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I . INTRODUCTION 

This paper is a comment on an approach largely followed when 
c·onstructing the phase diagram in the n-8 plane ( n is the par­
ticle density; 8 , the temperature), rather than in the JI.-8 pla­
ne ( Jl. denotes the chemical potential), for a series of mean­
field models used to describe the antiferromagnetism of chromium 
and its alloys (11•21 and references therein), the metal-insula­
tor transition 131, or the so-called excitonic insulator state 
of a two-band semimetal 14•61 . The approach consists essentially 
in saving the self-consistency equation for the order parameter, 
t;. 

aro 
ai:"(JI.,8;l\)c0 (I ) 

and the fixed-density (or electroneutrality) condition: 
aro 

-n=--(Jl.,8;l\), (2) a fl. 
as a system in the unknowns l\ and Jl. • Here, f 0 denotes the mean­
field grand-canonical potential. Among the solutions of the sys­
tem (1), (2), one chooses that one, (l\(n,8),Jl.(n, 8)), which pro­
vides the minimum free energy: 

-
F (n, 8) = f 0 (JI. (n, 8), 8; l\ (n, 8)) + nIL (n, 8). (3) 

At first sight, there is nothing wrong here. However, when 
tQll2wing this route, it turns out that the phase diagram given 
by F~. 8) shows only a critical line, in spite of the fact that 
the JI.-8 phase diagram shows a critical line changing at a tri­
critical point into a line of first order phase transitions.This 
is especially inconvenient in view of the fact that, e.g., 
experiments of chromium/6/ (where n is fixed on physical grounds) 
show a first order transition in 8 • There have been various 
attempts to explain the origin of the first order transition, 
either by introducing particle reservoirs of various powersll/ 
or by taking into account fluctuations /7/ , or the contribution 
of other harmonics/81. 

We argue here that the first order transition can be explained 
without any further sophistication of the original models, simply 
by solving them correctly. Thereby we clarify also the role of 
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the reservoir. We point out that the ·correct free energy,_which 
we denote .F(n, I'J), is the convex envelope of .F(n, I'J)defined by 
Eq. (3), and that the phase diagram given by F(n,O) has the want­
ed property: a tricritical point and a region of phase coexis­
ten~e. 

We were in fact led to suspect the correctness of the appro­
ach outlined above by the remark that the results obtained in 
this wa~ present the highly unphysical' feature that the•free 
energy, F(n, 0), is not a convex function of n for sufficiently 
low temperature. The situation is in close analogy with th~t 
encountered i~ the Vander Waals theory of the liquid-gas·tran­
sition, with .F corresponding to the Van der Waals loop and F 
presenting a flat spot in analogy with the Maxwell construction. 
See also the Appendix. We suspect that our considerations apply 
equally well to the treatment of more ~laborated models, like 
those in Refs _11,2/ or /8/. ~ 

2. THE MODELS 

We shall consider the physical system consisting of 'two iso­
tropic electron bands, a and ·b, with equal effective masses: 

k2 
E (k) "" ± (- - ! F a,b 2m (4) 

and a third band, d, with dispersion law ed(k),which will play 
the role of an electron reservoir/11• Two types of interactions 
can lead to the onset of an electron-hole (excitonic) condensate: 

a) the interband Coulomb interaction: 

J{ .,: !. v(k,k', q)a+k ak bk+, , bk, , 
~e q,k,k' +q, Jl. ,JI. -q,JI. ,JI. 

(5) 

JI.,JI., 

b) the interband electron-phonon interaction: 

J{ h = !. g(k)a+k b +k (c+ + c ) + h.c. 
e-p k,p,JI. ll p ./l p -p 

(6) 

We use the notation a;,JI. , b: 
11

,. dj. Jl. for the creation opera­
tors for ele.ctrons with moment~m k and spin Jl. in bands a 'b 
and d, respectively, and c+ for the phonon creation operators. 

The study of tqe exciton~c phase transition in term of the 
interactions (5) and/or (6) is usually done within the Hartree­
Fock approximation /9,10/. In order to make ·clear once more the 
physical assumptions hidden in this approximation, we prefer to 
replace (5) and (6) by reduced interactions, which on one hand 
should allow an exact solution, and on the other hand should 
contain thqt part of the interaction which is responsible for 
the excitonic transition: 
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J{ red.=- 2..\e-e ( !. aT b )· ( !. b+ y a ') • 
e-e V k,JL, v k,,l/lv k,v k,JI. ,v k,v VJl. k,/l 

J{ red 
e-ph = 

A e-ph + . + 
--:.--;,~,(c + c) !. a b + h.c;, 

2y v k,JI, k,JI. k,/l 

(5 ') 

(6') 

where V is the volume, A e-e and A e-ph are effective coupling 
constants, YJl.v =811v (respectively, u;v, where uz is the Pauli 
matrix) for the case of singlet (respectively, triplet) pairing. 

In conclusion, we shall work with the models defined by one 
of the following Hamiltonians: 

J{ =!. (E (k)a+ a +e (k)'b; b +E (k)d+ d )+J{red, (7) 
1 k,/l a k,JI. k,JI. b ,JI. k,JI. d k,/l k,JI. e-e 

J{ 2 = 1\J c + c + !. (E a (k) a;,/l ak,JI. + E b(k) b~,JI. bk,/l + 
k,JI. 

; 

+ E (k) d+ d ) + J{ red 
d _ k,JI. k,JI. e-ph 

3. CALCULATION OF THE GRAND-CANONICAL POTENTIAL 

(8) 

In the grand-canonical e~semble at given chemical potential 
Jl. , one has to add to the model Hamiltonian a term: 

~ + + + 
,JI.N = -f.l.!. (~ ~ + bk bk + dk d k ) . k,v ,v , v ,v ,v ,v ,v (9) 

and evaluate the limit as V ... oo of the thermodynamical potential: 

() 1 A 

fv (f.l., O) = - - ln Tr exp [ -·-( J{ -f.l.N)]. v () (I Cl) 

In the cases under consider~tion, i.e., both for the Hamiltonians 
(7) and (8) (and even in a more general case, where both inter-
actions J{ red and }{red h are present), one can rigorously 

e-~ e-p show/11,12/ that: 

f(J.l., 0) = lim f V(J.I.' I'J) = min f 0 (J1., (); .6,), 
V-+oc M;;R(C) (II) 

where: 
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() 1 A 

f 0 (JL, fJ; t>,) = lim (-~) • lnTre:xp[--
8 

(}{(t-,)-J.LN)] 
V-+oo V 

(12) 

and J((t-,) is a mean-field Hamiltonian given by: 

J{ (t>.) :Z (c (k)a+k a k + cb(k)b+k bk + cd(k)dk+ dk ) 
k 

a ,v ,v ,v ,v ,v ,v 
,v (13) 

-(t>. k 
k, JL, v 

+ a Y b h V k,J.t JLV k v + .o.) + -·lt-.1
2 

' 2\ • 

2 

with A =Ae-e for 
A e-ph 

J{ 
1

, and A= for J{ 2 . In the former 
w 

. -1 
case, 6 has the mean1ng of average value of AV :Z 

+ 
ak ,Y,v bk v 

k,JL,V ,,. ,.. ' 

and is, in principle allowed to take all complex values in 
Eq. (11); however, as f 0 does not depend on the phase of t>., 
one can restrict consideration to real, positive 6 . In the latter 
case, 6 has the meaning of average value of wV~ (o+c+), so it 
takes by definitions only real values; the phonon mode is not 
"thermodynamic", i.e., it does not enter the approximating Hamil­
tonian J<(t>.), it only induces an effective electron-electron in­
teraction (for details, see /12,13/ ) . 

The r.h.s. of Eq. (12) can be easily calculated and gives: 

fo(JL, (); t>,) = - 2(JN(O) j d c { ln (1 + e:xp ( IL- sigH . ..j £2 + t-,2 
-w (} )] + 

(14) 

J,L-l 1 2 
+P·ln[1+ exp(-

0
-}]1 + 2r"~ 

where N(O) is the density of states* at the Fermi level in 
bands a and b, wis a cut-off parameter, and 2pN(O) is the den­
sity of states* in band d; p is sometimes called the power of 
the reservoir. We take advantage of the symmetry relation: 
f 0(-~t, O;t>.) =·4wN(O) (1 + p)J.L + £0 (JL,fJ; t>.), and henceforth consider 
only ~t>O.The minimum is attained in Eq. (II) on the set of so­
lutions of the self-consistency equation (gap equation): 

_t>._ = t>. fdc(c2+t>.2)-% [th .../c2+1J+tt + th .../c2+t-,2-J.\]. (15) 
N(O)A o 20 20 

*Here the sum over the two spin states is included. 
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Eq. (IS) has bee~ st~died in connection with the paramagne­
tic e~:t:~9t in. ... ~l,lp~r~onductors '~ 141 . We shall write down the rele-., 
vant f9rml,llae f.9r .~7\·0',. when all calculations can ,be performed 
analytically. The gap equation (IS) becomes* :, 

' ~ 

8 ,/ w ; 

N(O)A = 2t>. J df(c 2+t-.2)-Vz -- . (2111n 2w o 0(,/.". 8 2 • II' -J).) "'' 

Its ~olutibn~ are~ 

' \ ;.. ' t>. 
1 

(J.L,' u) = 11 0 ·., 2w exp .(-1/ 2t'J(O) A) 

t" 

11 ~ <JL, O) = .vt-.·0 (2~t - t-.0 ) 

11 3 (JL, O) = o 

j 
2/1·1n 

for ~t. ~. 4{) 

I 
I 

for 

....... 

~<JL<t>.o 
2 - -

·, 'fo~ ;.all /1.. 

.if JL$11 

(16) 

if JL>A. 

(17) 

The values taken by f 0 (J.L, 0; 6) on the set 11 i (J.L, O), i = 1,2,3 of 
solutions of Eq. (16) are represented schemat·i~ally in the lower 
part of Fig. 1. The solid line is the graph of f(J,L,O) defined in 
Eq_. (11): 

' 2 
I. 1 '2 ' 1 ~0 1 2, 

-2N\0)(J.LW+-W (1+--)+-P(J.L+W) J 
' 2 · · 2 'w2 2 

f(J,L, 0) = 

1 2 
-2N(O) (1 + p )2-(J.L + w) 

i .,J. 

for IL $ 11o 
r:::: 
.../2 

( 18) 

110' 
f6r IL ~ yrz-' 

For JL<f..l1o/.../.Z one h,as the excitpnic .phase .with order parameter 
t-. 0 ;, f~r '6.0//"i,;<J.L~.~,o~e has the ,normal phase ( t>. =0), and 
the k:irnk (d~saontit).uous fir~t deriv.ative) at J.L=·Aohf2corres­
ponds~Fq a.first o~der transition ift IL • 

*For simplicity of formulae, we neglected 0(11/.w)teri!ls. in the 
r.h.s. of Eq. (16) (weak coupling approximation). 
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4. THE HELMHOLZ FREE ENERGY 

Fig. I. The grand-canonical po­
tential at zero-temperature and 
the (~, 8) -phase diagram (sche­
matical). 

Qualitatively the same pic­
ture takes place also at fixed 
8>0up to a certain (tricriti­
cal) temperature, 8:. For fJ>8g, 
f(~, 8) becomes a differentiable 
function of ~· and the phase 
transition will be continuous·. 
The corresponding phase diagram 
is represented in the upper part 
of Fig. I (with double line 
meaning a first order transition). 

On physical grounds, one is interested in the situation, where 
the total electron density, n, is kept fixed: The change from 
the (~, 8) - to the (n, 8) - variables is to be performed, accord­
ing thermodynamics, via the Legendre transformation, which ex­
presses the Helmholz free energy, F, in terms off as 1151 

· 

F(n, 8) = sup [f~,8) + ~n]. 
J.l. (19) 

The thremodynamics of the model in the (n,8) -variables is fully 
specified by Eqs. (II) and (19). 

Let us mention at once that, while in f(~, 8) the reservoir 
enters additively, that is, f(~,O) is a linear function of the 
reservoir power p, this is not the -case for F(n, 8) due to the 
Legende transformation, Eq. (19). Following Rice/1/ , we shall 
use instead of n the variable: 

n --w 
J.l. P = 2N(O)(l + P) 

(20) 

6 

"'17 

) 

) 

which is linearly related to n and has the meaning of chemical 
potential in the abs~nce of interactions. 

The ground state energy in the new variable, F(~P' 0) , cal­
culated from Eqs. (18), (19) is expressed as: 

F(J.I. , 0) = p 

Fe (JL P), 

F (~) + (J.I.p­
n ..;2 

Fn (J.I.p), 

~) .( dFn I ~0), ..;2 dJJ.p J.l.p= V2 

p ~0 
<- TO' for O_:Silp- p+1 V"' 

~0 p ~0 <-
for -- -:::-:S ~p- ..;2 

p+1 y2 

~0 (21) > --, for ~P _ ~ 

where the ground state energies 
phases, F0 (~P) and Fc(J.I.~ are: 

for the normal and condensed 

J.1.2_ w2 
F0 (/lp) = 2N(0)(1+P) ~ (22) 

( 2 2 ~2 
F (~ ) = 2N(O)[ 1 +P) fL 2 - (1 + p)..!L. - _o]. 

c p 2p p 2 4 (23) 

The graph of F(~-~p,O) given by Eq. (21) is represented by solid 
line in the lower part of Figs. 2 and 3 (for p < 1 and p > 1 , res­
pectively). The pure excitonic phase occurs only in the interval 

p ~ 
O<JL <--­

- P- p+l J2 
into a point. The 

for p = 0 

kink of f 

(i.e. no reservoir) this shrinks 

.io 
at JL = -- leads to the flat spot 

J2 
n i\o 6-o 

over~ -<J.I. < --
p + 1 ..;2 - - ,]2 ' 

where on~ has a mixture of the excitonic 

and normal phases, while for /l > ~0 only the pure normal phase 
..)2 

persists. On the phase diagram one has mixed states in th~ whole 
region denoted DN in the upper parts of Figs. 2 and 3. 

'Let us remark that one in constrained by calculation difficul­
ties to use the grand-canonical ensemble and then go to the phy­
sically relevant parameters (n, 8) via the Legendre tran,sforma­
tion. One may think that the most appropriate way of calculating 
F(n, 0) should be the use of the canonical ensemble. Though this 
is justified for systems described by bona fide Hamiltonians, 
one ·has to remember that in the case of volume-dependent Hamilto- ' 
nians (like ours) the use of the canonical ensemble can result 
in a nonconvex free energy. This is illustrated in the Appendix 
in the case of the Husimi-Temperley model. On the other hand, 
the Legendre transformation of the grand-canonical potential al­
ways provides a convex free energy. 
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Fig. 3. The ground-state ener­
gy and t:he (n, 8) -phase_ tliagrartl' 
at reservoir •power p :>'1 (sche-
ma tical) ·' • 1 

'. 
1 5. DISCUSSION OF THE RESULTS · 

He shall show here that the difference bet~E;!en our ,approacl) 
and the approach ·in Refs. 11"5• 1Q1., which was. describe~ in ·~he 
introduction, consists essentially in that, there, one· performs 
f.irsb the· ·LegendTe tl'ansfor:ma'tion' of f6(~ 8; L\) 'at fixed 8 ~, 
and only afterwards takes the-'·rrtinimum wi~h respect to ~, i.e., 
their defi'nition· ·o-f -the· -free ·e'ner'gy is: ' · · · 

, .. 
I ' 

F, .(n,ft), ·= , min I ·sup [f 0 (t-t,-8; L\) +' JLll] l 
I I L\ JL· , 

' instead of··>( I I) ·and• •( 1'9 )'. 

Inde'ed·, -f9(JL, 8; L\) ··is 'a 'di'fferentiable 'furtction of JL , 
supremum: over JL "QS atta·in'ed at a· 'stationary' 'poi'nt, i.e., 
solut,:Lon ·o.£. the e1ec•tr'oneutrality eqmiti'on:''' . ' . 

( r ,, ~ aco .. , "')· u\fl 

fi =, - i rJJL (Jl., 8 ;: _L\) I I 

l '·' ! ~ 

(24) 

so.· the/ 
on a" ' 

ds ·: 
'J ., ) • 

which,,·in our new·variab'le j1 ; Eq. 1'(2b); write·~'e~plic'itly' 
as {compare ReL/,ll. , •Eq. '•(IJ,)) ~ 1 ' • • ·' • ') ' ' •• 

'I 

• i 

;.,•j.r 

8 

\J, 
) 
i 

i ~ 

! 
I 
I 
., 

i 
I 
i 
. I 
t 

(,, 
~~ •' 

' 

. . . 

-'~ 
th JL+v! +u th 11--E th ll + E] + +P· --+P· --. 

28 28 28 
llp = 1 w T 2(p+1) ( ddth JL-\/E2+_L\2 

0 28 • 
(25' ), 

The subsequent minimum over L\ provides again the selfco~sistency 
~q. (15). Let us stress that, irrespective of the particular way 
of justifying Eqs. (25'), (15), the main point is that these ve­
ry equations are used and, then, the final result will coincide 
with (24). 

At zero temperature, Eq. (25') gives: 

ll = p 

p 
p + 1,.,., O~ll~L\ 

p 1 I 
-p1 jl + ____ / 2 A2 

+ P+1vll-'-' JL>L\. 

(26) 

Solving the system (16), (26) results in the following solutions: 

L\(1) (j.L ) = L\ 0 ' 
p 

JL(l)(/l ) = P+ 1_f.L 
p p p for 0 < " < _P_ L\ · 

- ~"p - p + 1 0. 

(2) r(p+1).L\0 (2JLp-L\O) (2)( )= p+1(J1. _ .L\o) 
L\ (f.L ) = v' ..: ' ll llp p - 1 p p + 1 p p-1 

and _PL\ o . 
p + 1 • 

L\ (3) (j.L ) =: 0 ' 
p /3)(/lp) =j.Lp 

for ll p between 110 
2 

for all JL p • 

Now, F(/lp,O) is obtained by taking the m~n~mum among 

ro(JLCi) (JL P ), O; _L\(i) (f.LP)) + 2N(0)(1 + P)Jl.pll(i) (/l P) , i = I ,2,3. The values 

taken by the latter (outside the graph of F) are represented 
(by dotted or by thin line) on Figs. 2 and 3 for p < 1 and p > 1, 
respectively. For p < 1, L\ goes successively through the three 
solutions on the graph of F, i.e., it goes continuosly to zero. 
This circumstance is interpreted as a second order transition 

(see also Refs,/2·51, where p =0 is chosen). Forp>l. there is a 

- --. L\o 
jump on the graph ofF between ~ 0 and 0 at f.Lp=v_p-r-.which 

P+ .._;7 

is interpreted as a first order transition 11 ~ In all cases, the 
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graph of F (the thin line on Figs. 2 and 3) is obviousJy non-
convex of p. • • 

The (mat~ematically trivial) reason, explaining why Eq. (24) 
may provide the wrong answer, can be read off from Eq s. ( 1 1 ) , 
(19) and respectively (24), if one remembers that for fixed 8, 
~ , f 0 is a concave function of P. , while its Legendre trans­
form is convex of n . Namely: the infimum of a family o~ con­
vex (respectively, concave) functions may be not convex (re'spec­
tively, is always concave). It is easy to show that, in fact: 

F (n , 0) = C.E. F (n , 0) , (27) 

where C.E.F denotes the gratest convex function of n less than 
or equal to F. Eq. (25) determines the chemical potentialp. as 
a function of n only in the pure phase region (see Figs. 2,3). 

The following remark about the model is in order. As is seen, 
when solved correctly, it leads to a first order transition, 
accompanied by a region of phase coexistence. One may question 
what form this coexistence may take. If one remembers that the 
model discards most of the Coulomb interaction, one can expect 
it to be qualitatiyely reasonable only if the electron density 
is constant in space, because 'otherwise the Coulomb energy 
cost would be prohibitive. Therefore, one has to imagine the 
mixed state as a homogeneous fluid of "quasi-particles" with 
two different energy spectra. 

APPENDIX 

In order to illustrate the fact that for Hamiltonians with 
1/N -interactions the canonical ensemble can lead to a non­
convex Helmhqlz free energy, we shall consider here the Husimi­
Temperley model, in the spin formulation (where the canonical 
ensemble corresponds to. the fixed magnetisation ensemble): 

J N 
J{ = -·- L a. a .. 

2N i,j=1 1 J 

The free energy for 

(see also 1161 ) : 

1 N 
fixed m =-!, a. 

N i=1 1 

F (m, 0) = lim.!!_ ln[ !. 
can N->oo N a.=± 1; !.a.= mNl 

1 1 

lim- ln 

can be easily calculated 

N 
e 20 Jm 2 

N 

0 [ N I 
N->oo N (N .1...±...!!l..) ! (N 

2 
L=...!!L)! 

2 

e wJm2] 

10 

f· 
d· 
'I 
\ 

, I 

I 

I 
i 
\ 

,. 

' 

; l 
» , 
• I 
i! 
I I 
• I 

'! 

l.. m2 
2 

0
[

1+m 1 1+m 1-m 1 1-m] - -- n---+-- n--
2 2 2 2 

and is obviously non-convex as a function of m . On the other 
hand, the grand-canonical potential (corresponding to fixed 
external magnetic field, h): 

N 
_l_.i!...(!, a 2 h N 

f(h, 0) = lim (-.!.) 1n [ !, 20 N i=l i) + 0 ~ ai] 
N->oo N • e i-1 

lai =±11 

lim (- .!_) In (c NJ )Y2 
N ->oo N 2rr0 

f dy e - 1! 2 y -8 In ch ~ - 0 ln2) 00 Ne 2 J ] 

-oo 

max (..!.. y 2 - 8 ln ch Jy + h - 0 ln2] 
y~R 2 8 

/ 

gives, after the Legendre transformation: 

F(m, 8) = C.E. F can (m, 8). 
~ 

As is well known /l7/, the ·origin of this pathology is the 1/N -
interaction; when one considers N ... oo for a fixed short-range 
interaction and only afterwards takes the Van der Waals limit, 
one obtains the correct results .F(m, 0). 

It is interesting to note that for the (classical or quantum) 
Heisenberg model wi.th liN -interaction: 

J ->2 -+ N -> 
J<=--S, 8=!. s 

2N i= 1 i 

the canonical. ·ensemble (mz = ~ S z) calculation gives the correct 

free energy. The simple calculation (in the quantum spin 1/2 
case) is as follows: 

J ... 2 

.F (m z, 8) .. lim .!!_ ln [ Tr e 20N s ] 
can N-too N tsz•NmZl 

.. lim 
N .. oc 

0 l N/2 -ln !. 
N S•Nmz 

NI (28 + 1) 

N' N c2 + S + 1)1 ( 2 - S)l 

J 
e 20Ns (S+ t)] 

llt 



J 2 [1 . 1 1 1 max 
1

t 2 x . -8 (2 +x)ln(2 +x) +(2 -x)1n(
2

-x)]}, 
mZ<x <-

- - 2 

which is nothing but the Legendre transform of the grand-canoni-
cal f(h, 8) 118( . 

As the models we consider in the body of the paper better 
resemble the Heisenberg model, we believe that, for them, the 
canonical ensemble provides the correct result·, but up to now 
we were not able to verify this. 
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AHrenecKy H., HeH~Y r., TOH~e8 H.C. 
0 TeopMM 3KCMTOHHOrO $a30Boro nepeXOAa npM HanM~MM 
peaepayapa 

E17-82-798 

AnR HeKOToporo Knacca CPeAHenoneBWX MOAeneH,~aCTO BCTpe~a~MXCA npH OnH­
CBHMM 3KCMTOHHOrO ~3080rO nepeXOAa, nony~eHa ~a30BaA AHarpaMMa 8 nepeMeHHWX 
nnoTHOCT~-TeMneparypa. nonyTHO 8WACHeHa ponb pesepeyapa. noKasaHo, ~To o6w~­
HWH OOAXOA, OCHOBaH~ Ha ypa8HeHHH 3neKTpoHeHTpanbHOCTH, npHBOAHT K Henpa­
BMn~~y peaynbTaTy AnA TaKMX 3Ha~eHHH nnOTHOCTM H TeMnepaTypw, npH KOTOpWX 
MMeeT MBCTO CMBCb ~a3. 

Pa6ora awnonHeHa 8 na6opaTopHM TeopeTH~ecKOH ~H3MKH OHR". 

t~HMe 06~MHeHHOrO MHCTMTYTB AAePHWX MCCneA088HMH, AY6Ha 1982 

Angelescu N., Nenciu G., Tonchev N.S. 
On the Theory of the Excitonic Phase Transition 
in the Presence of a Reservoir 

E17-82-798 

The phase diagram in the density-temperature variables is obtained for 
a class of mean-field models currently used in describing the excitonic 
phase transition. Thereby the role of the reservoir Is clarified. It is 
pointed out that the usual approach employing the electroneutrality equation 
leads to incorrect results for those values of density and temperature at 
which phase coexistence takes place . 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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