


1. INTRODUCTION

Up to now the problem of the simultaneocus occurrence of
singlet superconductivity (SC) and homogeneous ferromagnetism
(FM) in the same volume of a sample has not been solved defi-
nitively. Neutron scattering experiments yielded T versus x
diagrams which exhibit, e.g., mixed phases of SC with nonuni-
form FM in (Er,_, Ho,)Rh, B, 7V /and shortrange ferromagnetic
correlations in (Ce 13 Tb )Ru, 2/ More recently, measurements
in (BEry_, Hog)Rh, B, /8/ ,however, suggest the possibility of
coexistence between SC and long-range FM. Theoretical studies
of the coexistence question lead to different results depending
on the models and approximations used.

Microscopic treatments’/410/ are usually based on the s-d
exchange model combined with a BCS term/8-10/, The magnetic
ions are either placed regularly on the lattice sites/8:9.10/
or treated as randomly distributed impurities in the Born ap-
proximation /457 SC and FM can coexist also at T=0’4/ or
only at T#0 78,10/ A small coexistence region was found in /%
for alloys weighted in the virtualerystal approximation.

Quasiphenomenological approaches (Ginzburg-Landau-type theo-
ries)/11"14/ have been devoted to the multicritical behaviour
of magnetic superconductors. In‘/1l/ it was shown that a first
order phase transition between SC and FM takes place. A tetra-
critical point may be expected/12/ due to disorder. The coexis-
tence of SC and FM is excluded by a realistic choice of parame-
ters in

It is desirable to derive microscopically the coefficients
of a Landau-type free energy functional with two coupled order
parameters. Work along this line was done on the basis of a
BCS or BCS-like interaction in combination with the s—d exchan-
ge /1&16/, the periodic Anderson/17/ and the random Hubbard’/18/
models. Concerning alloys with transition metals the scattering
problem should be handled within the coherent potential approxi-
mation (CPA). In the present paper the scheme /1% ig generali-
zed to a random Zener-model.

2. DISORDERED MODEL SYSTEM
Pet us model a disordered A,B,_;, alloy by the tight-binding
Hamiltonian e
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+ H=Hy+Hyg+ Hy+ Hy ‘ (1)

composed of the one-electron part
t

+
a#5y
the local Coulomb repulsion
Hy = ? Ujngen g, (3)
the ,point-like s-d exchange
- ‘—9
HJ=‘2% Tio38; (4)
and the attractive contact term
/
* + L F
’ H)\=—i§;f}\ij CirCiyCg G- (5)

Here nf =c}, Cig is the particle number operator, the spin ope-
rators of the 1tinerant electrons are defined by cri'"r: ci+16u s
o =c,i+chi, , and g2 =% (@;+~-n,, ) and gi denotes the opera-
tor for a spin localized at the lattice site i. The local
atomic potential ¢; , the hopping integral tj; , the repulsion
strength U;, the exchange integral J,, and the coupling con-
stant Aj; are random parameters, i.e., discrete bi-~ or trimodal
variables in a lattice of A and B atoms. As special cases of
(1) one can stress disordered versions of the
(i) Hubbard model Hy+ Hy, '
(1i1) s—-d exchange model Hy+Hy,
(1ii) Zener model Hy+ Hy+H j,and
(iv) the model Hy+H) , which reflects a contact-type pairing’!%
. in narrow-band superconductors. Note that the Hamiltonian (1)
involves two non-equivalent kinds of spin, itinerant electrons
and localized magnetic moments.

Introduce the thermodynamical electron Green function as
the 4x4 matrix propagator

-

¢y (1)

c. () - -
Gy =77) == <T ot ® (6,1, ¢, Yo, 6, c“(r'))>,(6)
c.4(r)
1
¢, (r)

where <...> means the thermal average. In the Hartree-Fock-Bogo-
lubov approximation of (2) to (5) we get the Fourier transfor-
med inverse Greenian
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defined at z=1z_ =i@2n+1)#T. Here the notation [Ho]ij=(€i F -
+ -»2-1..ni)8ij +t; A-5,) with o =<n;,>+<n, >, and m,=<n;>-<n, >is
used. The zeros in (7) reflect that triplet superconducting |
states and transverse spin arrangements have been excluded a
f}riori; in other words, only singlet pairing and FM are taken
into account.

The free energy corresponding to the mean field lpvel of

(1) (in particular to (7)) is found to be
__T . ! _ 4 2 1 2
F= 5 §n) Sptrln (-G “(z ) —;—%Uini + I%Uimi + )

w(y1 K J;m; Qz.
+iJ§ Ai \ )ij AJ. 'I% In (2 cosh ¢ o7 )) +? Jimi<Si<> )

where Sp refers to the trace over the lattice space, while ¢
1s restricted to the 4x4 (spin) matrix. According to the va-

riational principle one derives via SF =0, SF =0, and .‘?Eu:o
. Lo Smy 5<8%> SA*
the self-consistency conditions ! !
<8f> - L tmh(iﬂ.i_) , (9
2 2T

T 11 2
my =5 2@ @) - G~ 6P ,) + G,

(10)

T . :

By= g 2370 Gty - 650G, an
respectively. Analogously, the mean electron number n., at site
i is determined self-consistently. Note that (9) includes
the spin number of 1/2 for the localized spins. The Coulomb re-
normalization entering into A; is competitive with A ¥, the
net effect of these sitediagonal elements is neglected in (11).
It is pointed out that all quantities <'Siz>,mi,.ar1d A; are still
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configuration-dependent. In the sense of a_terminal point ap-
proximation they depend at least on the site 1 due to the
lack of the translational symmetry.

s

3. LOOP EXPANSION OF THE FREE ENERGY

. /187
In order to expand the first term of (8) we write (cf. )
- -1
Qe pal¢ B IN )] (12)
with the definitions .
(the ® 0 0 -A .
0 -~

qu)l 0 -® A 0 (13)
Co= G32 W= 0 A*-0 0

0 33 A* 0 0 @

Gy stands for the unperturbed normal-state random Green func—
tion. More explicitly, one has

11
- - 1
@8 @)™, =25, 3 (H I, - (14)
- U
The perturbation W is a local one because of [(I)]ij =~G§Lmi-+
+J <Sz>)8 and [A]ﬁ:=Ai8i" Moreover, we expand (9) in thex
i i ij
J:m; 1, Jjm; . P .. _
87> o il 2 (Siliy o justified at finite tem
form <B>==r "W T

perature near the magnetic phase transition. This gives rise
to the definition

2
! Liym, =- SL 15
®i=m-54Ui+‘E¥)mi.“ p m; (15)

as the local magnetic order parameter.
Using (12) to (15) one can decompose (8) by

Fl{o}, (Al]l = Fy + F, [1@}, A1l + F (10}, {A}], (16)

where Fy is the irrelevant normal-state contribution. The loop
expansion (16) of the free energy 1s carried out up to the
fourth order in @ (or magne?ization m; ) and the superconduc—
ting order parameter A, to give

" 1 18 -1
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where

aB _ aa B8 (19)
xou 5 T f’ GOij (zn)GOji (Zn )

aByd aa BB yy 88
A = TE QL (2 )GH (2 )62 ()G (2 ). (20)

The quadratic expression F, describes FM and SC separately,
whereas the quartic term F, involves their interaction by
biquadratically coupled order parameters. The odd terms

Fop+1 [{0}, {A  are traceless in the spin subspace. The result
(17) and (18) is given in the static limit, but we are left
with the spatially inhomogeneous case due to disorder up to now
not to be specified. The present scheme holds also for a pure
system.

4. CPA AVERAGING. COEXISTENCE CRITERION

We derive the Ginzburg-Landau free energy functional in the
static and homogeneous,limit on the basis of the single-site
CPA. For this purpose, all the local quantities as n;, <8f>,
my, ®;, and A; depending in principle on the whole lattice con-
figuration are taken in the terminal point approximation, i.e.,
they are replaced by conditional (restricted) averages. Thus
one can perform a normal self-consistent multiple scatféring
approach at site i to get the effective medium in CPA. The
presence of random hopping of the additive (ODCPA) or multipli-
cative type is permitted, too. Furthermore, the averaging
procedure is characterized by the concept 1818/ ¢ yarg iden-
tities and coherent order parameters working near' the phase
transitions.

The effective free energy defined by Fo e = <F2-hF4>c(<".>c:
configuration average) results in

F [®,A] = N{GeMe L )02 (18,1 a2, Lh1111 ga (1)
eff 0 e 0 A 2
Ueﬁ eff

+~1§A1313 [A[* 4 241818 g2 IAIZ ],

where ® and A are now coherent order parameters being site-
independent. N is the number of lattice sites. Having determi-

1 <2x0‘:B> and

ned the noninteracting susceptibilities xgﬁ::$$ |
ij c
4



afByd _ 1. s aByg ’
ijk ijkl [
the coefficients of the Landau-type expansion (21) are evaluated

on microscopic footing as follows:

the fourthorder vertex couplings A

[ 22)
xite - (= ié—)ch)dE=-p.T<m, (
T
13 _ ___Q_ (23)
XE =~ oW 18-,
. . o -

Tore = <07 ®>, =302 1+ -0TPp® (24)
Mo =N7<g¥A% gV > =N’ (xPAAA(g 424 (1 —xPABB(gBR,  (25)
+ 2x(1-x)ABgh gBY,

4
qu _ 1 Jent “p (;L)+1\1111 , (26)
3 T
6T Uy
A o v, 27)
i
A1313 = 1, .g.@l.&glﬂ.. (28)
8 r2T2

with the Fermi function f(E)= (eE~“yT+D , the chemical potenti~
alyu, the Debye temperature Tp of the averaged system, gV =

= (p'p (u)/ (o)), Ve V() / o ), and N* being

the coordination number. Je“ is defined llke (24). The partial-
ly and totally averaged demnsities of states pV (E) =

== Lm<i|GYE+i0)i > and p(®) =~ L. ImSp<Qy (E+i0)>resp., are
g aN c

available from the CPA, where GY denotes the conditionally
(except the site i occupied by a v-atom) averaged Green func-
tion. By symmetry arguments one proves that AL113 _ 78831 _ . 41313
and Al133 =A1313  entering into the coupling term in (21).
Note that in deriving (22), (23), (27), and (28) the Ward iden-
tity <Ggl(z,)GY!(z)>, =-(<GE! L(z,) >, )/ (2~ 2)
taken at Zy=12, and z1_~z in the]FM and Sg cases, resp s plays
a key role.

Using (22) and (23) the zeros of the quadratic part of (21)
correspond to the generalized Stomer criterion (Ty: Cure tempe-
rature)

“~

and the superconducting transition temperature
T = 1137 e Mt err PW) (30)

Mlnlmlzatlon of (21) through the conditions (BFerf)/(5®) =0 =0
and (BF ff)/(aA*) =0 yields the coupled equations
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eff

To investigate coexistence, we are looking for nontrivial
solutions of (31) and (32), so that A#0 and ©®+#0 hold simul-
taneously. Such solutions become stable in the case of weak
coupling between the two order parameters. This implies
the coexistence criterion

Allli 4A1813 (33)
which is connected with tetracritical behaviour.

On the other hand, if the condition (33) is violated one
has only a bicritical point referring to a first order tran-—
sition between SC and FM.

5. CONCLUSIONS

Now we are dealing with two special cases of the present mo-
del which can be treated analytically.

First, we restrict ourselves to itinerant FM by putting
IV =0 /18/ . Moreover, we are going through ed 5 to the inde-
pendent band limit. Then the Stoner criterion (29) with (15)
and (24) 1is reduced to ,
CBluh?
) Tyl = 1,

pB(uo)

where pB(E)=p (B)/(1~x), po=u(T=0),and the temperature
dependence has been approximated up to O(T"). Choosing a semiel-
liptic shape for the unperturbed B-band with the half-band
width w we obtain

B
E-eB- U 'nB 2
2 \)14 2 )7,
aw

X WX

where w =wy/1-xis affected by disorder.

UBp® (u) = UP[p® () +———(p \uo) - (34)

PP (®) = (35)

From 'UBpBix=xéu0)=1

one finds the critical or percolation concentration x, at T=0;
for a half-filled band (nB=1) one has immediately x. =

=1- (4UD2)/n2 w2
(30) on the basis of (25), which simply becomes Ae
one arrives at

Employing (34) and (35) forn®=1 as well as
=N"ABEB
ff ’

% dT
TM(x)u(x—--xc) , —2 <0, (36)
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The tendencies in (36) make an intersection point Ty =T =T pos= i
sible. The condition (33) can be rewritten by invoking ?26),
(27) (p ¥ W <0 1is established in view of the concavity of
(35)), and (28) in the form
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never tg be fulfilled for realistic parameters due to To/ W ~ 'i
~0(107° ).

Secondly, we consider only the s=d exchange in the simplest !

way, provided that U” =0, JA#0, JB=0, AA8.\AB=0, and ABB #0. .
For simplicity p is assumed to be independent of disorder (e; =0

LN
ti; =comst), i.e., p(W=2/mw (cf. (35)) for a half-filled S
band. Then (29) with (15) and (24) gives 1
y '
Ty =5x0%% W) . (38)

. . d . .
Besides, the decreasing 7;§<0 18 retalned because of Ae” =
X
= N'(1~ )2 ABB, The coexistence criterion (33) now reads with
(26) and (28):

A
L@, (39)

i v S W i WS ETTeTOESG

where the coupling ALl from (27) can be neglected. Then the
coefficients (26) and (28) are comparable with those in/16/ 14
real substances it turns out that JA<w,so that the inequality
(39) cannot be satisfied.

A coexistence criterion for SC and FM has been derived from
the free energy functional on the mean field level without
fluctuations for the augmented random Zener model. To be reali-
stic, we have considered itinerant FM in the percolation limit '
and the case of localized spins. There coexistence related to
a tetracritical behaviour could not be verified. This result
agrees qualitatively with conclusions in 711,18/ and partly with/8/
if the component exchange integrals JA and JB have the same
sign.

The authors are indebted to Dr. V.L.Aksenov and Dr. N.S.Ton- )
chev for useful remarks.
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