


1. INTRODUCTION

This paper is a comment on an approach largely followed when
constructing the phase diagram in the n-f plane (n is the par—
ticle density; 6, the temperature), rather than in the p~6 pla-
ne (p denotes the chemical potential), for a series of mean-
field models used to describe the antiferromagnetism of chromium
and its alloys (/12 and references therein), the metal-insula—~
tor transition’®, or the so-called excitonic insulator state
of a two-band semimetal’%%/ The approach consists essentially
in soving the self-consistency equation for the order parameter,
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——(u, 0; A)=0 1
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and the fixed-density (or electroneutrality) condition:
af°
= - (g 0;A), (2)
du

as a system in the unknowns A and yx . Here, f° denotes the mean-
field grand-canonical potential. Among the solutions of the sys—
tem (1), (2), one chooses that one, (A(n,#),un, 6)), which pro-
vides the minimum free energy:

F(n, 6) =£°u, 0),0; A, 6)) + nun, 0). (3)

At first sight, there is nothing wrong here. However, when
following this route, it turns out that the phase diagram given
by F(n, 6) shows only a critical line, in spite of the fact that
the u~8 phase diagram shows a critical line changing at a tri-
critical point into a line of first order phase transitions.This
is especially inconvenient in view of the fact that, e.g.,
experiments of chromium/8/ (where n is fixed on physical grounds)
show a first order transition in 6 . There have been various
attempts to explain the origin of the first order transitionm,
either by introducing particle reservoirs of various powers /Y
or by taking into account fluctuations /7 , or the contribution
of other harmonics’/8/,

We argue here that the first order transition can be explained
without any further sophistication of the original models, simply
by solving them correctly. Thereby we clarify also the role of
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the reservoir. We point out that the correct free energy, which
we denote F(n, ), is the convex envelope of F(n,6)defined by
Eq. (3), and that the phase diagram given by F(n,#6) has the want-
ed property: a tricritical point and a region of phase coexis-
tente.

We were in fact led to suspect the correctness of the appro-
ach outlined above by the remark that the results obtained in
this way, present the highly unphysical feature that the ‘free
energy, F(o, 6), is not a convex function of N for sufficiently
low temperature. The situation is in close analogy with that
encountered in the Van der Waals theory of the liquid-gas-tran—
sition, with F corresponding to the Van der Waals loop and F
presenting a flat spot in analogy with the Maxwell construction.
See also the Appendix. We suspect that our considerations apply
equally well to the treatment of more elaborated models, like
those in Refs./1:2/ or/8/, .

2. THE MODELS

We shall consider the physical system consisting of ‘two iso-
tropic electron bands, 3 and b, with equal effective masses:
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and a third band, d, with dispersion law edﬂﬂ,which will play

the role of an electron reservoir’/1/, Two types of interactions

can lead to the onset of an electron-hole (excitonic) condensate:
a) the interband Coulomb interaction:

o ’ + +
He'e Mq.f,k’v(k'k ’ q>ak+q. PR bk’—q.ﬂ’ bk’,u’ )
popt”
b) the interband electron-phonon interaction:
+ +
}(e_ph _ki,#g(k)akubp_Fk,“ (c, + c_,) +he (6)

We use the notation a;}u s b;lu ’,dtﬂl for the creation opera-
tors for electrons with momentum k and spin yx in bands a , b
and 4, respectively, and ¢t for the phonun creation operators.

The study of the excitonic phase transition in term of the
interactions (5) and/or (6) is usually done within the Hartree-
Fock abproximation/QJo/. In order to make .clear once more the
physical assumptions hidden in this approximation, we prefer to
replace (5) and (6) by reduced interactions, which on one hand
should allow an exact solution, and on the other hand should
contain that part of the interaction which is responsible for
the excitonic transition:
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where V is the volume, A, and A opn are effective coupling
constants,yuv==8uv (respectively, o2, where ¢ is the Pauli
matrix) for the case of singlet (respectively, triplet) pairing.

In conclusion, we shall work with the models defined by one
of the following Hamiltonians:

+ 4 + red
}(1 = kEu (ea k) ak’u ak,u + eb(k) bk,u bk,u + Ed(k)dk,,u dk,u Y+ K o’ (7)
+ + +
H,= wcc-+kﬁlka&ﬁ%#ahu+e§mbhﬂbhu+
. ‘ 5 (8)
re -
+e$?dhudk#)+re_m.

3. CALCULATION OF THE GRAND-CANONICAL POTENTIAL

In the grand-canonical ensemble at given chemical potential
g, one has to add to the model Hamiltonian a term:

N = —'ukz (ak,v ak,v+ bk,vbk,v+ d: vd k v) (9)
,V ’ ’

and evaluate the limit as V- of the thermodynamical potential:
fv (u, 0) =~ _‘Q} InTr exp[—-al—( X —uﬁ)]. (10)

In the cases under consideration, i.e., both for the Hamiltonians
(7) and (8) (and even in a more general case, where both inter—

actions }(:? and }(:ﬁ;h are present), one can rigorously
show’ 11,12/ Tthat

£y, 8) = lim € _(u, 0) = min tu, 0; A)
v u, U5 4A), 11
Voo AGR(C) ( )

where:



o, 6; A) = lim (—-—) mTrexp[———(I((A)—uN)l

e (12)
- 00
and H(A) is a mean-field Hamiltonian given by:
+ + +
@y = = (e&(k)ak’uak’v+eb(k)bk,vbk’v+cd(k)dk,vdk,v) -
k,V (13)
4
+ V a2
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with A=)r,, for X,, and A= ——— for Hy. In the former
w

case, A has the meaning of average value of AV—; Ev a;’“yw, bk,v

ity
and is, in principle allowed to take all complex values in
Eq. (11); however, as f® does not depend on the phase of A,
one can restrict consideration to real, positive A . In the latter
case, A has the meaning of average value of (,,V“l/2 (c+c+) so it
takes by definitions only real values; the phonon mode is not
"thermodynamic", i.e., it does not enter the approximating Hamil-
tonian X(A), it only induces an effective electron-electron in-
teraction (for details, see 712,18/ ),

The r.h.s. of Eq. (12) can be easily calculated and gives:
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p— signe v €2 + A® .
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£90s, 8;A) = = 20N(0) | dellnll+ exp( N+
-—Ww

(14)
+p-In[1+ exp(

1+ —-—-A ,

where N(0) is the density of states * at the Fermi level in
bands @ and b, wis a cut—off parameter, and &2pN(0) is the den-
sity of states® in band & p is sometimes called the power of

o

the reservoir. We take advantage of the symmetry relation:

£o(~p, 9; A)—4WN(0) (1+p),u+ £9(u, 0; A), and henceforth consider
only u>0. The minimum is attained in Eq. (11) on the set of so- H

lutions of the self-consistency equation {gap equation):
w l
-~ A i
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*Here the sum over the two spin states is included.
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Eq. (15) has been studied in connection with the paramagne~
tic effect in superconductors/ 4/ We shall write down the rele-
vant formulae for 6=.0. when all calculations can be performed
analytically. The gap equatlon (15) becomes*

/
720 1n-2z“i, if p<A
A __ 2A }vde(cz+A2)hl/z 0 (Ve +AZ —p) = (16)
N(0)A 0 J
i eAm—2Y it u>A
v uB-A% .
[ts solutions are: ‘ \ 3
N . . . -
TA g 0) =0, = 2w exp(—~1/2N(0)4\) for w<Ag -
' —r— /! | Ag
Ag(n,0) =0 - for all p.
The values taken by f°(u,0; A) on the set Ai(“’ 0, i=1,2,8 of

solutions of Eq.

(16) are represented schematically in the lower
part of Fig. 1

. The solid line is the graph of f{u,0) defined in

Eq. (11): ,
. | 1 A?
—2}N(0)[MW+ ——‘w,2(1,+-—1~ —%)+ —lnp(u+ w)2] for p< AP-
£(u, 0) = ' (18)
1 2 . Ao
. -2N(0) (1 +p)-§-(# +w) for p 3 —

L

For u<, Ao/\/_2_ one has the excitponic phase with order parameter
Ag 3 for AO/\/z <u<o,one has the normal phase ( A =0), and
the kink (dlsconthuous first derlvatlve) at u=~Ag/V2 corres-—
ponds _to a first oxder transition in p .

)

*For simplicity of formulae, we neglected 0(A/wyterms in the
r.h.s. of Eq. (16) (weak coupling approximation).
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] Fig. 1. The grand-canonical po-
B¢ tential at zero—temperature and
the (u, §) -phase diagram (sche-
matical).

)

Qualitatively the same pic-—
ture takes place also at fixed
4>0up to a certain (tricriti-
cal) temperature, f;. For §>62,
f(u, 8) becomes a differentiable
function of pu, and the phase
transition will be continuous-
The corresponding phase diagram
is represented in the upper part
of Fig. 1 (with double line

4. THE HELMHOLZ FREE ENERGY

On physical grounds, one is interested in the situation, where
the total electron density, n, is kept fixed. The change from
the (4,8) - to the (n, ) - variables is to be performed, accord-
ing thermodynamics, via the Legendre transformation, which ex-
presses the Helmholz free energy, F, in terms of f as

F@, 6) = sup [f(y,0) 1.
uP (,8) + un (19)

The thremodynamics of the model in the (u, ) —variables is fully
specified by Eqs. (11) and (19).

Let us mention at once that, while in f(g,0) the reservoir
enters additively, that is, f(g,§) 1is a linear function of the
reservoir power p, this is not the -case for F(n,§) due to the

Legende transformation, Eq. (19). Following Rice’/} , we shall
use instead of n the variable:

n w (20)
2NO) (1 + p)

ﬂp":

meaning a first order transition).

E

which is linearly related to n and has the meaning of chemical
potential in the absgnce of interactions.

The ground state energy in the new variable,,F(up, 0) , cal-
culated from Eqs. (18), (19) is expressed as:

CF, () for O<p. < —2 Ao
¢ p) S p+1 Uz
A A
F([L ,0)" « Fn (é'.%.) + (“p - 'é—g:) '( dF“ l Ao)’ or _ET —:0:.< “ps _‘:‘(.).
P V2 ve o g v p+l 2 V2
A
L F (up), for o2 =2 , 21

where the ground state energies for the normal and condensed
phases, Fu(up) and FL(uQ are:

2 2

g~ W
Fn("p) = 2N(O)(1 + p) ——"2——""" , (22)
F (o) = 2N [ (Lep) 2 A +p¥2 A%]
¢ Hp 2 o TP (23)

The graph of Ewup,o) given by Eq. (21) 1is represented by solid
line in the lower part of Figs. 2 and 3 (for p<1 and p>1, res-
pectively). The pure excitonic phase occurs only in the interval

P —; for p=0 (i.e. no reservoir) this shrinks
p+1 % A
into a point. The kink of f at u=.—2—. leads to the flat spot

0< <
Sup <

over 2_ 80, B0
el yzst CE A
and normal phases, while for u > =%

where one has a mixture of the excitonic

only the pure normal phase

persists. On the phase diagram one has mixed states in the whole
region denoted DN in the upper parts of Figs. 2 and 3.

“Let us remark that one in constrained by calculation difficul-
ties to use the grand~canonical ensemble and then go to the phy-
sically relevant parameters (n,f) via the Legendre trangsforma-
tion. One may think that the most appropriate way of calculating
F(n, #)  should be the use of the canonical ensemble. Though this
is justified for systems described by bona fide Hamiltonians,
one has to remember that in the case of volume-dependent Hamilto-
nians (like ours) the use of the canonical ensemble can result
in a nonconvex free energy. This is illustrated in the Appendix
in the case of the Husimi~Temperley model. On the other hand,
the Legendre transformation of the grand-canonical potential al-
ways provides a convex free energy.
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Fig. 2. The ground-state energy
and the (n,0) ~phase diagram at

reservoir power p<1 ,(Schemati-,
cal).

Fig. 3. The ground—state ener—
gy and the (n,0)-phase diagram’
at reservoir: power p>1 (sche-
. matical) ‘ s

5. DISCUSSION OF THE RESULTS - !
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We shall show here that the difference between our approach
and the approach in Refs. /1-8:10/, which was describéd in the
introduction, consists essentlally in that, there, one performs
first the Legendre transformation” of fo(, @A) at fixed 6,A '
and only afterwards takes the minimum with respect to L A, i.e.,
their defimition ‘of the free energy is: ! '

f i } | AR

E (0, = min {'sup [£°(u;0: A) +*yn 1} (24)

AR A‘ B o . r
instead of=(11) ‘and «(19). ' A

Indéed, %y, 0; A) 'is ‘a differentiable 'functlon of 4, so the

supremum: over M “is attaineéd at az statlonary p01nt 1 €., on a’
solutlon of. the electroneutrallty equdtion:” ’ "’

- afo o e R ¥ T + ¢ i
0=, —~ _5""'(#9 0 A) [ H ) 1 4 ('245) ‘a
N gt r P s , "
whichyrin our new 'variable ;_ | £q." (20, wrltes exp11c1t1y K

as {(compare Ref.%l’ » 'Eq.
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+p-thf =S ip.th
p-th=m—+p

(25"),
The subsequent minimum over A provides again the selfconsistency
Eq. (15). Let us stress that, irrespective of the particular way
of just{fying Egqs. (25°), (15), the main point is that these ve-
ry equations are used and, then, the final result will coincide
with (24).

At zero temperature, Eq. (257) gives:

P U, O0<u<A
p+1
(26)
#p“ 1
L Vi -0, u>A.
p+1 p

Solving the system (16), (26) results in the following solutions:

AL (u ) Ay, u(l)(up) = —Pf)i—l-up for 0< uy < pp+ 7 Ay
A® () =/@+1)A°(2“""A°) u® () = 2L, A0,
P p~1 ’ P p~1 P p+1
Ag
and _pA 0 ; for pp, between 5
p+1

AG) (up )=0, u® (up) =gy for all p .

Now, F(u ,0) is obtained by taking the minimum among
£2G® (), 0 A0 () + 2NOYA +ppp® () >3 = 1,2,3. The values

taken by the latter (outside the graph of F) are represented
(by dotted or by thin line) on Figs. 2 and 3 for p<1 and p>1,
respectively. For p<1,A goes succe551ve1y through the three )
solutions on the graph of F , lL.e., it goes continuosly to zero.
This circumstance is interpreted as a second order transition

(see also Refs.’25/ where p =0 is chosen). Forp>1, there is a

jump on the graph of F between Ag and 0 at pp = \/ I"’%' which

is interpreted as a first order transition’!”. In all cases, the
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graph of F (the thin line on Figs.
convex of g

The (matgematlcally trivial) reason, explaining why Eq. (24)
may provide the wrong answer, can be read off from Eqs. (11),
(19) and respectively (24), if one remembers that for fixed 6,
A , f° is a concave function of p , while its Legendre trans-—
form is convex of n . Namely: the infimum of a family of con-
vex (respectively, concave) functions may be not convex (respec-
tively, is always concave). It is easy to show that, in fact:

2 and 3) 1is obviously non-

F(n,9) = C.E. F(, 0),

(27)

where C.E.F denotes the gratest convex function of n less than
or equal to F. Eq. (25) determines the chemical potentialyp as
a function of n only in the pure phase region (see Figs. 2,3).
The following remark about the model is in order. As is seen,
when solved correctly, it leads to a first order transition,
accompanied by a region of phase coexistence. One may question
what form this coexistence may take. If one remembers that the
model discards most of the Coulomb interaction, one can expect
it to be qualitatively reasonable only if the electron demsity
is constant in space, because otherwise the Coulomb energy
cost would be prohibitive. Therefore, one has to imagine the

mixed state as a homogeneous fluid of "quasi-particles" with
two different energy spectra.

APPENDIX

In order to illustrate the fact that for Hamiltonians with
1/N -interactions the canonical ensemble can lead to a non-
convex Helmhqolz free energy, we shall consider here the Husimi-
Temperley model, in the spin formulation (where the canonical
ensemble corresponds to the fixed magnetisation ensemble):
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i3 ,
—_Eﬁ—i,j=1 oy 0
N
The free energy for fixed m —-1\11—2 o; can be easily calculated
(see also 7187 ).
N. 2
~—Jm
ap (@ 6) = lim = 9 1al 3 e ®0 ]
N+oo N _=i1:20i=mN}
N 2 A
Jm
- lim 2 ln[ N! 020
N-roo Nltm !Nl-m!
( = PR i )
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and is obviously non-convex as a function of m . On the other
hand, the grand-canonical potential (corresponding to fixed
external magnetic field, h):

N N
—-1-—'1—(2 o, )2 —3- Yo
A 6 0 N i=1 1 i=
fth,0) = lim (-=)In| X e
N o0 N {ai =*1}
N/ J 2 Jy+
14 b -—6'(’2’~y -0 1nch—~6—-—-91n2)]
= lew(—-—ﬁ) ln[(z 6) ~°{ dy e
= max iyz—elnch—']u—6ln2
yER 2 7l
’

gives, after the Legendre transformation:

= CE.F

can

F(m, 6) (m, 9).

.
As is well known’1?/, the -origin of this pathology is the 1/N -
interaction; when one considers N+~ for a fixed short-range
interaction and only afterwards takes the Van der Waals limit,
one obtains the correct results F(m, 6).

It is interesting to note that for the (classical or quantum)

Heisenberg model with 1/N  -interaction:
> > N
H = - —J;— Sz R S = 2 S
2N i=1 1

the canonical -ensemble (m? =T1\1-Sz) calculation gives the correct
free energy. The simple calculation (in the quantum spin 1/2
case) is as follows:

N-soo

132
F z - 9 20N )
“an @7, 0) = lim m[TrIsz—Nm‘I e ]

N/2
_?_ ln{ z
S Nm?

NI(2S + 1)

. = lim N N
(~2—-+ S+ 1 (-:2-— SH

N ~00

RS+ 1)]
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