


Let us consider the quantum-mechanical X-¥ model in a longi-
tudinal fieldI' described by the following Hamiltonian:
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where S?::Sf iiSiSﬁ (a = %y9,2) is the a —th component of the
spin operator referred to the i-th site of the crystal lattice,
and Iij denotes the exchange integral.

In this system one can induce change of I' at the constant
temperature the second order phase transition. A line of ecri-
tical points I, (T) ends at the multicritical point[Fc(OL
T=0], characterised by new, specifically quantum-mechanical
exponents’/ 1/ The critical behaviour at finite temperature cor-
responds to that of classical X-Y model’/28/ At sufficiently
low temperature, however, the region in which classical asymp-
totic behaviour should be observed becomes small, and one may
expect to see the quantum—to-classical crossover -behaviour
similar to that for the transverse Ising model /417

In this report we show that the field theoretic renormali-
zation group (R.G.) method can be easily adopted to the
description of the crossover behaviour of the X-Y model in the
field I'. Instead of the spin Hamiltonian/!’/ we use the functio-
nal Hamiltonian S8{¢] which satisfies the following relation:
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where F is the free emergy, B=1/T and [d(¢)... denotes the
integration over the complex scalar field ¢ (for the definition
of d(¢p) cf. Ref. /7/). The relevant part of S[¢] can be written
as follows:
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where
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A ~n/a is the radius of the Brillouin zone for d-dimensional
hy;ercubic crystal lattice, a denotes the lattice constant,
mg is linear in the longitudinal field deviation h=(I'-T¢)/T,,
t~ TA® ,and ug~A2~¢ is a constant for the small temperature.
The vertex functions for the field ¢» . , calculated with
the Hamiltonian’3/ diverge when A - and, in addition, con-
tain the singular terms in the limit t-0. In order to overtome
these difficulties we introduce, similarly as in Ref./?/ , the
renormalized field ¢,-p>1?m , dimensionless coupling constant g,
and renormalization momentum point p. The equivalent procedure
of removing the singularities can be performed with various
values of g and p. The set of transfromations of (g p) to
the other possible pairs (g xz) forms the R.G. The definitions
of qu.:;m, g u, and a R.G. transformation are the following:
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where_Z;(g t/n 2 A/p) is the renormalization constant, Z; =
= Z(g, t/u®, A/i), (%) is an arbitrary function with the fol-
lowing asymptotic properties:
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and
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m is the critical value of m2 for h=0, ¢ =4-d and
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~x< <« is the group parameter. The function f(t/u®) serves
to remove the singularities when t- 0.The final results of

the t;l%ory do not depend on the explicit form of (%) '(cf.

Ref. ). From eqs. (5) and (6) it follows that u= u\l,g, )
and g=g(¢, g, x) with the initial conditions p(0, g, u) =p and
g0,z 1) =¢g. The renormalization constants Z; and Zg are
determined by the equations:
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and
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where Pp;py =u"(, —-‘i]-'-) and I"én)(b’i, ""En'ml""'mn) deno-

tes Fhe renormalized n-point vertex function. In order to
obtain the third condition for Z,, we separate in I‘l(lg)(ﬁ’,O)|p2=“2

the terms proportional to u®h. The singularities in these terms,
when A+, are compensated by the suitable choice of Zo.

The differential R.G. equations can be obtained from 2eqs. 35)
and (6) and are the following: -
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v_vhere h-=t‘3-E and t_:he limit A:1°° has been taken. Note, that the
t1:(r)w%:%:)e/6(5?.;1‘e1:-1t10n length ¢ is asymptotically proportional
The critical and multicritical behaviours can be obtained
by the following transitions: lim lim (since t~TA?, T# 0,Asw)
and ﬂl‘i-l.no 'tlin(l)' respectively. In c‘)t;doelt'ﬂtoo get the crossover behavi-—
our of £~1 to the first order in ¢=4-4, it is necessary to

calculate B(g t/g® _and v(g t/E%) to the second and first or-
der with respect to & Thus, we get
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Q41is the solid angle in d-dimensions and B(x, y) is the
Euler beta function. The solution of eq.:\(11) with g (13) is
the following:
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where f==f(t/;2) and f=f(t/u2 ). From eq. (17) and with the

“help of eq. (16) we obtain the infrared stable fixed point
coupling constant g’:e as follows:
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where d<4. The multicritical behaviour is governed by the
quantum fixed point with the following values of the coupling
constant gz:

0 for d> 2
g* = lim limg = 2w . -
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for d<2. (19)

Similarly we can calculate from eqs. (14) and (17) the correla-
tion length exponents. For the critical line we have
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and for the multicritical point we obtain
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Eq. (21) agrees with the results of Ref./V. _
In order to describe the crossover behaviour of u for
2<d<4 we write g() in the following form:
H= e NIR@ ), (22)

where
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is the non-linear scaling field,

F(t/y2, t/u? g) = f'—df{v“i lge/y? t/u?8), t/y®l v 71} (24)
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Jdy ... - denotes an indefinite integral and vq =-—;~.‘With the
1 4
help of eq. (12) we obtain the following equation for X:
—Rv, .9
Xexplvy F(t/ufXy X5, t/p%, 0) =1, (25)

The eq. (24) we cinsider in the scaling limit, e.g., t-» O,
A+ 0 with X remaining unchanged. This leads to the separation
of the variable z =(t/u®)A7? being finite in the scaling 1i-
mit, where ¢ is the crossover exponent. Thus, X can be calcula-
ted as the functions of z. Taking into account eqs. (14), (17),

(24) and (25) we obtain in the scaling limit for e<<1 the fol-
lowing result:

X(2) = X(0)[1+2v g (g/8%) 21715, (26)

where ,z='-.~(t/u2)>\# with ¢=¢2. In the limit Z+« eq. (26)
reproduces the correct critical line behaviour:

-1 _ - Y
&~ - A

REFERENCES

1. Gerber P.R., Beck H. J.Phys.C: Solid St.Phys., 1977, 10,
p. 4013.

2. Betts P.D. In: Phase Transitions and Critical Phenomena

vol.3, eds C.Domb and M.S.Green (Academic Press, New York)

p- 569, 1974,

Dekeyser R., Rodgiers J. Physica, 1979, A81, p. 72.

Lawrie I.D. J.Phys.C: Solid St.Phys., 1978, 11, p. 1123,

Lawrie I.D. J.Phys.C: Solid St.Phys., 1978; 11, p. 3857.

Lukierska-Walasek K., Walasek K. Phys.Lett., 1981, 81A,

p. 527. :

7. Lukierska-Walasek K., Walasek K. J.Phys.C: Solid St.Phys.
(in press).

oW
» s e .

Reseived, by Publishing Department
on October 18 1982.






