0GbELHHBHHBIA
MRCTHTYT
AABPHbIX
HCCABAOBANHR

RYGHA

!'fﬁ _£3
E17-82-677

A.Kundu, V.G.Makhankov, O.K.Pashaev

OF MANYCOMPONENT MAGNETIC SYSTEMS

|

|

|

, INTEGRABLE REDUCTIONS
|

| IN (1,1) DIMENSIONS

Submitted to "Physica Scripta"




1. INTRODUCTION

Most of the magnetic crystals, as experlmental studies show,
have layered or manychained structures 2% Moreover, for the
majority of them the interlayer or 1ntercha1n interactions have
a considerable effect on the general dynamical behaviour of
crystals. Some typical representatives of such systems are CrCl,
CuCly, RBNIClg , OsNiClg salts’/Y Similar structures may also
be seen in organic compounds in the form of molecular chains.
Theoretical description of many-layered structures is based on
the manycomponent generalization of Heisenberg spin model’2:3/,
The introduction of "colour” degrees of freedom for interacting
spins in one-dimensional chains may also describe manylayered
quasi two-dimensional magnetic systems with weak coupling. On
the other hand, it is well known /43’ that one~dimensional Hub-
bard model with a half-filled band corresponds to two-component
Heisenberg spin chain with nontrivial intercomponent interac-—
tions. Manycomponent spin chain which corresponds consequently
to some generalized Hubbard model may be used for describing
collective excitations (and also their statistical properties)
in the system with different sorts of spins’/38:7/ It should be
noted, however, that the situation is difficult for modelling
mostly in the 1ow temperature region,where the interlayer inter-
actions become px:omlnent/1 The dynamical behaviour of a crystal
in the said region is defined by connected states of magnons
of diiferent kinds, which in the quasi-classical approximation
are described by particle-like solutions of nomlinear evolution
equations, e.g., by solitons, bions, etc. A characteristic of
solitons with immense physical interest is their stability
range. This is in particular defined by the degree of approxi-
mation with which the given system coincides with some comyle—
tely integrable one (i.e., by the time of phase mixing)

In the investigation of nonlinear systems describing some phy-
sical process, it is therefore, very important to find all pos-
sible integrable reductions.

In the present work we investigate many-component spin mo-
dels in (1+1) space~time dimensions. In the longwave limit we
get a system of nonlinear equations describing a collective exci-
tations of lattice and spin systems at low temperatures,which
for a particular reduction has been shown to reduce to some
generalization of a system found previously for Langmuir wave.
The reduced system in the ultrarelatlvxstlc' llmlt reduces
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further to give some colour generalization of the aquationn in-
vestigated through inverse scattering method (ISM)/19/ and shown
to be completely integrable. Other reductions lead to gonora-
lized vector nonlinear Schridinger equation with U(p, @ noncom-
pact isotopic group. This system is also completely intograble,
possesses a rich spectrum of soliton solution and may be inves-
tigated thoroughly using Inverse scattering method 711/,

2. MANYCOMPONENT MAGNETIC CHAIN

Hamiltonian of the system, we consider, may be given in the
following form

H=Hg+Hp, o)

where

Hg = -:—%—[g—- )
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describes interaction of different sorts of spins and H=T+ U
corresponds to lattice oscillations.

Neglecting interaction between the "colour" and "space" deg-
rees of freedom in the exchange integrals and considering only
nearest—neighbour interaction we get

aB af3
aByd _ T af3, yo
Jij “Jjj+8L1 Lz ’

where Jji.5 EJ('XJ' —:xj+3|) are the exchange integrals and §=*1.
Using generalized Holstein-Primakov representation’12/
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at low temperatures (aj aj =n;
duced to the pure boson form:

<< 2s) Hamiltonian (1) may be re-

H=H, ~ %% [J”_H;s aE Kaﬁ(ajaaj+3+ a;fsa?)
T sts 3 (0,L%Pa%a B g LB Py
b} B 2= 1 %y %y 142 %46 %48 “)

a 6 +a_ B 40 v
LY a aj+531+5¥]+HL.

Ho = (- 5-JOKN + s2 €8, T Jjj 5, k= TiK, €= TrLy,

N is the total number of sites.In the longwave limit repeating

the procedure developed in/1%:1%/ ye finally get the following
system
.. _ 2 _S__ - B *a ﬁ
X o= ViXpr + aZB T (*%% )f’ (5a)
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where
b = J(0) s/2,
r—f‘aﬁ=JlK[aﬁ]~ 51(21L2a5+E2L1aB) )
e J(())1<[am-3(0)(e1 Loap* Bl iap )

and

'

Jjj+s = JO - Jyp-ix; =%, 5.

Here x (£ t) is the lattice deviations and ¢%(¢, t) is the Schrddin-
ger amplitude of spin distribution. In the "ultrarelativistic"
limit (v + 1) operator 6%-5 may be replaced by -2(9d, +8§)8§

and the first equation may be integrated by ¢ once assuming
trivial boundary conditions which give ultimately a "colour"
generalization of the system due to Yajima and Oikawa 10 (the
notation p= xg is used):

n, o+ ving + 5= 3 %“B(wadﬁ)g -0
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1¢ =—'b2 K[aﬁl¢é‘é‘ -8 2 TGB¢ + Sz PGB¢ N, <6>
where we have put

L‘;‘B= L‘;BE 0.

In the "quasistationary" limit /% eq. (5b) may be reduced
to
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¢ being an integration constant, which from (5b) gives the
system of equations only for ¢, functions: ‘
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where Rgg=s(T, —-c’-I-:l ) and a=-s%/mv2 This equations are in ge-
neral not integrable. It is, therefore, desirable to consider
some of its reductions

a) In the case when the exchange integrals related to colour
degrees of freedom are proportional to each other, i.e.,

K[aﬁ]=2b1L1a,8 = 2b2L2aB 9)
eqs. (8) may be obtained from the Hamiltonian
H = [1b@5 K $,) —x (¢ KS$)F -7 ($T RSP e,
where,
S KS ¢ = a,EB‘ﬁ*BK[a,ﬁ]d’B_’, k = a2 J(0)/(@b b)) .
P oesGmon, v 3 - SR, en ), o

and
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Introducing ¢ =-¢ KS one gets the system of equatioms

i =—~bp — (B b ~ub,
an

~ e me

i$ = ~bp — k($*) G ~ud.

Due to the Hermitian character of KS the quadratic form (¢+KS¢)
may be reduced to the diagomal form:

¢ =U¢, (¢"K3¢) = ¢""K 18",

where K0=UKSU+is a diagonal matrix with real elements (Kg); =A;.
After normalizing ¢° we obtain

— 0 -
$"KSp) =y Ly =(gy), T, =(I" ) . W=y Ty,
0 -1,
i.e., U, @ internal product norm. Thus in this case, system
(11) is equivalent to U(p,q Vvector nonlinear Schrédinger equa-
tion (NLSE). Eqs. (6) with the application of analogical proce-
dure reducés to

n, 0+ vgnf + %(505)5 =0,

. (12)
ip = —bp ~ pd + ane ,

where )
$=¢Tg,

which is integrable through inverse scatfgring method if one
uses the following set of Lax operators (¢ =¢exp(j.2t.. ~ix)
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The U(p, 9 NLSE has been studied thoroughly in ref./lhzwhoro
the authors have shown its integrability, found soliton solu-
tions and discussed about its possible’ quasiclassical quanci-
zation.

It is however, natural to ask which initial physical model
corresponds to the U(p, ¢ NLSE obtained. For answering this let
us consider the following subreduction of (9):

Jij+8 =pPJj48

a a a (14)
Kﬁ”L%=Lf=‘MBB’

where

+1,

o) = {
-1,

In (14) there is no summation over a, The corresponding Hamil-
tonian of the initial system (l) describes manycomponent mixture
of ferromagnetic and anti-ferromagnetic chains with negligible
intercomponent interactions:

for a =12, ..,p

for a =p+1,p+2, ..,0,.

o1 1 I L4 z8

H = 2.]’28 ]J+8{ 2 (S Sj+5+sj Sj+5)+PaEISj 2 SJ+5}
1 n +a +a n zy - 20

+ 527 (L 5 (sTs 4 5T Y-p = 8% 3 8% 1.4
P) i8 J+5 5 Yo+t j Sj+6 jYj+8 y=p+1 Gop+1 j+8°.
p a < o a a a

+ L3 ( E s 35 §¥.4 3 8% E SZ , 15
2 j,8 ji+d a=1 Jg=p+1 It +8 g=p+1 J a=1 6) (15)

where the notation §2%¢ ~szaa has been used. Applying analogical
procedure as before Eo Hamiltonian (15) one may find the follow-
ing equation

i B12) ey ® —negys®

=—2be(a)¢g§ —K(% 6([-}) |¢ (16)

where q=n-p,

k=23 (A-p@=-a)+ £30), » =200 ~cI)U-p@ —q)
which is again the U(p,q) NLSE. In the limiting cases:

1) p=n, ¢=0 one gets for the pure ferromagnetic system
a IKnO) NLSE of attractive type

,32 a a

i<75 =—'2b¢§§-'K(BEII¢ )¢~ ~ud (17)
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=4MJfﬂ—pm2+p

J(0) ,,
é )}, p o= 2s(J(0) -~ cJ;)(1+pn)
and

2) p=0, g=nfor pure antiferromagnetic system we get a vec-—
tor U(0,n) NLSE of repulsive type

: a n B.2, ,a a
- = ~2b (2 ) - 18
i¢ ¢tftf + K B‘=11¢ | ¢ R (18)

with
= 4laIZ(1+pn)® +p J(O)/21 .

For n=1 eq (17) reduces to a U(l) NLSE investigated previous-—
ly in ref./1% for describing CsN1F3 magnetic crystals.

3) For real crystals interactions between "colour" components
are much weaker compared to interlattice interactions’ /. Hence,
in the colour space also it is suggestive to consider interac-
tions only among the nearest nelghbours/z/ The corresponding re-
duction may be taken in the form

R‘;jﬁya - —ppPs¥® ra
ij
af af3 . gaB
Jij =-(Jjj+5R +JViJ ). )
RaB - Saﬁ . GBB,a+8”

aﬁ_. 5 5L‘3a+5
Vij

with J7/J<«< 1,
interchain exchange integrals.
a case reduces to

J and J’ being respectively the intersite and
The Hamiltonian (1) in such

n
Hzél'.z Jij+8 51'21(S+os—a8+s 8; sy esiis s
iho
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In the x-y limit, i.e.,
an U(p, q) NLSE with broken

for p-0 one gets for the amplitude ¢,
"colour" symmetry:
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where

Rigg = 8GO = IRp g+ 3’85 B, @+8)

The intrinsic U(p,q) symmetry, however, is recovered in the
case J'» 0.

3. GENERALIZED MANY-COMPONENT PEIERLS-HUBBARD MODEL

L]
As it has been shown in refs./4% a one-dimensional one-band

Hubbard model is equivalent to a two-component Heisenberg chain,

The reduction of generalized Heisenberg chain (1) to the "co-
lour" generalization of Peierls-Hubbard model may be given by
(2) with the following additional assumptions

Tyes ==3%,5, I°@ =2, I§ =20, s=1/2, (22)

and

01
KaB=(I &Ul)aB, 0’1=(1 0), Iab=8ab, a, b=1,n.

We also denote further
k, for k<Dt, pt =112, .., n/2]

~m+1-k) for k&eD™, D™ = [n/2 +1,..,1],

where
2k~1, for a, B odd
a, B - (23)
2k, for a, 8 even
and put
s for ke D*
S =
2k—1 A (24a)
S for k &D”
-0
8

(A2

"
i
L3
%

——

S? for keD'
Sex = 8 } (24b)
S for ke D™ .
-0

We introduce the following reduction for matrix

afoy aa aa
RY = = (Ugdy; Py * slijPaw) , (25)

where 8;; is Cronecker symbol.

¢ - 4, for i,j nearest neighbours
i 0, otherwise

and
aa _  +aa p -yy +aa.. =Yy
P1yy = LA L.A + Ly Ly ,
aa +aa . +yy -aa . —-yy +aa , +yy —yy, —aa
szy = (L, Lg +L, Ly )+(Lg L, +Lyg Ly, )
with
+
L e _ I ®e,paa for keD ,
A(B) -
0 for k&D
(26)
0 for kcCD?' '
-yy _{
A(B) (lee ) for ke&DT

A(B) vy

10 0 0
€\ = en =
A(oo) B(o1>

The spin system (1) with the above notations and assumptions
takes the form

1 n ° —-A o +B ~B , +A +A o-B
H = T’j'zg 02_1 1545 610 8080 " Sjo Syso Si0 Si+8,0
U 2 n/2
s*BsA )42 % S SE % 8% .+
1.0 J_+ 7 2 JGAU B o=1 Js o=1 Js



n/2 n/g n/g

g zA zB zZA
vl jng oZ ¢ Sivo o2, Sivee Y2 S0 a§ SJ+5° )+ T+U.

j+8¢'B, 27)
& reverse . . B . .
Now with the application of generalized Jordan-Wigner trick
a—1 j—1 '
+a . +B By .a
Sj - exp[--m(’BE1 k§1 Cy ck]cj R
a=-1 j—-1 .
—a +a +8 B
8 = ¢, exp[m(BZm1 k§ c . e N, (28)

S?aB - LsaB_ e B
] 2 ) ]
with
= 0

a B _r.ta 4B
[ci.c.]+~[ci.cj 1, ,
one comes to a many-component generalized Peierls-Hubbard model
in the near-neighbour limit with lattice excitations considered
as classical fields:

/e
1 ° +AgB +B A +B_ A +A B
- +H.C.
H 10015 5+1C50 Cir107 €1+ 1%50 * Cio Civ 10T Cji 1o C o THCH
n'eg n/2
T T U TV A S D A U (29)
2 j€cauBOo=1 o=1 ¥ jC AUB o=1 jo
(‘ n’e n/2 n-’g n/2
— 2 ( X n,, £ n; + 2 n;_, X n; ) +
2 jea og=1 j00~=1 i+d.0 o=1 177 o=1 j+8.-0
j+6e B
& reverse $H0+T+U'
where

Hy = [(J+ Uy)n2N1/8, = (39 + Uynl/8

n._==¢., C. .
o o Jjo

We may easily check that for o= +1 (29) reduces to a genera-
lized Peierls-Hubbard model **’ (PHM)

1 o ot '
H=T a£'+1 I (!xj l_xl)(cw j+10 " %+10 Cjo + HC) -
- ! (30)
j A, j+1€ B,
& reverse

—-u = n, + i s n, n. + -ﬂ— p) non. s +HuT+U

o=+1 I 2 jecaup T2 g gy 19100

j&AUB j€ A, j+8&B,

& reverse
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with

Ho= (§+ U N/8, = (3§+Uy)/8.

For this reduction the field equations in the discrete case
take the forms

. n
ma; = mof A% x; —1 % (144077 + 6478017 +

a,]
(31a)

+ d)j* B0A¢f.o + d)jBaAd)}aAa)

and
B Bo _. Boyy _., 4 A
¢A"_t(¢1+"1 ¢BG)+ 21 (x A(ij" A(qusj )] ue; o -
U a2 a0y, 3 Bo |2 Bo | 2y, AC
—2~(U,ZJ |¢ 1= ¢ 7)) + 5 §(|¢'j+ll +¥¢j__1\ )¢j ,

where 2A¢j =¢jr1~¢1. It is well known that the ground state
in a Hubbard model may be an anti-ferromagnetic state. But since
for a colour generalization of Hubbard model the situation is
not known, we demonstrate here the cases, when the ground state
is an antiferromagnetic as well as a ferromagnetic one. Usually

for an antiferromagnetic state we assume <n‘.&0> =<n B+ 0>

which cancels the term proportional to I in (31a). Therefore,
we consider only the long-wave limit and assume
BT < ghTT 1 pgAT L L AR GAmT (32a)
iti i 2 i
for an antiferromagnetic ground state and
Bo _ Ao Ao 1 A2 , AC
</>jt1 ¢ -A¢j +2A¢j, (32b)

for a ferromagnetic ground state with ¢ B_.0 for i c.A and analo-
gously for B.

Therefore, in the long-wave and quasi-stationary approximation
we get

Xf=

for an antiferromagnetic and

3 (@* =0 +* TH ) +c, (33a)
o

2
maw
0

n
2 ¢*9¢7 + ¢, (33b)

for a ferromagnetic case., Consequently, one gets finally the
field equation in the form

11
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2 n/g

(21) % (¢*0¢—0+¢*—-ﬂ¢0’)¢0’_

mwo

167 = :¢§ + 2t~ Te)g © —

~ n/2

34
—"p.an +U(CS l¢—0|2)¢’0, (34a)
(o)

. -~ U - n/2
with U = 7?9+ﬂ,where the terms like X |¢~0|;§¢0 has been neglec-
(43

ted. (similarly for ¢~ ?).For the ferromagnetic case the analogous
equation is

2 /2
(21)2 (“E |¢)a|2
m(lJO o

167 =tdg 2t - To - £9g7 - +

_ (34b)
r16 1P + T 2 1971207

QMo

It has been discussed by several authors ’%*® that Hubbard

model describes different physical systems at different limita-
tions, e.g., in the limit U-«x,i.e., when the Coulomb repulsion
plays the leading role, the model may be used to describe otga-
nic charge transfer salts of TCNQ (Tetracyanoquino-dimethan) /5/
and in the opposite limit, U-0, i.e., when the hopping integral
plays the central role, it describes mixed valency planer com-
pounds of transition metals (MVPC). The first limit corresponds
to an Ising model and the second to a XY model. The equations
(34a,b) which correspond to a Generalized Peierls-Hubbard mo-
del are not integrable in general. But in the limit ¢ , U -0,
the above equations become completely integrabie. Introducing
new functions

Ci=9¢7+¢7, Cl=9"-9¢7 (35)

in the integrable limit one gets

o [ n/g
iC, =€, +2(t~1e)C] ~a 3 acy1®-1c%1H ¢y, (36)
+&€ (4

and
. n/2
IC*=tC*%+2(t -10)C*% ~a X (ICY|® ~[C2|%)Cx7
' o

£

for antiferromagnetic case and

12
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) g o n/2 o, 2 o, 2, 0
ic, = t%§+ 2(t = Ic)C, ~al 02/2 lC+| +|C | )C+, (37)
O g o n o 2 o 2 o
iC_ = t(-:-;ff_’- 2t - Ie)C_ —al 127 |C+| +|C_I ") C_

for ferromagnetic case, where a =212/mm%. Introducing vector

', a [CO\, a COo\.
functions ¥ =( :gln (36) and V¥ =( ?Jln (37) we observe that
cX c '
Hubbard model gives NLSE with Uﬁgu%? symmetry in the antifer-

romagnetic case, and NLSE with U®.0) in the ferromagnetic case.

4, CONCLUSION

We have investigated manycomponent spin system.and shown
that under certain assumptions (e.g., longwave limit, low
temperature limit, etc.) it may be associated with various field
models with internal ("colour) symmetries. Some of these mo-
dels, such as models described by the nonlinear Schrddinger
equation with U(p, Q) colour symmetry (obtained in the quasista-
tionary limit) and by the colour generalized Yajuma—-Oikawa equa-
tions (obtained at the nearsound limit) are completely integ-
rable systems. Other nonintegrable reductions may also in some
sense (see for example refs.’/89% ) be considered as systems
close to integrable omes.

All the equations obtained, besides linear phonon and magnon
solutions admit also nonlinear soliton solutions *

The Hamiltonian of the system in case of integrable equations
may, in principle, be factorized,: i.e., may be represented as
the sum of the contributions of independent excitation modes. In
the simplest U(l) NLSE case such modes are only two, e.g., mag-
non and soliton modes. These components from the point of their
statistical property act as noninteracting ideal gases’!5/Using
this conception we may calculate the dynamical structural fac-
tors for the models considered here (in the case of noninteg-
rable reductions the result is accurate upto the pre—exponenti-
al factor) and consider separately the contributions of magnon
and soliton excitation modes *.

In the conclusion we note that the consideration of phonon
anharmonism leads to a system of coupled Schrddinger-Boussinesq

*We do not present here these solutions since they were tho-
roughly discussed in ref. /6-12, 14-17/

*¥The results of such investigation are supposed to be pub-
lished by the authors.

13



equations or to NLSE with saturable nonlinearity/le/.This gives

the hope that results obtained here may also be generalized to
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Kyuny A., Maxaubxos B.I., Ilamaes 0.K. E17-82-677
HHTerpupyemsie peoyKuHH B MHOTOKOMNOHEHTHEIX MATHHTHBIX
cucremax B /1,1/ npocrTpancrBe—BpeMeHH

MlpepnoxeHa MHOI'OKOMIIOHEHTHAs Mopgenk, ofofmawmas CIHHOBYIO
yenouyky [efisenGepra. PaccMOTpeHn HeKOTOphlE ee PeOYKLIHH, IIpH-
BopAle K MODEssiM PASIIHYHBIX MAaUHUTHBIX cHcTeM. [lokasano, uTo
AHHAMHKA I[1€PeYHCIIEHHbIX Mopeiel onpemnenseTcsa HX 6IIH30CThI
K HEKOTOpbiM HHTEerpPHPYeMblM CHCTeMaM M CcoBrnajgaeT C HHMH MNPH
ONpemeNeHHbIX MNpPenIoioKe HUAX .

PaboTa BbmonHeHa B Ja60paTOPHH BHMHCIMTENBHON TeXHHKH
4 aBrToMaruzanun OWUAH.

NpenpunT 06BEAMHEHHOrO WHCTUTYTa AZEPHHX uccheaoBanHuwii. [ly6ua 1982

Kundu A., Makhankov V.G,, Pashaev 0.K. E17-82-677

Integrable Reductions of Manycomponent Magnetic Systems
in (1,1) Dimensions

A generalized manycomponent Heisenberg spin chain with
phonon interaction is proposed. Some reductions of the pro-
posed model leading to different real magnetic systems such
as manychained magnetic crystals with nontrivial interchain
couplings, a mixture of manychained ferro-and antiferromag-
nets, a "colour" generalized Pierls-Hubbard model, etc., are
studied. It has been shown that the dynamics of all the above
real models is closc to some integrable systems and coincides
with them in cortain limits. Such integrable systems are the
generalizad couplad system of Yajima and Oikawa and Up, @
nonlinaar Schr¥dinger equation, already well studied.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR,
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