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1. INTRODUCTION

The models describing irreversible processes help to clarify
many qualitative fundamental problems (cf Foch and Ford 1/ ).In
particular, the Lorentz model has been used for reconciliation
of the microscopic reversibility with the macroscopic irreversi-
biligy (Hauge "2/ ) and for studying the effects of high densi-
ty/a'/- Our paper is devoted to a much more modest end. We
shall study the different methods of solving this particular
model and compare the obtained results with the exact solution
given by Hauge 723/

We begin our account in sect. 2 by presenting the exact Hauge
results. In sect. 3 we show that the Zwanzig-Mori projection
method gives the exact equation for the local density of partic-
les n(f,t). Section 5 is devoted to the method proposed by
Zubarev and Khonkin /3 for solving the Boltzmann equation. The
results obtained in this way correspond to a series expansion
of the exact solution. The Appendix describes the familiar
Chapman-Enskog method (cf.’® ). This approach yields series
expansion of the solution obtained in an elegant way by Hauge’%2/,

2. EXACT SOLUTION OF THE DETERMINISTIC LORENTZ MODEL

In this model a number of stationary spherical scatterers
are distributed randomly over a three-dimensional volume under
the restriction that they may not overlap each other. A number
of light, mutually noninteracting point particles, having velo-
cities of constant magnitude, are reflected specularly when
hitting a scatterer’%. ye shall confine ourselves to the case
of small density of scatterers, fgy,and to a rarefied gas of
light particles 723’. Then, for infinite space with no external

forces the one-particle distribution function I(r, v, t) obeys
the Boltzmann equation

af 2

— +VvVfl = Bf,

at (1)

where V is the particle velocity. In the case of spherical scat-
terers of radius a the collision operator B has a simple form
1 .
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where the relaxation timer 1is related to the quantities des-
cribing the scattering in the following way

=mgva®m)7l,

The operator ?0 , responsible for averaging over all directions
of velocity, e.g.,

-+ > 1 > >, 1 -
g’o f(l', v, t)E -47 (dQv’f(r, vy, t) = ‘Eﬂ(r, t) (3)

defines the only hydrodynamical moment of the distribution func-
tion, namely the local density of particles nf(r, t). Clearly, in
view of Eq. (2), the Lorentz model can describe only the relaxa-
tion of the angular distribution of particle velocities toward
an isotropic distribution, so it does not describe the relaxa-
tion toward the complete equilibrium. A natural field of applica-
tion of the model is the description of motion of neutrons in
matter

The operator fPO is idempotent

?§=§PO' 4)

An arbitrary angle- 1ndependent function is the collision inte-
gral, e.g.,

B, 1, V.t) = 0.

By applying the Fourier-Laplace transform

o v, 2) = [ dte”? [ a°r oik (r, v, t)
0
one obtains the following form of the Boltzmann equation

@ - &V, v, 2) = BOG, v, 2) + b Y), (5a)

h(k, v) being the Fourier transform of the initial distribution
function. Hauge 2/ has found the exact solution of Eq. (5a)

Ok, v, 2) =r PRk, v, z)[l - E-l—-arctan( kvr )]f’r’ (fR(k v, z)h(k v) )+
vr
6)
+ Rk v, Dhk, V),
where ?(E, \—;, z) 1is the resolvent -

2

Rk, v.2z) =(z+rt ~ikv)~?

- 9
Thus, ®(k, v,2z) has a simple pole at Z=lkV—-,1-,a cut from Z=—%—ikv

to z=—71-+ikv and, for kvr < a simple pole at z=1—[kvrcot(kw)-1].

"
2 ’
The first pole reflects one-particle "chaotic" motion, and cor-
responds to the continuum of eigenvalues

A# =—-rl-(—1+ ikvrp), -1<pu<t,
The second one, hydrodynamic pole, corresponds to a discrete
eigenvalue

A® = S lkvroot(vr) —1],  O<kvr < z
obtained for the Fourier transform of the Boltzmann equation (1)
by Zweifel and case’?. For small k, i.e., kvr<<l, A(k) defines
the diffusion constant

AQk) = -k°D, D= ;—vgr.

-
The long-time asymptotics of n(k,t) is dominated by the hydro-
dynamic pole

0k, t) ~ eA k)t

This means that after laps of time longer than r the density of
particles obeys the equation

[ B .
%+ s P 22pv2pr2p—l( 2)p n{r,t) =0 W<«L, r<t), (7

-V
1 (2p)!

where A =vr , L=-(k/2rr)‘_1 , B are the Bernoulli numbers: Bi=1/8,
Bg=1/30 , etc. The Fourier transform of this equation defines
the k -dependent diffusion coefficient Dggk). It is seen from
Eq. (6) that for £>0 the (-th moment of the distribution
function

fa (K, v, 2)Py (cosd), cosf= XV.
kv

does not exhibit the pole corresponding to one-particle motion.
It can be shown that the contribution of the above-mentioned cut
to r(k v, t)represents this kind of motion.

3



3. DYNAMIC EQUATION FOR THE LOCAL DENSITY OF PARTICLES

As the considered system is isotropic, the distribution func-
tions depend on one angle @ only. For any function of 6 one can
write

Ty A(®) = Py (Py, P (P, . A),

where Py () is the zeroth Legendre polynomial. We introduced also
the scalar product

1
(A, B) = 1[ duA*(u) B(w),

where

pu = cosd.

Introducing the operator 5‘20=1-? which obeys the obvious re-

. 0
lations

%+ Po=1, 97 - 2,-0, 2.9,

we can rewrite the Boltzmann equation (5a) in the following
form:

(2 - kvi) Ok, ¥, 2) =~ 9 O v, 2) + b V). (5b)

Let us introduce the projection operator onto £ ~th Legendre poly-
nomial Pg(u)

?ZA(u) = P, (B, P, )" Py, A). (8)

This means that the multiplicity of degeneration of the spectrum
of collision operator B is infinite. One of the eigenvalues is
equal to zero and corresponds to the eigenfunction Py. The other

eigenvalues are equal to—rl- and correspond to P, P, Pa... .
The Legendre polynomials form the orthogonal set

25

G F) = 3710,

(9)

Our goal is to derive the equation for 9’0(1) using the Zwan-
zig-Mori projection technique /8,8/  Projecting both sides of
Eq. (5b) onto Py(u) and eliminating 2,0 we obtain an exact
equation for P, . P -

4

(kv)®
(Pg.By)

[z +

(P1 ,Rﬂo(k, v, z)Pl)] (PO ’ (D(k' v, Z)) =
(10)
= ikv(P, , Rg(k,v,2) 2, hik,v)) + (Py ,h(k, V).

This equation contains the memory kernel (P, ngzo(k, v, 2)P; )

which is essentially the Fourier-Laplace transform of the cur-
rent—current correlation function. The resolvent, ?90 , 1s de-
fined as

g . vty =lz+d —mvd P @17, (1)

Our task is thus reduced to the calculation of the memory kernel
(P, fRQoPl ). For models more realistic than the Lorentz gas

model it is a nontrivial task’10:11/ For the collision integrals
with a gap in spectrum, one can find the asymptotic behaviour of
the memory kernel for small k.

The standard manipulations (¢
tity relation

£,/1%/ ), together with the iden-

. 1
WP W= P L) s =P W), a2)
yield the following' expression:
®,P,)
(Pl .RQOPI)'—" 2 ’ (]3)
z4+r71 +(-3-kv)2(P1 P 1)'1 ®, ,fRQOlez )
where

SRgogl(ll. Vou, t) =[z 4771 o 1kvf‘2190 Pl(u)floﬂl]-l_
and
91 =1 -?1.

Such a simple relation connecting the diagonal matrix elements
of consequtive resolvents suggests the existence of a general

relation between (P, .ﬁgﬂgl w9 B and (P ., '39091"-9:1 P, ). Here,



we have introduced the operators Sli=1— fPi i=1,2,...,n). Indeed,
acting with P, on both sides of the identity:

(2477t -ikvd o P W2, 8 1Rg 9 =1,

excluding the off-diagonal part .C‘Z fRQO Qo 13’n,and using Eq.(12),
we obtain the desired relation

2 b ®.5)
P N = ’
(n 90"'2n—1 n) z+r_1+ (kV)2 ( 1 ( ? P )(14)
(Pn.Pn) 2n+ 1 n+l’ 9 9
(n=12..).
It defines a set of linear transformations
(P, .P)
tn w) = (k ) ) 2 (n=123,....) (15)
-1 Vv n+
(Z+r )+ \2n+ 1

/18/

generatlnﬁ the continued fraction which in the standard no—

tation is given by

\

-—-—-—-(kv) L_a__(k)
Py .Py) 3 ®,.Py) 5 (Fy1 By)
(P1'R.C‘2 P )— e =
+7he @+r7l) s z+r Y+

(16)
(Plopl) (2 2(P21P2)( kvr )2 (3 )2 (PS'P3)(kVT )2 n+l ?( nt+i n+1) kvr )2

1+ 1+ 1+ - 1+

It is possible to relate the continued fraction (16) for (P1 ,ERQ,PI)
0

kvr 14/

to the continued fraction arctan(1 .One can easily check

+72
that in the latter case the continued fraction can be written in

the following nice form:
0+1 2(P17P1)x2 1+1 (P21P2)Y2 n+1 2(n+1. n+1) 2

)
x 20+1 (Py,Pp 2:.1+1 (P,P)) 2n+1 (PyoPy )

arctan x =

1+ 1+ 1+ 1+ (175".

zerl 8 (B P)1l4rz 5 (P,,By) 1427 o+ (P,.P,) 1+rz

This expansion is valid exterior to the cut along imaginary axis
fromi to +iw, and from-i to —i= , or equivalently from —-i
to i 718/, Using (17) we obtain an exact relation

kvr
1+zr (z+r Y
PR Py) = [ —————— 1] ———"(Fy.Py).
R a.rctan(__.f‘i'zr) &z O ° (18)

Taking into account Eq. (18) the dynamic equation (10) for fPotb
reads

1- 1 arctan ( kvr
l+rz

kvr

kvr

)] (B, @) = iarctan(

)(Pl.fRQ 9 h) +

(19)

+ (kv)~ arctan( )( .h).

Below we prove the equivalence of formula (19) and the equation

1 kvr =__1__ kvr
f1- e arcta.n(l +rz)](P° K ™ arctan(————l e ) (P, ,h)+(P0.5( 90 h), (20a)

which follows from the solution (6) obtained by Hauge 2/ The well
known operator identity

A+B)lea'_(a+p)~lBa™?

yields the following identity for the resolvents R, 9(90 and Pl(“)
R =9§90+ 1kv$90P15’09(90+ kvR?, Plgoﬁgo.

Since, as it can be easily shown, the matrix elements (P, .fR%.QOh)

and (P, .fRQo P, 9’0 ﬂgoﬁoh) vanish, we obtain the identity

(Py R h) = ikv (P, , R, )(B.F, )™ P ‘RQ 2,m= iarctan(-———)(Pl.‘.RQ ﬂoh),

t e/

where we use the fac that



kvr

1+r2 )

ﬂ’o Rk, v, pn, t) = (kv)~! arctan (

The proof of equivalency of Eqs. (19) and (20) is thus complete.
The initial distribution function h(k, v, &) can also be de-
veloped into a series of Legendre polynomials. The general me-
thod of calculating the nondiagonal matrix elements of the re-
solvent (P1 ,fRQO, PZ)(Z=1,2,...f1 shows that in the denominators

they do not contain terms which would cancel the hydrodynamic
pole. This means that the long time asymptotics of (&, f&vt)
is dominated by the hydrodynamic eigenvalue A.

4, GENERALIZED DIFFUSION COEFFICIENT

Using Eqs. (18) and (10) we can write the hydrodynamic equa-
tion (19) in the form resembling the diffusion equation

[+ @, D1, O =17 (P, R 5 (,0)2 W7 (k) + (P b’ (&))7, (20b)
0 1" 2, 0 0
where

R (ol o= 11k, P, 02, ) ", @ L, t) =Bk, v,t), bk, w)=h(E, V).
! L2,

We see that the generalized diffusion coefficient depends on two
variables «=kvr and {=rz

R
Dix, {) = 1’;4 [ 1+¢ ~11. (21)
K arctan ( ——)

1+¢

As we henceforth work with quantities dependent on « and { we
will suppress primes for ease of notation.

The Chapman—Enskog solution given by Hauge yields a different
x —~dependent diffusion coefficient Dggk) . In order to obtain
this coefficient one should assume the relation connecting ¢
and «

{ = Txeotx - 11. (22)

This gives

1
DCE (k) = K—2-(1—KCDtK).

A
]

For small «x one has

2 1.2 1 4 9 8

K DCE(K) = —3——K + Z-S-K +:9—4EK + ey (23)
which is in agreement with the generalized hydrodynamic equation
.

For small « and { ~1 one can expand the generalized diffusion
coefficient in terms of «/(1+¢)

1 1 1 1, «* 1 2 1., «*

D = e e ) e e b ) ———

(K.() 3 1+£ 5 9)(1-"4)3+(7 15+27)(1+4_)5+ (24)
For small { and « relation (22) corresponds to double limit
lim lim . We have
k-0 C»O

lim D, («) =1,

k-0 3
Moreover

lim lim D, ) =

lim lim Dlk, ¢) = = .
k-0 £50 3

4-00 K0

quite differently than in general case/le/, where the order of
limits is important.

5. THE ITERATIVE METHOD OF SOLUTION

Now we shall find the solution of the Boltzmann equation under
a different boundary condition. We shall follow the approach
formulated by Zubarev and Khonkin /5’ (cf also’/1?/ ). Subtracting

3‘2—(9’0 f) from both sides of Eq. (1), we get
E1CN)
at

a >
—(G - B f =- - f.
at 90 ) 90 VV

The solution of this equation with the boundary condition

90f=0 for t—+ —-=
is

> o t - > >
9ty = - [ate YT 9 GG vy,

-0

(25a)



This means that

"(t"tl)/r > >
fE v.t) = fP 1r,v,t) ~ r dt, Qo(va(r,v.tl)).

- 00

(25b)

¥

Obviously, our solution fulfils two important conditions, well
known from the Chapman-Enskog theory (cf. Appendix)

n@rt) = 408 (G, t) = 428, (P, LEV.L)),

L6 = an T v (@ V. = ar P (v 2 LGV, L),
Since,

%OV =8 (v IXPet +9,1)

both formulas (25a,b) are well suited for the iterative method
of solution. In this way, we get the solution in the form of a
series

d=t=5t, 5@,

where
1 . t ~(t—t )/T > 5 ’
( )(r vit)= - [ at, e 1 Qovv?o f(r,v,ty),
(D= o ; = (t=ty)/ :
r,v,t) = f dtie x
tl -(tl_t2)/r - > -»>-> > >
x f dtze BNV Py 1, v,85), ... .

The other terms have the same multiple integral structure. Using
this series we can find the divergence of the particle current
density

S /'t ! ~(t—ty)/7

v, (r t) =~ f dt, fP v V)EZ @V, t,) + f dt,e x

(26)

l
x [ dtge ~trtg/r f dty o 2 "3)/9’ (vV)f‘?D(vv)Q v V)QO(VV)B(I' t)+ ..

10

.4
d

ﬁ

The Fourier-Laplace transform of the divergence of the current
density gives the familiar series (24) together with the unhomo-

geneous term of Eq. (20b)
oo 0 /f ty - - /T
1 t1 (t4—tp),
P, R, M) = e 3, dt e dt
( 1 5‘)20('< Q) Loh) = 2r1i(1 +¢{) k =0 —L 1 —oor 2€
n ~( %
ton—t r ik -
x [ dtg @ °0n 2ot fdr 3 fP (vV)(S’Z vvi’l ) n(r.t2n+1).

In order to find the coefficients of the Fourier-Laplace trans-

form of the series in Eq. (26) one should calcylate the angular
A p >

averages P, (v, 2, . 90 g 2, ...9, v ).where v =v Avl This

-~

can be done easily using the general formula for ? (v u A )
/18/ 1

given by Fedorov The same formula is used in the Appendix.
Comparison of Eqs. (26) and (A8b,d,e) shows, that for ¢ <«1

the series generated using the Chapman-Enskog and Zubarev-Khonkin
methods have only one common term, leading to the familiar dif-
fusion equation. The same result can be obtained by putting k=0
and z=0 in the expression for memory kernel(Pl,fRQ0 Ply

6. CONCLUSION

We have shown that the Zwanzig-Mori projection method gives
an exact formula for Z)®(m§;u), It means that this method can
be used for solving other models of kinetics. The advantage of
this technique is the possibility of using the well developed
approximation schemes, e.g., the mode~mode coupling. The method
applied here can be generalized along the ''new continued fracti-
on" approach proposed by Mori and collaborators, making it pos-—
sible to derive the generalized "hydrodynamic" equations for
higher moments of @ 718/ Such equations have been derived for
the Lorentz gas in stationary conditions

On the other hand, the Lorentz gas provides the model of dif-
fusion coefficient exhibiting ﬂlsper31on Such models attract
attention of many authors (cf. ).

The application of the Zubarev-Khonkin method to the Lorentz
gas shows that it yields a quite new approximation scheme, so it
can hardly be considered as a generalization of the Chapman—Ens-
kog method. The comparison of the results of sect. 5 for {«1,
with those of the Appendix shows how the Chapman-Enskog Ansatz
(A4,A5) yields the additional terms, which renormalize all terms

11



generated by simple perturbation appproach of Zubarev and Khonkin
with the exception of the first term. Therefore, it seems inte-
resting to extend the Balabanyan and Khonkin calculations for
the real gas/17/to the next order term in the distribution func-
tion.

The author is very indebted to V.B. Priezzhev for many useful
discussions, to D.N.Zubarev for very fruitful suggestions, and
to A.Gula for critical reading of the manuscript.

APPENDIX. Chapman-Enskog Method

Introducing a small parameter ¢ corresponding to the Knudsen
number one can write the Boltzmann equation (1) as /8/

A, 2¢
(2L vV = Br. Al
at an

Applying ?0 to both sides of Eq. (Al), we obtain

~-----(-)—t—-+vf}’0 va,f =0 (A2)

Analogously, for 90 one has

393f PO

e +VVY 14V 2 vy () = B
at

0" 0 of- (A3)

We assume that 2pf can be written in the form of a series
. 0
9t et @9 Wy 2@y L, (A4)

Suppose additionally that

depends on time only via the
angular average Pof and its space derivatives. Moreover, let

¥yt . .
us assume that —=-9-— can also be developed into a series

N at
Pt~ ~ - -
ato =P,V 21,0 =0 D0V fo (D (A5)
Then, from Eq. (A2) we obtain the following expression for 5(0
= (f) o~ ®
" =-vy PV 2,0 0), (£ =0,1,2..). (46)

Equation (A3) is equivalent to

12

-1 5 g t-m b g -
s, m=0 + vVQOVQO f(z 1)= Bgof(l) ’ (A7a)
m=0 at
where
oy = : ~ 3
e NI
and
B,r@ =o0. (A7b)

In the zeroth approximation

d . . .
hence 3?-5 0. The first approximation glves/4/

~

D =crQvV @D,

_Rp oo ogo ' B1 222 y2 ‘
o =_r_?0(va190va2)valva2(f}’0 0 =2t 9,1 =DV°%, 1.(a8b)

In the second step we obtain

do

@)
[i)) = -2 =0.
0, : 0 (A8c)

In this approximation

@ 2q % ‘
2, = Qovalﬂovqjgﬁzz?of.

The next order expressions become

~

. 4 . . 1 A - - ~
HOM _)_\r__{_fpo @, )?Va&zA(?Of)+ A (va490va390va290va1)x

1v42
4 . B 4 -
‘ 1 A2 2 _4A 2.2
- A e 2 (VR D), A8d
XV‘_ﬁVagVasv‘ﬁfPO”_ E A fpof T - (V"5 o) ( )

1 3 ~ - 3 ~ ~ ~ y .
Qof(3)=3—)\ Qovav .Afpof -A ‘govalgovazgovasvayaéyo f

a

13



In the'fourth approximation
94

= (4)
(D = 0 ——
? at 1]
and Qof“) contains two terms
(4) 4 -~ ~ ~ ~ _ 2 ~ ~ -
Qo t@_x % Va 20%, 207,20 V0,V 0, Vo Vage, ~F 20Va, 20", Va Ba , ot

Since the calculations become increasingly complicated we confine
ourselves to the fifth step

(5) 5 ~ -~ ~ ~ ~ y
2t = =N 9, Y, % Y, % va39° Va?o vasVa.1 V“zv"sv"4v“5?° f+

5 ~ ~ ~ y - ~ y
+A"0 %, 2 %, 8590, Vo Vo Vo APl - 22074, APt

= (6 . . .
For o ® this expression yields

~ (B) /\5 . .
¢ - Tl?o (Valgovazﬂovasgova4gova590vae) Valva2Va3Va4vdfyae SP0 f-

-% (valgovazgo v“89° va4)Va1V%Va3Va‘A?o f+

8 - - 2 | By 6 23
+ =(P (v 1Qovaz)vaivaz)A ?of='672 (V) Pyt

1570 Va (A8e)

Collecting all terms (A8a,b,c,d, e) we obtain

gn B1_2a% _2 Bz 44 22 Bg 6)8 2.3
—m e VTR - -2 L —_—
P > - m - (VY n + 6!2 - W ) ' n+ ...

which is in agreement with the Hauge result (7).
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NNamkesuuy T.
TouHoe M NpHBNMXeHHOe ypaBHeHHA OUbby3IHH
ia rasa Jlopenna

E17-82-875

Mogens JlopeHna paspexeHHOI'o ras’a HCHONb3YeTCs MJIA HPOBEPKH
PasHLHX MeTOAOB pemeHHs KHHeTHYeCKOr'o ypaBHeHHA BomnbiMaHa. [loka-
3aHO, 4YTO NPOeKIHOHHbI MeTon lBanuura-Mopu paer oBobBmeHHOE
ypaBHeHHe AuHbdy3HH, KOTOpOe COBIagaeT C pe3ynbTaTOM TOYHOI'O pe-
meHuss Xayre. MeTon pemeHHA KHHeTHUYECKOI'O YDaBHeHHA, MpeAloxeH-—
Heii 3y6apeBuiM B XOHBKHHEIM, IPHBOOUT K PAa3NOXEHHK TOYHOrO 0606-
meHHoro kos3dduunenra aubdysuH B pAx. ITOT METOHd CpPaBHWBAETCH
¢ MetogoM UYenMeHa-3HcKora,

Pa6ora BuinosnneHa B JlaBopaToOpHH TeopeTHYecKoil dusuxkH OHAH.

NpenpuHT 06BveAMHEHHOrO MHCTMTYTa AREPHWX Mccnegosanwi. Qy6Ha 1982

Paszkiewicz T. E17-82-875
Exact and Approximate Generalized Diffusion Equation
for the Lorentz Gas

The Lorentz model of rarefied gas is used for testing two
different methods of solving the Boltzmann kinetic equation. It
is shown that the Zwanzig-Mori method gives the generalized
diffusion equation which agrees with the exact Hauge solution.
The Zubarev-Khonkin approach gives a series expansion of the
exact generalized diffusion coefficient. Their method is com-
pared with the Chapman-Enskog method.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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