(kv)2 
[z+--(P1 ,:R~ (k,v,z)P

1
)] (P0 ,cl>(k,v,z)) 

(P0,P
0

) o 
(I 0) 

= ikv(P 1 ,:R~(k,v,z)~0 h(k,v)) + (P0 ,h(k,v)). 

This equation contains the memory kernel (P 1 , :R~ (k, v, z)P1 ) 
0 

which is essentially the Fourier-Laplace transform of the cur-
rent-current correlation function. The resolvent, :R~ , is de-
fined as 0 

m 1 -1 
J\~ (k, v, ll ; t ) = [ z + - - ikv ~ P (jl.) ~ ] • 

0 T 0 1 0 
(I I) 

Our task is thus reduced to the calculation of the memory kernel 
( P1 , :R~ 0 P 1 ) • For models more realistic than the Lorentz gas 

model it is a nontrivial task 110• 11/. For the collision integrals 
with a gap in spectrum, one can find the asymptotic behaviour of 
the memory kernel for small k. 

The standard manipulations (cf. 1121 ), together with the iden­
tity relation 

n + 1 n 
ll p n (1-') = -;;::-:-;- pn + 1 (jl.) + -;;:--:;'" f!.- 1 (jL) ' (12) 

"""U. T .£. 

yield the following·expression: 

(Pt • :R~o P 1 ) 
(P1 • p 1) 

(13) 
z +r-1 + <-jkv)2(~ ,P 1)-1 (P2 .:R~0~1 p2 

where 

:R~~1 (k, v, "'' t) - [ z +r -1 - ikv~1 ~ P t <~t) ~o ~1] -1. 

and 

~1= 1 -!1'1. 

Such a simple relation connecting the diagonal matrix elements 
of consequtive resolvents suggests the existence of a general 
relation between (P ,!RG) m m p) and (P ,:Rm m Gl p ,).Here, 

n .OU'"'1"' .iln-1 n n+ 1 '"'o'"'1"'0(n n+~. 
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we have introduced the operators ~ i = 1- Pi (i = 1,2, .•• , n ). Indeed, 
acting with Pn on both sides of the identity: 

(Z+r-1 -ikV~ 
1 

••• ~0 P1 (~t)~ 0 ••• ~ 1 ]~61 Gl =1, 
n- n- ~0 ••• .;£n-1 

excluding the off-diagonal part ~n ~~O···~n- 1Pn, and using Eq. (12), 
we obtain the desired relation 

(J:1.J:1) 
~ P)= )2 12 )(14) (Pn ' ~0 ••• ~n-1 n -1 (kv (~) (P +1' !RGI ~ pn+ 1 

z + r + n ~o··· n (Pn ,P n) 2n + 1 

(n = 1,2, ••.• ) · 

It defines a set of linear transformations 

(P ,P ) 
t (w) 
n 

n n (n = 1,2,3, •••• ) (IS) 

( -1) (kv)
2 ~n+ 1 )2 Z+T + -- W 

(Pn ,Pn) + 1 

generatinp the continued fraction 1131 which in the standard no­
tation114 is given by 

__ LOP\ __ (PP\­
.:;, "' ,- 2 ·- 2' "' (-) (kV) 
3 (P 1' p1) 

iS " ,-3 ·- 8' " (-) (kv) 
6 (P2, p2) (P1,P1) 

(Pl.~~oPl)= 
(z + r -l) + 

(Pl,Pl) 

Z+r-1 

1+ 

<i ) 2 (P2,P2) (~) 2 ( ~ f (P3,P3) ( kvr )2 
(P1'P1) l+rz (P2 ,P2 ) l+zr 

1 + 1+ 

(Z+r-1 )+ 

( 16) 

( n+ 1 f (Pn+l' p n +1) (.£!...)2 

2n+1 (P p) 1+TZ 
n' n 

1+ 

It is possible to relate the continued fraction (16) for (P1 ,~~ ~) 
. . kvr /14/ . o 

to the cont1nued fract1on arctan(---) .One can eas1ly check 
1+rZ 

that in the latter case the continued fraction can be written in 
the following nice form: 

X 
arctanx=-

1+ 

6 

(...Q.±..!_{ (fi,Pt) x 2 (.J.±.!....) (P2 ,P2)x 2 
2·0+1 (P0 ,P~ 2-1+1 (Pl'P 1) 

1+ 1+ 

(n+1 )2 (Pn+l• Pn+l) l 
2n+1 (P

0
,P

0 
) · 

1+ ( 17) 

.. 

• 

This expansion is valid exterior to the cut along imaginary axis 
from i to + ioo, and from-i to -ioo , or equivalently from -i 
to i /13/, Using ( 17) we obtain an exact relation 

kvr ) 

( -r:;z;- - 1 J 
~ p ) = [ ltvr ) 

(Pl• ~ 1 
arctan ( 1 +Zr 

( 18) 

-1) 
(z + r (P

0 
, Po) · 

(kv) 2 

Taking into account Eq. (18) the dynamic equation (10) for 9'0 ~ 
reads 

[ 1 ltvr ] kvr m m 1- --arctan( ) (P0 .~) = iarctan(--) (P 1 ,JI~ "'oh) + 
kvr 1 + r z 1 + r z 0 

(19) 

-1 kvr ) + (kv) arctan ( (P0 , h) . 
1 + rz 

Below we prove the equivalence of formula (19) and the equation 

[1- -1-arctan(...!.Y!...)](P0 .~)= - 1-arctan(
1

kvr )(P
0 

,h) +(P
0

, ~ ~0 h), (20a) 
kvr 1+rZ kv +rZ 

which follows from the solution (6) obtained by Hauge 121• The well 
known operator identity 

(A+ B)-1 == A -l -(A+ B)-1 BA - 1 

yields the following identity for the resolvents ~ , ~~0 and P
1 

(1£) 

~ = ~!!l + ikv~ !!l 0 P 1P o~! + ikv~P 0 P 1 ! 0 ~! . 0 0 0 

Since, as it can be easily shown, the matrix elements (P0 .~~.!0h) 
and (P0 .~~ 0 P 1 P0 ~!!l ~0h) vanish, we obtain the identity 

0 

-1 kvr 
(P0 .!R!Il0b) .. iltv(P0 , ~P0 )(P0,P0 ) (P 1 .~ ~ 0~ 0 h)= iarctan ( 

1 
+ r z) (P 1 .~ ~ 0~ h), 

where we use the fact 121 that 
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cD e1> ( -1 ( kvr ) 
J

0 
J\ k, v, JL, t) = (kv) arctan . 

1 + rz 

The proof of equivalency of Eqs. (19) and {20) is thus complete. 
The initial distribution function h{k, v, JL) can also be de-

veloped into a series of Legendre polynomials. The general me­
thod of calculating the nondiilonal matrix elements of the re­
solvent (P1 .~~ 0 , Pe )(f=1,2, .. .f1 shows that in the denominators 

they do not contain terms which would cancel the hydrodynamic 
pole. This means that the long time asymptotics of (P0 ,f~~~) 
is dominated by the hydrodynamic eigenvalue A. 

4. GENERALIZED DIFFUSION COEFFICIENT 

Using Eqs. (18) and (10) we can write the hydrodynamic equa­
tion (19) in the form resembling the diffusion equation 

[( +/D(~))(P0,<1l'l_K,t;')) ,ziTK (P1 .~ ~ (K,t;')~0h '(K))+ (P
0 

,h '{K))'r, 
0 

where 

(20b) 

-1 -+ -+ ...,. -+ 
~ 0 (K,t;', ~t)= (t;' +1- iK ~n P, (IL) ~ n) , <II'(K, t;', IL• t) =<P~k, v, t), h '(K, IL )= h{k, v). 

u . . 

We see that the generalized diffusion coefficient depends on two 
variables K = kvr and t;' = r z 

K. 

D(K,t;') = ~ [ 
K2 

1+t;' -11. 

arctan ( 1 : t;' ) 
(21) 

As we henceforth work with quantities dependent on K and t;' we 
will suppress primes for ease of notation. 

The Chapman-Enskog solution given by Hauge yields a different 
K-dependent diffusion coefficient Dc~K). In order to obtain 
this coefficient one should assume the relation connecting t;' 
and K 

' '[K COtK - 1) , (22) 

This gives 
1 DCE (K) = ~(1- KCOtK), 

8 

• 

A 
l 

;\ 
'I 

For small K one has 

2 1214 98 
K 0 cE(K)=a-K +45K +945K + ... , (23) 

which is in agreement with the generalized hydrodynamic equation 
(7). 

For small K and t;' -1 one can expand the generalized diffusion 
coefficient in terms of K/(l+t;') 

1 1 1 1 K2 1 2 1 K 
4 

D(Kt;'}=- ---(---) +(---+-) + .... (24) 
' 3 1+t;' 5 9 {l+t;')3 7 15 27 (l+t;")6 

For small t;' 
lim lim • 

and K relation (22) corresponds to double limit 
We have 

K-+0 '-+0 

lim D_ (K) =.!.. . 
K-+0 CE 3 

Moreover 

lim lim D (K, t;' J = lim lim D (K, t;') = .!.. . 
K-+0 '-+0 '-+0 K -+0 3 

quite differently than in general case1 18~ where the order of 
limits is important. 

5. THE ITERATIVE METHOD OF SOLUTION 

Now we shall find the solution of the Boltzmann equation under 
a different boundary condition. We shall follow the approach 
fQrmulated by Zubarev a~d Khonkin 16/ (cf also/17/ ). Subtracting 
a . 
~P0 f) from both sides of Eq. (I), we get at 

L(GJ r)- B Gl c _ a<Pon -+-+ at "'0 .;4o - - at - v vr. 

The solution of this equation with the boundary condition 

~0 r = 0 for t -+ - 00 

is 

-+ ... t -(._t1)/r -+-+ ... -+ 
~ 0 r(r,v,t)=- ( dt1e ~ 0(vVC(r,v,t 1 )). (25a) 

-oo 

9 



This means that 

... -+ . ... -+ t - (t-t1)/r .... ... ... ... 
f(r,v,t)=9'0 f{r,v,t)- ( dt1 e ~ 0 (vVf(r,v,t 1 )). (25b) 

-oo 

Obviously, our solution fulfils two important conditions, well 
known from the Chapman-Enskog theory (cf. Appendix) 

~ . -+-+ . _... ....... 

n(r,t) = 4"9'0 f(r,v, t) = 4"9'0 ( 9'0 f{r,v,t)), 

} (;, t) = 4" 9'
0 

v f(;, ~, t) = 4" 9'
0 

(v ~ f{~ ;, t)). 
a a a 0 

Since, 
..... -+ -+ -+ 

~0 (v V)f = ! 0 (v V)(9'0 f + ~0 f) 

both formulas (25a,b) are well suited for the iterative method 
of solution. In this way, we get the solution in the form of a 
series 

sc = ~ r .. s r <t> + "r <2> + 0 u •••• 

where 

( 1) -+ -+ · t -(t-t1 )/r ... -+ ... .... 
8C (r,v,t) = - f dt1 e ~ovV9'o C(r, v, t1) 

( 2) ...... 
8f (r, v, t) 

-oo 

t - (t-t1 )/r 
J dt 1 e x 

-oo 

t 1 -(t1-t~/r ... .... -+-+ ........ 

X r dt2e ~o(VV)~o(VV)9'o C(r,v,t2), ... 
-oo 

The other terms have the same multiple integral structure. Using 
this series we can find the divergence of the particle current 
density 

... t -(t-t1)/r .... ... ... -+ -+ t -(t-t1)/r 
vaJa(r, t) =- r dt1 e 9'0 (v V)~o<vv)n(r,tl) + J dtle X 

-~ -~ 

(26) 
tl -(t t.;/r t2 -(t - tWir. -+-+ -+-+ -+-+ -+-+ ... 

X r dt2e r J dt3e 
2 

• 9'o(v W~(v v>!o<v V)~(v V)n(r, t3)+ ... 
-oo -oo 

10 
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The Fourier-Laplace transform of the divergence of the current 
density gives the familiar series (24) together with the unhomo­
geneous term of Eq. (20b) 

1 oo 0 t 1/r 
(P 1 ,:R~ (K,,) ~0 h) = l f dt 1e 

0 21Ti(l + ;;:-) K n=O -oo 

tl 1 dt 2e -(tc t2)/r 

t2n 
-(t2n-t2n+v/r 3 it? m ... .... Gl -+ -+ Cil 2n+l .... 

X r dt2n+t6 Jdre Jo(vV)(.;(oVVO{o) n(r,t2n+l). 
-oo 

In order to find the coefficients of the Fourier-Laplace trans­
form of the series in Eq. (26) one should calculate the angular 
averages 9'0 <va~ovll ~ 0 viJ. l'l 0 ... 9.0 vll ),where va"'va/1-;1. This 

1 2 n . ,.,. ,. 
can be done easily using the general formula for 9'0 (v v ... v ) 

a 1J.1 ll n 
given by Fedorov 1181

• The same formula is used in the Appendix. 
Comparison of Eqs. (26) and (A8b,d,e) shows, that for («1 
the series generated using the Chapman-Enskog and Zubarev-Khonkin 
methods have only one common term, leading to the familiar dif­
fusion equation. The same result can be obtained by putting k=O 
and Z=O in the expression for memory kernel (P 1 , :It~ P 1). 

0 

6. CONCLUSION 

We have shown that the Zwanzig-Mori projection method gives 
an exact formula for 9'0 tf>(K,,, 1-!). It means that this method can 
be used for solving other models of kinetics. The advantage of 
this technique is the possibility of using the well developed 
approximation schemes, e.g., the mode-mode coupling. The method 
applied here can be generalized along the "new continued fracti­
on" approach proposed by Mori and collaborators, making it pos­
sible to derive the generalized "hydrodynamic" equations for 
higher moments of tJ> /16~ Such equations have been derived for 
the Lorentz gas in stationary conditions 171 • 

On the other hand, the Lorentz gas provides the model of dif­
fusion coefficient exhibiting dispersion. Such models attract 

. f ( r1e1) attent1on o many authors cf. • 
The application of the Zubarev-Khonkin method to the Lorentz 

gas shows that it yields a quite new approximation scheme, so it 
can hardly be considered as a generalization of the Chapman-Ens­
keg method. The comparison of the results of sect. 5 for '<<1, 
with those of the Appendix shows how the Chapman-Enskog Ansatz 
(A4,AS) yields the additional terms, which renormalize all terms 

11 
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generated by simple perturbation appproach of Zubarev and Khonkin 
with the exception of the first term. Therefore, it seems inte­
resting to extend the Balabanyan and Khonkin calculations for 
the real gas 1171 to the next order term in the distribution func­
tion. 

The author is very indebted to V.B. Priezzhev for many useful 
discussions, to D.N.Zubarev for very fruitful suggestions, and 
to A.Gula for critical reading of the manuscript. 

APPENDIX. Chapman-Enskog Method 

Introducing a small parameter c corresponding to the Knudsen 
number one can write the Boltzmann equation (I) as /6/ 

af ...... d-. - + v V f) = Bf. 
at 

Applying P0 to both sides of Eq. (AI), we obtain 

aP0 r ... p ~~ 0 f 
-+v o · at 0 

Analogously, for ~0 one has 

,:j~ ~ f • ~ - - .• -
d--v- + v V1' 0 f +V :20 v:1 0 f)= B~0 r. at 

We assume that ~0 f can be written in the form of a ser1es 

G1 f. Gl f(O) Gl f(1) 2m f(2) 
'"'o .. .;.:o + c .;.: o + c '"' o + 

(AI) 

(A2) 

(A3) 

(A4) 

aP0 r Suppose additionally that at depends on time only via the 

angular average P~ f and its space derivatives. Moreover, let 

us assume that a 9f can also be developed into a series 
at 

aP0 t _-... v _ -<o> - 0 > 2-<2> 
~ = <I> (r I P 0 f, P 

0 
f, ••• ) - <I> H <I> + c <I> + ... · 

at (AS) 

Then, from Eq. (A2) we obtain the following expression for cii(t) 
- (f) "' (f) 
<I> =-vva<P0 va ~ 0 r ) , (f = 0,1,2, ... ). (A6) 

Equation (A3) is equivalent to 

1'2 

.. 

( f -m-1) ~ (f-1) 
f-1 a ~0 f vV~o V~o f I m + 
m=O at 

B ~o f(f) (A7a) 

where 

am ,.:'(m) a v ;:<m> a -=.., + a.., -
iJt cHP 0 t) iJ(Va Po f) 

+ ... 

and 

B~ f (O) = 0 0 . (A7b) 

In the zeroth approximation 

B ~<I f (O) = 0 , ~ (O) = 0 , 
(A8a) 

h 
00 o h f · · · · 141 

ence -·- = . T e 1rst approx1mat1on g1ves 
iJt 

"' (1) ... -+ . 
~0 r ..,_ A:2 0 v V (P 0 f), 

~< 1>=LP0 (v !2
0
v )V v <P

0
r)=.!!_22 £V

2 !J'
0
f=DVP0 f.(A8b) 

r a1 a2 ~ a2 2! r 

In the second step we obtain 

i (2) = 0 ~ = 0. 
• iJt (A8c) 

In this approximation 
(2) 2 " ... . 

~of =A ~oval ~o v~Va1Va/o f. 

The next order expressions become 

- (3) A 4 · ... " 1 " m " ill " ~ "' 
<I> =-1-Po<v v )-V u ~<Pof)+ Po<va "'ova "'ova ova )x 

r a 1 a 2 3 a1u2 4 3 2 1 

1 A4 2 8 2 4A4 2 2 · 
xV V V V P

0
fl =-- -t:i. P0 t =--2 -(V ) <Pof), (A8d) 

«1 a2 as a4 46 r 41 r 

!2 r(3) = .!_A3 !2 oV v -~Po f - A3 ·~ov ~0 va !2 Ova Va \?..Va <Po f). 
0 3 a a a1 2 3 1"2 S 

13 



In the'fourth approximation 

i<4>= 0' !!_ ::0' at 
and !!!o r<4> contains two terms 

{4} 4 ... ... ... " 2 " ~ ,. 
~of =X ~~ •alfl.ova2~ovas ~o va4V atVO.S VaaVa4 - T~o vat o va2 Va?a2 19'ot. 

Since the calculations become increasingly complicated we confine 
ourselves to the fifth step 

{6) 6 ... ... ... ... ... . 
!!!0 f = -X !!!0 va ~ va ~ va ~ va ! 0 va.. V a. Va Va.. V a Va 9' 0 f + 

1 2 3 4 1>12;,4& 

6 ... ... ... 8 ... 2 
+A ~ovatfl.ovczs!ovasValV~Vas~Por-~!!!ovaVa~ Pot. 

,;: (6) h. . . ld For ~ t 1s express1on y1e s 

- {6) A 6 . Ill ! p 
~ = -T-19'0 (val~oVa2~0vas!Ova4il.oV~ oVae) Va1Va2Va3Va4Va6Va6 0 f-

- P0 <va ! 0v a...!o ~ ! 0 Va )Va Va... Va Va ~9'0 r + 
1 " 9 4 1 -;.: s 4 

+ ..!<9' <v!; >v v ~2 P. r=~28 <v 2 >3 9' r 45 0 a 1 0 a2 a 1 a2 0 6! 0 • (ABe) 

Collecting all terms (A8a,b,c,d, e) we obtain 

an Bt 2 A2 2 82 4 A4 2 2 Bs 6A.e 2 8 
- = -2 - V n - -2 -( V ) n + -2 - (V ) n + .•• at 2 T 4! T 6! T 

which is in agreement with the Hauge result (7). 
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IlamKeBH"<I T. 
ToqHoe H npH6n~eHHoe ypaBHeHHH AH~YSHH 
AflH rasa ITopeHQa 

El7-82-875 

MoAenb ITopeHQa paspe~eHHoro rasa HcnonbsyeTCH AflH npoBepKH 
pasHMX MeTOAOB pemeHHH KHHeTHqecKoro ypaBHeHHH BonbQMaHa. IloKa­
saao, qTo npoeKQHOHHbru MeTOA UBaHQHra-MopH AaeT o6o6~eHaoe 
ypaBHeHHe AH~YSHH, KOTOpoe COBnaAaeT C pesynbTaTOM TOqHoro pe­
meHHH Xayre. MeTOA pemeHHH KHHeTHqecKoro ypaBHeHHH, npeAflo~ea­

Hblli 3y6apeBhlM H XOHbKHHbW, npHBOAHT K pasno~eHHro TOqHoro o6o6-
~eHHOrO Kos~HQHeHTa AH~YSHH B PHA. 3ToT MeTOA cpaBHHBaeTCH 
C MeTOAOM qenMeHa-3HCKora. 

Pa6oTa BhlnonHeHa B ITa6opaTopHH TeopeTHqecKoH ~HSHKH ORHH. 

OpenpHHT 06~eAHHeHHOro HHCTHTYTa AAePH~x HccneAosaHHH. AY6Ha 1982 

Paszkiewicz T. El7-82-875 
Exact and Approximate Generalized Diffusion Equation 
for the Lorentz Gas 

The Lorentz model of rarefied gas is used for testing two 
different methods of solving the Boltzmann kinetic equation. It 
is shown that the Zwanzig-Mori method gives the generalized 
diffusion equation which agrees with the exact Hauge solution. 
The Zubarev-Khonkin approach gives a series expansion of the 
exact generalized diffusion coefficient. Their method is com­
pared with the Chapman-Enskog method. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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