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I . INTRODUCTION 

Up to now the problem of the simultaneous occurrence of 
singlet superconductivity (SC) and homogeneous ferromagnetism 
(FM) in the same volume of a sample has not been solved defi
nitively. Neutron scattering experiments yielded T versus x 
diagrams which exhibit, e.g., mixed phases of SC with nonuni
form FM in (Er 1_x Hox)Rh 4 B4 !11

1 
and shortrange ferromagnetic 

correlations in (Ce 1_xTbx)Ru 2 
21 . More recently, measurements 

in (Er 1_xHOx)Rh 4 ·B 4 13/ ,however, suggest the possibility of 
coexistence between SC and long-range FM. Theoretical studies 
of the coexistence question lead to different results depending 
on the models and approximations used. 

Microscopic treatments/4-10/ are usually based on the s-d 
exchange model combined with a BCS term/6-10/. The magnetic 
ions are either placed regularly on the lattice sites 16,9,10/ 
or treated as randomly distributed impurities in the Born ap-
proximation /4,5,71_ SC and FM can coexist also at T =0 141 or 
only at T f.O 16,101. A small coexistence region was found in /8/ 
for alloys weighted in the virtualcrystal approximation. 

Quasiphenomenological approaches (Ginzburg-Landau-type theo
ries)111·14/ have been devoted to the multicritical behaviour 
of magnetic superconductors. In/11/ it was shown that a first 
order phase transition between SC and FM takes place. A tetra
critical point may be expected 112/ due to disorder. The coexis
tence of SC and FM is excluded by a realistic choice of parame
ters in 1131 . 

It is desirable to derive microscopically the coefficients 
of a Landau-type free energy functional with two coupled order 
parameters. Work along this line was done on the basis of a 
BCS or BCS-like interaction in combination with the s-d exchan
ge 

115
• 161 , the periodic Anderson 1171 and the random Hubbard 1181 

models. Concerning alloys with transition metals the scattering 
problem should be handled within the coherent potential approxi
mation (CPA). In the present paper the scheme 1181 is generali
zed to a random Zener-madel. 

2. DISORDERED MODEL SYSTEM 

Let us model a disordered A xB l-x alloy by the tight-binding 
Hamiltonian == ·= ==-~ 

0f5bE.DWI[.HH\. r, ~~·.; -- \4~'.JT 

.c:::r --r· ...... 1J~ 
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, H = Hv + Hu + H 1 + HA 

composed of the one-electron part 
I 

+ 
t ij 0 ia0 ja ' Hv = I P. n 

1 
+ I 

1 a ija 

(i ;t: j) 
the local Coulomb repulsion 

Hu = I U 1 n 1.,.n i+, 
i 

the,point-like s-d exchange 
-+ -+ 

HJ =-2I J.a.S. 
i 1 1 1 

and the attractive contact term 

/ + + 
H A = - ~ A ij c 1 .,. c 1 + c J+ c j t • 

lj I 

(1/) 

(2) 

(3) 

(4) 

(5) 

Here n+1 "'c7- c.a is the particle number operator, the spin ope-a 1a ~ • • + 
rators of the 1 t1nerant electrons are def1ned by a 1 = c(.,. c i+ , 

a1- =c.~ c . t , and a !I = Vz (n. t- n. _. ), and S i denotes the opera-
! I • 1. I I • • • h tor for a sp1n local1zed at the latt1ce s1te 1. T e local 

atomic potential E i , the hopping integral t 11 , the repulsion 
strength U1 , the exchange integral J 1 , and the coupling con
stant A ij are random parameters, i.e., discrete bi- or trimodal 
variables in a lattice of A and B atoms. As special cases of 
(I) one can stress disordered versions of the 
(i) Hubbard model H v+ Hu, 
(ii) s-d exchange model Hv+HJ, 
(iit) ZE!ner model Hv+ Hu+HJ,and 
(iv) the model Hv+HA, which reflects a contact-type pairing 1 191 

in narrow-band superconductors. Note that the Hamiltonian (I) 
involves two non-equivalent kinds of spin, itinerant electrons 
and localized magnetic moments. 

Introduce the thermodynamical electron Green function as 
the 4x4 matrix propagator 

'G . . (r - •T ' ) = - < T 
IJ 

cit (r\ 

ci+ (r)) _ _ , 
_ ~ (c

1 
t (r '), c

1
_<r '~ cjt(r'), 

c 
1
.,.(r) 

-cji. < r) 

c j (r ')) > ( 6) .. ' 

where < ... > means the thermal average. In the Hartree-Fock-Bogo
lubo~ approximation of (2) to (5) we get the Fourier transfor
med inverse Greenian 

2 
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Ut t 
z+2 m1+J1 <Bt''>lll11 -[11 0111 0 0 AtlltJ 

0 0 

(0-
1
(z))

1
J• 

(7) 
(z-~ 1-JI <S~ >)IJIJ -[Ho IIJ -Aill!J 

0 -<~.rs,J 
u, • 

(z- 2 m, -J1 <S 1>)81J +[H 0J 11 0 

t~.tlltJ 0 0 
Ut z 

(z+2mt+Jt <S, >)ll!J +[Holt 

defined at Z=Z =i(2n+1)17'T. Here the notation [H
0

] .. =(c. +-
U n IJ 1 

+-f-n)81J +t 11 (1-811 ) with n 1 =<n 1t>+<n
1

_.>, and m
1

=<np>-<n
1
j>is 

used. The zeros in (7) reflect that triplet superconducting 
states and transverse spin arrangements have been excluded a 
priori; in other words, only singlet pairing and FM are taken 
into account. 

The free energy corresponding to the mean field l~vel of 
(I) (in particular to (7)) is found to be 

T . -1 1 2 1 2 F=--I Sptrln(-G (z ))--IU·n· +-IU·m· + 
2 n n 4 i 1 1 4 i I I (8) 

• -1 . Jim 1 · z. + 2. d.(,\ ).1 d. -·'II ln(2cosh(-)) +I J.m.<S .>, 
ij I I J i 2T i I I I 

where Sp refers to the trace over the lattice space, 
is restricted to the 4x4 (spin) matrix. Accq:r-ding to 
. . . . 1 d . . o.F o oF o r1at1onal pr1nc1p e one er1ves v1a -- = , --- = 

Bm1 o<B1> the se~f-consistency conditions 

1 J·m. 
<S ~ > = - tanh ( 1 1 ~ 

I 2 2T ' 

T 11 . 22 33 44 
mi =- 2. (Gii (zn)- Gii (zn)-Gu (zn)+ Gii(zn)), 

2 n 

d.=.1II'.\.J (G~.4 (z )-G~.3 (z )), 
I 2 n j I JJ n JJ n 

while tr 
the va-

and ~~=0 
M": 

I 

(9) 

(IO) 

(II) I 

respectively. Analogously, the mean electron number n. at site 
i is deter~ined self-consistently. Note that (9) includes 
the spin number of 1/2 for the localized spins. The Coulomb re-

1 . . . . A • • • • h \ I 19/ h norma 1zat1on enter1ng 1nto u 1 1s compet1t1ve w1t 1\ ii ; t e 
net effect of these sitediagonal elements is neglected in (I 1). 
It is pointed out that all quantities <Sf>,m

1
,.and d

1 
are still 
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configuration-dependent. In the sense of a terminal point ap
proximation they depend at least on the site i due to the 
lack of the translational symmetry. 

3. LOOP EXPANSION OF THE FREE ENERGY 

In order to expand the first term of (8) we write (cf. 1181 ) 

G-1 = ·a;1(1- G0W) 

with the definitions 
·a 11 

0 
·au 

0 
'Go= 

0 

ass 
0 

0 \ 
W= 

( 12) 

(: 0 0 
-

-4> ll v I ( 13) 
~ 

0 ll* -<I> 

-ll* 0 0 

'G0 stands for the unperturbed normal-state random Green func
tion. More explicitly, one has 

11 
33 - 1 - [ ] ((G 0 (z)) )ii = z8ii + H0 ii . (14) 

~ U· 
The perturbation W is a local one because of [<I>] ij =-(+m i + 

+ J. <S~ >) 8 .. and [ll].. ==ll. 8.. . Moreover, we expand (9) in the' 
1 1 lJ 1J 1 ?.1J 

f <sz> Jimi 1 ( Jimi) + orm . = -- ••• 1 4T 48 T 
justified at finite tern-

perature near the magnetic phase transition. This gives rise 
to the definition 

2 1 J. U-
<1>. =--(U. + -l.)m. ==- -Lm. 

1 21 2T t 21 (15) 

as the local magnetic order parameter. 
Using (12) to (15) one can decompose (8) by 

F[l <I> l, Ill}] == F 0 + F 2 [{<I> l, Ill}] + F 
4 

[{<I>}, {!l}], ( 16) 

where .F0 is the irrelevant normal-state contribution. The loop 
expansion (16) of the free energy is carried out up to the 
fourth order in 4> i (or ~agnetization m1 ) and the superconduc
ting order pa~ameter lli to give 

F 2 [I <I> I' Ill}] = !. 4i. <xu + _!_a_. ) <I>. + !. ll:" <xg.~ + (.\ -1) .Jll. , 
ij 1 Oij U 1. !J J ij 1 1 11 J 

4 
F [{<I>l, Ill}] == __ 1_!. 4>. x1~- !1.4> ~ __ 1_!. (.!J_ )4 4>~+ 

4 3T3 ij 1 01j u~ J 4T3 i u~. 1 
1 1 

(17) 

4 

; 

I 

""' ( 1 1111 m + ..._ -Aijko <I>. <I>kello-v. ijkf 2 r. J • r. 1 
l A' 1813 A A * A A * + 2 ijkf uj uk u e u i + (I 8) 

1113 * 3331 * 1138 * 
+ AiJkf ellJ <Ilk ll€ llt + Atik€ <I>i <Ilk llf !l 1 + A iikf <I>i Ak ~f lli I • 

where 

xaf3=T!.Gaa(z)af3f3(z) 
Olj n Oij n Oji n ' 

A~:~t; = T ~ G~~J (z/G~~(zn)G~ (zn)G:e~ (zn) · 

(19) 

(20) 

The quadratic expression .F2 describes FM and SC separately, 
whereas the quartic term.F4 involves their interaction by 
biquadratically coupled order parameters. The odd terms 
F 2p+ 1 [(ell}, llllJ are traceless in the spin subspace. The result 
(17) and (18) is given in the static limit, but we are left 
with the spatially inhomogeneous case due to disorder up to now 
not to be specified. The present scheme holds also for a pure 
system. 

4. CPA AVERAGING. COEXISTENCE CRITERION 

We derive the Ginzburg-Landau free energy functional in the 
static and homogeneous,limit on the basis of the single-site 
CPA. For this purpose, all the local quantities as ni., <'Sf>, 
m1, <1> 1 , and ll 1 depending in principle on the whole lattice con
figuration are taken in the terminal point approximation, i.e., 
they are replaced by conditional (restricted) averages. Thus 
one can perform a normal self-consistent multiple scatt~ring 
approach at site i to get the effective medium in CPA. The 
presence of random hopping of the additive (ODCPA) or multipli
cative type is permitted, too. Furthermore, the averaging 
procedure is characterized by the concept 118• 191 of Ward iden
tities and coherent order parameters working near' the phase 
transitions. 

The effective free energy defined by F eff = <.F 2 +F
4

>
0

(< ••• >c: 
configuration average) results in 

F [ell ll] = NHxll+ _1_)<1>2+(x1s+_L)illl2+ .J.,\1111 <1>4 + (21) 
eff ' 0 - 0 ,\ 2 

Uen en 

+ ~A1313 illl4 + 2At313<1>2illl2]. 

where <I> and ll are now coherent order parameters being site
independent. N is the number of lattice sites. Having determi-

d h . . . b . 1 . . af3 1 ""' af3 d ne t e nom.nteract1ng suscept1 1 1t1es x 
0 

=N 
1

< ij x
011 

>
0 

an 
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the fourthorder vertex couplings A af3y8. = ..!. < ~ A af3yB n > 
N ijkf ijk~ c 

the coefficients of the Landau-type expansion (21) are evaluated 
on microscopic footing as follows: 

u 
00 ac < ) <) X =- f (-~)pEdE =-pT J.t , 

0 
-oo a.E 

T 
X ~3 = - p (J.t) ln (1.13 ; ) , 

- -vv2 -A A2 -B B2 
Uerr=<U (gT) >

0 
=XU (gT) +(1-x)U (g~, 

.\err =N'<g v.\w· gv' > c = N'(x2A_AA(g A)2+ c1 -·x)2.\BII(gB)2+ 

+ 2x(1-x)A_ABgA gB}, 
- 1111 
A 

A1111 

= _ 1_ J:rr. 
6T3 tJS PT (J.t) + A1111 

eff 

- 1 ---p"() 6 T fl , 

A 1313 = 1. {(3) e (M) 
8 17 2T2 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

with the Fermi function f(E) = (e(E-fl)/:1'+1)-_1 , the chemical potenti
al fl, the Debye temperature To of the averaged system, g ~ = 
= (p ~ (fl»l (pT (fl)), g v = (p v (J.t)) I (p (fl)) , and N' bemg 
the coordination number. Jeff is defined like (24). The partial-
ly and totally averaged densities of states p v (E) = 

=- ...!..rm<i\'G ~(E + iO) \i-> and p(E) =- -
1
- ImSp<G

1
0
1
(E+i0)>,resp., are 

rr I rrN c 
available from the CPA, where Gi denotes the conditionally 
(except the site i occupied by a v-atom) averaged Green func
tion. By symmetry arguments one proves that A1113 =A3331 = ~A1313 
and A1133 =A 1313 entering into the coupling term in (21). 
Note that in deriving (22), (23), (27), and (28) the Ward iden
tity <G 11 (z )G 11 (z )> =-(<·G 11 (z )> -<G 11 (z )> )/(z -z) 

0 1 0 2 c . 0 ~c 0 2 c 1 2 
taken at zc=z 2 and z 1=-z 2 ~n the FM and SC cases, resp., plays 
a key role. 

Using (22) and (23) the zeros of the quadratic part of (21) 
correspond to the generalized Stoner criterion (TM: Cure tempe
rature) 

U err P TM(fl) = 1 (29) 

and the superconducting transit~on temperature 

T S = 1.13 T
0 

e -l/(A eff p(JL)) • (30) 

Minimization of (21) through the conditions (8F err )/(Sell) =0 =0 
and (8.F err )/(8!J.*) =0 yields the coupled equations 

6 

1 

l 

<x~l + -J-- + 2At313\!J.\2 )ell + Auu ells = 0 , 
U err 

(x13 + _1_ + 2At313 ell2 )!J. +A 1313\!J.\2 A = o . 
o .\err 

(31) 

(32) 

To investigate coexistence, we are looking for nontrivial 
solutions of (31) and (32), so that !J.,_O and ell#O hold simul
taneously. Such solutions become stable in the case of weak 
coupling 120 •211 between the two order parameters. This implies 
the coexistence criterion 

A1111 > 4A 1313 (33) 

which is connected with tetracritical behaviour. 
On the other hand, if the condition (33) is violated one 

has only a bicritical point referring to a first order tran
sition between SC and FM. 

5. CONCLUSIONS 

Now we are dealing with two special cases of the present mo
del which can be treated analytically. 

First, we restrict ourselves to itinerant FM by putting 
JV =0 /1S/. Moreover, we are going through € A -> oo to the inde
pendent band limit. Then the Stoner criterion (29) with (15) 
and (24) is reduced to 

:a' 2 
B rr 2 ' B " (p (JLo)) 2 

UBpB T (fl) = UB(p (flo)+ B(p ~flo)- B )TMJ = 1 • (34) 
M e (fl

0
) 

where e8
(E) = p (E)/(1- x), flo= fl (T = 0), and the temperature 

dependence has been approximated up to O(T2
). Choosing a semiel

liptic shape for the unperturbed B -band with the half-band 
width w we obtain 

r-----------~-------

J 
nB B 

E-EB-.l.l..n 2 
p B (E) = _2_ 1 - ( 2 j , (3 5) 

rrwx wx 

UBe
13

1x=x <JLo) =1 
c 

where w = wy 1-xis affected by disorder. From 

one finds the critical or percolation concentration x
0 

at T=O; 
for a half-filled band (nB=1) one has immediately Xc= 

=1-(4(UD)2)/rr2 w 2• Employing (34) and (35) fornB=I as well as 
(30) on the basis of (25), which simply becomes \rr = N'.\BB, 
one arrives at 

T (x) .. (x- x ) ~ 
M c 

dT s < 0. 
dX 

(36) 
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The tendencies in (36) make an intersection point TM ='I~ =;T
0
pos- I: 

sible. The condition (33) can be rewritten by invoking (26), i 

(27) (p ;.'·(~) < 0 is established in view of the concavity of •. 
(35)), and (28) in the form .

1 21 · Tc 2 ,2 'I 0 'I ' 
- ((3) < <-) + --<-) (37) 1 
,2 ' wx 2 wx ij 

never to be fulfilled for realistic parameters due to Tc/w - II 
- 0(10-3 ). 

"Secondly, we consider only the s-d exchange .in the simplest ;~<' 
way, provided that Uv =0, JA,;.o, JB=O, . .\AA=AAB=o, and ,\BB #-O. . 
For simplicity p is assumed to be independent of disorder (£i =0, 
tij =canst), i.e., p(~)== 2/TTw (cf. (35)) for a half-filled ,J ., 
band. Then (29) with (IS) and (24) gives ~ 

TM = i~(JA)2p(p). (38) :I 
Besides, the decreasing dTs < 0 is retained because of A tC 

dx e 
== N'(l- x)2 ABB. The coexistence criterion (33) now reads ~•ith 
(26) and (28): 

,jl ((3) < (~) 2 
8 w (39) 

where the coupling A1111 from (27) can be neglected. Then the 
coefficients (26) and (28) are comparable with those in116/. In 
real substances it turns out that JA<w, so that the inequality 
(39) cannot be satisfied. 

A coexistence criterion for SC and FM has been derived from 
the free energy functional on the mean field level without 
fluctuations for the augmented random Zener model. To be reali~ 
stic, we have considered itinerant FM in the percolation limit 
and the case of localized spins. There coexistence related to 
a tetracritical behaviour could not be verified. This result 
agrees qualitatively with conclusions in /11,131, and partly with/8/ j 
if the component exchange integrals JA and JB have the same 
sign. 

The authors are indebted to Dr. V.L.Aksenov and Dr. N.S.Ton- b·~ 
chev for useful remarks. ~ 
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KonneH E., KonneH B. El?-82-806 
CaepxnpoBOA~MOCTb ~ ~eppoMarHeT~3M a o6o~eHHOH HeynOPRA04eHHOH MOAen~ 
3eHepa 

11ccneAyeTcR aaa~MHoe an~RH~e caepxnpoBOA~MOCT~ ~ ~eppoMarHeT~3Ma a cny-
4aHH~X 6~HapH~X cnnaaax C Y4eTOM C~nbHO CBR3aHH~X 3neKTpOHOB ~ noKan~-
30BaHH~X MarH~TH~X MOMeHTOB. nony4eHO neTneaoe paano~eH~e CB060AHOH 3Hepr~~ 
AnR KOM6~H~poaaHHOrO np~TR~eH~R KOHTaKTHoro T~na ~ MOAen~ 3eHepa.B~4~CneH~ 
K03~~~~eHT~ ~YHK~~OHana r~H36ypra-flaHAay C ABYMR 6~KBaApaT~4H~M~ CBR3aH
H~M~ napaMeTpaM~ nopRAKa C nOM~b~ ycpeAHeH~R no KOH~~rypa~~RM B paMKaX 
np~6n~~eH~R KorepeHTHoro noTeH~~ana. C~opMyn~poaaH KP~Tep~H cocy~ecTaoaaH~R. 
nony4eH~ G~eHK~, noKaa~aa~~e, 4To a npeAenbH~x cny4aRx aoHHOH ~ noKan~
aoaaHHOH cn~HOBOH MOAen~ ~MeeTCR TOnbKO 6~Kp~T~4eCKOe nOBeAeH~e ~a30BOH 
A~arpaMM~. 

Pa6oTa a~nonHeHa a fla6opaTop~~ TeopeT~4ecKoH ~~3~K~ OHRH. 

Co~eH~e 06~eA~HeHHoro ~HCT~TyTa RAePH~x ~ccneAoaaH~H. AY6Ha 1982 

Kolley E., Kolley W. E17 -82-806 
Superconductivity and Ferromagnetism in the Extended Random Zener Model 

The mutual influence of superconductivity and ferromagnetism in random 
binary alloys is studied in the presence of tightly bound electrons and 
localized magnetic moments . The loop expansion of the free energy . is deri
ved microscopically by combining a contact-type attraction and the Zener 
model. The coefficients of the Ginzburg-Landau functional with two biquadra
tically coupled order parameters are obtained after configuration averaging 
within the coherent potential approximation. A criterion for coexistence 
i s formulated. Estimation~ in the limits of itinerant and localized spin 
models give rise only to bicritical behaviour. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

1 Communication of the Joint Institute for Nuclear Research. Oubna 1982 I 
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