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1. INTRODUCTION

In this paper we shall consider one of the few bisic ques-
tions of the quantum theory of solids in the one elactron ap-
proximation which are not yet completely solved: th2 existence
of exponentially localised Wannier functions. We shill consider
only nondegenerated bands. For the results obtained so ‘far for
degenerated bands we refer td1:2:3/Since their appearance’%/ the
Wannier functions played a crucial role in developiaig the theo-
ry of slowly varying perturbations in solids. The crucial pro-
perty of the Wannier functions which makes them so iseful is
their localisation., From the very definition and th2 Paley-Wie-
ner theorem it follows at once that the exponential localisa-
tion of Wannier functions is equivalent to the analyticity and
periodicity of the corresponding Bloch functions as functions
of the crystal momentum k. To our best knowledge all the re-
sults concerning the localisation of the Wannier fuaictions are
obtained by first proving the existence of Bloch finctions
analytic and periodic in K. Our paper is not an exc:ption and
all the discussion below as well as the body of the paper is
about the existence of analytic and periodic Bloch functions.

The one-dimensional crystals with a center of inversion have
been treated in a definitive manner by Kohn in a classic pa-
per/%/. Concerning three-dimensional crystals there is a wide-
spread opinioﬁlz that the exponential localisation >f the Wan-
nier functions has been proved by Blount’e/.Unfortulately this
is not true, because a crucial point is missed in Blount”s ar-
gument. More exactly through his paper he tacitly assumed that
the Bloch functions are perlodlc in K. At the same time he pro-
ved the analyticity in K of the Bloch functions by the kp
perturbation theory: the elgenvalue problem for the periodic
part of the Bloch functlons 1s assumed to be solved at a fixed
value ko of ko then by the kp perturbatlon theory/1 */ one obtains
the periodic part of the Bloch functlons in a neighoourhood of
ko as an analytlc function of K; fix k11n this neighbourhood,
apply again the kp perturbation theory, and so on. But the
Bloch functions thus ohtained may not be periodic (the transla-
tion symmetry implies k periodicity of the Bloch fuactions only
up to a phase factor). The three dimensional crystals have been
considered by des Cloizeaux’1'?/His method of building analytic
and periodic in kK Bloch functlons consists of two steps: i. the
proof that the correspon l..projeetien-{in which the
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arbitrary phase factor up to which the eigenvalue problem de-
termines the Bloch functions cancels out) is analytic and pe-
riodic in k; ii. analytic and periodic Bloch functions are con-
structed, in some way, with the help of the corresponding spect-
ral projection. The first step can be carried out in the gene-
ral case: many-dimensional crystals and degenerated bands 71/
(see also Section 2 below). The second step is the hard one
(although at first sight it looks almost trivia1/7/) and by his
method of trial Wannier functions, des Cloizeaux succeeded to
build analytic and periodic Bloch functions only if the (three-
dimensional) crystal has a center of inversion’/?/, He was also
able to treat general one—dimensional crystals but in this case
the result is weaker: the domain of analyticity of the Bloch
functions may be smaller than that of the corresponding spect-
ral projections.

In this paper the condition of the existence of a centre
of inversion is removed. We shall follow the route of des Cloi-
zeaux. In Section 2 up to date presentation of the results con-
cerning the spectral projections corresponding to isolated
bands (degenerated or not) is given. In Section 3 we shall prove
some abstract results (which might be interesting in themselves)
concerning analytic families of projections in Hilbert spaces.
In Section 4 using the results in Sectlon 3 we shall prove the
existence of analytic and periodic in kK Bloch functions cor-
respondlng to nondegenerated bands in arbitrary (i.e., not ne-
coccary with a contre af invereinn) rrvetrale of arhitraryv dimen-

31onallty. Our results are optimal in the sense that the analyti-

city domain of the Bloch functions coincides with that of the
corresponding spectral projections.,

2., PRELIMINARIES

In this section we shall recall, in a suitable form, some
general properties of the Hamiltonian

Ha-A+V(%), (2.1
where V(x) is a periodic function. Let {2;} be a basis in R3
and {K imy be its dual basis, i.e.,

ai-Kj - 2778”

Let Q and B be the basic period cells for the basis {Z;} and
K,}, respectively.

2

Theorem 2.1/8/

- . 3 . > > -
Let V(x) be a real function on R with V(x4a;) = V(x),i=1,2,3.
Let

Hom0%2%) =t 3 2¢ |
‘/'m m2.m3I m1'm2m3"|°° m1'm2'm3‘
and
(2]
Ha [ H k.
B

Suppose V€L2(Q) and Vg , m 623 be the Fourier coefficients
of V as a function on Q, i.e.,

~

-1 3 > N
Vo= (volQ) [ exp(-i 2 mK..x)V(x)dx.
m Q =1 1)

For k& €® define the operator H(k) in X' by

2 ~
(H(k)l/;)_,..(k+2mJ J) Yy, + = Vr?‘l'r'n'—ﬁ (2.2)
j-l m *C‘ZS
with the domain
12 . N ~ . L2 — .o .0, ] .
Jo\NK}) = J/O-)VIEJ\ |_'L |ll]>‘ |w6 { < o i,
me z 3

Then

i. For ke R® H(k) is self-adjoint.

ii. H(k) is an entlre analytic family of type A.
iii. Fork& C3 H(k) has compact resolvent.

iv. Let U: L‘(R dx)» X be given by

3 -

(Uf)»(k)=T(k+ S mEK,): Kc B, (2.3)
m ju1 1)

where f denotes the Fourier transform of f.
Then U is unitary and

-1 4 > -+
UHU "= [ H(k)dk . (2.4)
B
/8/
Proof. See ref. Chapter XIII,
In what follows, k; , i = 1,2,3 denote the coordinates of k
with respect to the basis |K |1é and B denotes a vector of




reciprocical lattice,

» nd 3 >
jm1 ) J
Let W, : H’+H’ 1 =1,2,3 be the unitary operators given by
W) a =y o W ) a= :
-1 mg,m 2 m m,me—1,m
273 172 3 (2'5)
(w3¢)'r?1 -"[’ml,mz,m3—1

Since W; are unitary and 1 is not an eigenvalue of W;, there
exist unlque self-adjoint operators M; such that ||M;]|g 27 /|K; |
and

W, = e (IR, IM;). (2.6)

Consider now the bounded operator valued function

3 a
W(k)-exp(lzkm )-Hexp(lkM ), ke €3 (2.7)
1

(remark that M; commute). Obviously W(k) is an entire function
of three complex variables and moreover

El - i d -

Wek) = W * (k). k@ R° . (2.8)

Lemma 2.17% Let L(T() be given by

L&) = WE)HE W (K) 2.9)
Then for all K&I' and K cc?d

L(k)= L(k+K). (2.10)

Proof. The proof is a straightforward, although a little bit
tedious verification.
Let 0 (k) be the (discrete by Theorem 2.1 iii) spectrum of

H (k).

Corollary 2.1. As a set

o) =0 (R+K). 2.11)

A nonvoid part ao(k) of o (E) kc BCR3 is said to be an
isolated band of H(k) if there ex1st continuous and periodic
functions f; (k) R3, R f(k)-f (k +K) i=1,2 and a positive
constant c> 0 such that fl(k) < fz(k) and

so(k) c [ 1,0, L],
s@)ntr,k)-c, t,()+eclag i=1,2.

Let Po(k) T( c R® be the spectral projection of H(k) corres-
ponding to an isolated band o° (K).

/ . : > 3,
Lemma 2.2.)"® There exist a>0, Dc R?D ) {yGRq]yi <al such

that Po(k) is the restriction to R® of a bounded projection va-
lued function analytic in

3 + »
J =t2=%+iyc €3 1% cR® y <DL

Proof. This is a direct consequence, of the theory of analy-
tic perturbations as developed in ref. ! N

From Lemma 2,2 it follows, in partlcular, that dimPg (k) 1is
constant and due to Theorem 2.1 iii, f1n1te An isolated band

g“(f() is said to be nondegenerated of Pyl k)- 1.

Consider the following (antiunitary) involution: H -}’

(0(//)3- Jr 2 (2.12)

Lemma 2.3. For k¢ R’
0Py (k)9 = P (~K), (2.13)

0 W(k) G = W=k ). (2.14)

Proof. From the reality of V(x), (2.2) and the definition
of 0 it follows that for K c R3

GHK O = H(=K)

which 1mp11es (2.13) via the formula relating P, (k) and the re-
solvent of H(k) From (2.5) and (2.12) it follows that

-1 -
OW 0 =W; =Wy=exw(-ilK [M,). (2.15)

On the other hand,
6 W, 0=0exp(ilK,IM;)0 = exp(-i[K,[0M;0). (2.16)




Combining (2.15), (2.16) and using the uniqueness of Mi one
obtains

OM; 6 = Mi (2.17)
thereof (2.14) follows.

We shall summarize the above results in the following (see
also ref./V ).

Theorem 2.2. Let o°(k) be an*isolated band of H(ﬁ) JEB(E)
be the spectral projection of H(k) corresponding to ¢°(k) and
Q(R) defined by

ak) = WP W&, KoRrR® . (2.18)

-
Then Q(k) is the restriction to R® of a bounded projection va-
lued function analytic in ﬂD and satisfying

ai) - ak+K), k<dd, kKer, (2.19)

0Q6=Q(-k), ke RS, (2.20)

3. ANALYTIC FAMILIES OF PROJECTIONS IN HILBERT SPACES

In what follows 2’ =(zynz;) & €1, B = (0 pj) € 27,
In this section we shall discuss the following two problems.

Problem A.

Let X be a separable Hilbert space, g be a positive inte-
ger, §3=1{z%c CY |Imz;|<a, a>0} andQ(z9 be a projection
valued function analytic in ﬂg and satisfying

Q(ZY) = Q*(Z9, z% RY. (3.1)

Find a bounded with bounded inverse operator valued function
A(z9) analytic in §] satisfying

AEZHQO) =z HaE D, A©0)=1, (3.2)

Az =A"13Y), z%RY. (3.3)

Problem B.

*Under the conditions of Problem A, suppose in addition that
Q(z49) is periodic, i.e., for arbitrary pdc 24

QG9 = Q@9+ 2.5y , 2% 4. . (3.4)
Find A(z9) satisfying beside the requirements of Problem A
AGDQO) = A%+ 272)QO), 2% 9l pie z?. (3.5)

To our best knowledge, up to now only Problem A for q=1
(but in a more general setting: arbitrary simply connected do-
mains, Banach spaces, etc.) has been thoroughly investigated 8,
(see, however/3J0/ where Problem B for q= 1 is discussed).
There are (at least two methods of constructing solutions of
Problems A and B. The first one (in a slightly different form
going back to Sz-Nagy/?/) is based on the following result
concerning the unitary equivalence of pairs of orthogonal pro-
jections in Hilbert spaces.

9/

Lemma 3.1{9/

Let Qy , Qp be self-adjoint projections in K satisfying

HQ-Qgf<t. (3.6)
Then the operator

Ay = (1-@,-0 T %(@,0, +(1-0,)1-0 ) (3.7)
is unitary and

-1
Ag 1985 1= Qy- (3.8)

Proof. See’% 1II 4.6.
The above lemma gives at once.

Proposition 3.1. Suppose

> -» lq
[1Q(z % -Q)} < 1 for 2%¢ 9, . (3.9)
Then

AGY) = (1-(a(E Y- a@pd) "



@Q(zH QO + 1~Q(ZH)(1-QO)) 3.10)

is a solution of Problems A and B.

Proof. The proof of (3.8) does not depend on the self—adjoint-
ness of Q4 and Qp. Unfortunately the condition (3.9) is a very
restrictive one (see’/?9’ Remark 4.4 in Chap.II). One can gene-
ralize (3.10) to give a solution of Problem A.

Proposition 3.2. Let 0<R < = 0<b<a. Then there exists a po-
sitive integer N depending on R and b such that

N-1 1
2 —aN=l 39y _q(N=f=1 33y2 %
AN(Zq)-?-IL [(1=(Q( N Z ) - Q( N z n7)

3.11)

<@ ad=l=lyy 4 - e 2L 2y

is a solution of Problem A for z%c {z ¢ Cq{lRezi‘< R . [Imz;|<b,
i=1,.0,q bk '
Proof. This 1is a simple iteration of Proposition 3.1. Clearly

(3.11) is not suitable for solving Problem B since Ahﬁzq) has
no required periodicity properties for N> 1.

The second method of constructing solutions of Problem A has
been put forward independently by Daletsky and Krein and Kato
(see references in/8 1V ). The basic construction is contained
in

79/
Lemma 3.2, Let Q(t) ,t ¢ R be a norm differentiable family of
bounded projections with norm continuous derivative and :A(t)
be given as unique solution of the equation

i A - (-2 Q) A, A@=1. (3.12)
dt dat

Then

i.

A() Q) = Q(YA(Y), t&R. (3.13)

ii. If Q(t) 1is self-adjoint then :A(t) is unitary.

Proof. See/sﬂ'lv-

The above lemma gives at once a solution of Problem A for

q= 1 (also the generalization to g> 1 is straightforward). As
it stands, the above lemma does not give solutions of Problem B
(see ref.”% Remark 4.2 Chap.II). However, Lemma 3.2 combined
with some results in the theory of differential equations with
periodic coefficients allows a construction of A(? solving
Problem B for g=1 (see alsd’ 19/ for finite dimensional K ).

. / . ,
Proposition 3.3. For q=1 Problem B admits solutions.

Proof. See

Theorem 3.1.

13/,

Summarizing the above discussion, Problem A for all gq=1,2,..
and Problem B for gqw! admit solutions without any additional
conditions on Q(z%). In contrast, it seems very probable that
for q>1, in general Problem B does not admit solutions. One
sufficient condition for Problem B to have a solution is provi-
ded by Proposition 3.1. Unfortunately (3.9) is a severe restric-
tion on the variation of Q(Z 9% and the result in Proposition
3.1 seems not to be very interesting for applications (e.g.,
concerning the localization of Wannier functions it covers only
the tight binding limit). Motivated by the concrete problem at
hand, the main new result of this section gives another example
of sufficient conditions for the existence of a solution to
Problem B.

Under the conditions of Problem B suppose:
i.
dimQ(z9) =1 (3.14)

ii. There exists an antilinear involution 6. X+ K such that

0QZM e =Q-z%, 2% RY. (3.15)

Then A(z9) satisfying the requirements of Problem B exists.

Proof. The proof is by construction and consists of two steps.

At the first step, using Lemma 3.2 we shall construct B(Z9

satisfying (3.2-4) but not (3.5). At the second step we shall
"correct" the comstruction of the first step as to provide A(Z9
satisfying all the requirements of the theorem. It is the se-
cond step where we shall use crucially the conditions (3.14)
and (3.15). During the proof, some of the technical points are
states as lemmas which are proved at the end. The main point of
the proof is Lemma 3.3 below.

9



Step 1. Fix zj,.., 2oy and let Bq(i'q) be given as
a solution of the differential equation

1-ad_z; B (29 = i((l—zq(;q))_éi_z_;Q(;q))Bq(;q)' (3.16)

- q-1
B,(z 0)=1,
Lemma 3.2 and standard results about analyticity properties of
the solutions of differential equations in terms of the analyti-

city properties of the coefficients imply /8/./9 I1§4/ that
Bq(Zq) is analytic in ﬂg , has bounded inverse and

> -1 - By
CBRGEH = B(EY, Z% R (3.17)

-» -» q— > - -» q
BzHQz "0 - @EDB,GY, <, . (3.18)

One can repeat the same procedure starting from @iz %1, 0)
2 Qe . :
and construct Bq_1(zq 1), After q steps one obtains B(Z9) in
the form

B(ZY =B (ZYB, (Z¥1)... B (z)) (3.19)

which satisfies (3.2) and. (3.3).

Step 2. Consider

»q-1

T(Z 74!

q-1
) = Bq(z

)BT o, (3.20)
From (3.2), (3.4) and (3.20) it follows that
(TZ%Y), @Z %1, 7)lm=0. (3.21)

This implies that with respect to the direct sum decompositi-
on

K=@GT™ . mK +a-a@ kK (3.22)
T(Z%!) takes a direct sum form
TG =[G + RGN (3.23)

It follows (remember that dimQ(Z9) =1 ) that if f €K is decom=
posed according to (3.22)

» q-1 2 q—~1
f=f (2% ) +1(2 )

10

then

TET ) t=a@ T ET ) (i E 71 ), (3.24)

where A(z9"1) is a complex-valued function.

Lemma 3.3. There exists a unique function ¢ (Z9°!) analytic in

q ;1—! , with the properties

ACT Ymem@ris G ), (3.25)
$©0) & [0,27), (3.26)
sGY =g rt), P'eRYT, (3.27)
6291 4 23 ) gZ), P 1ez¥ N3 e 4T L (3,28
Consider

Az e (-i‘z'q¢(zq"1))13q(2q). (3.29)

By construction Aq(zq) is analytic in f]s , has a bounded in-
verse, is unitary for 29¢c RY , Ag®=1 and

A, EHAE"T,0=aEDA,EY). (3.30)
The periodicity properties of Aq(zq) are given in the fol-
lowing
q -
Lemma 3.4. For EqGﬂl and plc 29
ALZHQE L0 = A (Z%+27p0)Q(E 7,0 (3.31)

In a similar way "correcting" Bg(i’z) one can construct the
corresponding AQ(ZQ ). Then one can verify that

A(ZY) = A (2. Ay (2y) (3.32)

satisfies all the requirements of the theorem. Let us verify
for example (3.5) for q=2

A (ZH) A (2)QO)=A (2% Q(2,00A (2 ) Q(0) =
= Ay(Z%+ 27D2)Q(2,,00A (2, + 27D, ) Q0) =
= A, (2% 2782)Q(z 1+ 27D1,0) Ay(2y + 27p,) QO0)

11



=~ A(Z%+ 20D°)A (2, + 20D,)Q0). (3.33)

The proof of Theorem 3.1 is completed.

Proof of Lemma 3.3. The Jinvertibility of T(Z9 ) and (3.24)
imply that A(z%2 ) 40 for 291 G §%! Let now f& Q(09-1,7)K.
There exists a neighbourhood X of 0 in €% ! such that
(f,Q(29~1,7)f) 40. Then from (3.24) it follows that

»q~-1

AGEY - (1, L 07 (,eGT L TE T i) (3.34)
wherefrom A(Zq 1"y is analytic in X. By an analytic continuation
argument Mz %! ) is analytic in 9% 1" 1t follows that (3.25)
is true with ¢(z91) analytic in 497 *1 The functlon ¢(z -1 is
uniquely fixed by its value at zero. For 29"t g pa-l T(zq”I}
is unitary and the decomposition (3.22) is an orthogonal one
whlch proves (3.26). From (3.16) and (3.4) it follows that

éz ) is periodic in 7291 which implies the periodicity of

A(*q“l ). Since SA =iA do , d¢ are periodic whereof it fol-

Zj dz; dz
lows that
g —.( q--l
$(Za1)=y(z ! )+VE pZp - (3.35)
where ¢/ is periodic and bV are integers. We shall prove now

that (T 18) imnlioc
T2 NS . ) rmpales

T AR PR o

). (3.36)
From (3.15) and (3.16) it follows
i—g—z(?Bql—i Yo =i((1-2G(z2 “))}-‘;-qe(i OB (=20 (3.37)
whereof
6B (-29)60= B (2 ") (3.38)

Taking into account (3.38) and the definition of T one ob-
tains

d -— g > -1 -
OT(=29-1 19T 1Za-1y, 37 lc g, (3.39)

From (3.15) and (3.4) one has

»q—1

0Q(z ¥, mo=Q=2"" 7). (3.40)

12

Let now f & Q(=z 1, 7-)X. Then using (3.27), (3.39) and
(3.40)

T ! )01 = exp(~2rig (=2 TINT =

) . (3.41)
- exp(=2rig (201 )t , 291 gRrY?

which proves (3.36). Now (3.36) implies pp=0 in (3.35). In-
deed, for example ¢(~=,0,....0)=¢)(~7,0,...,0)=~p 7 = (7,0,...,0) +7 Py
which together with the per10d1c1ty of ¢ implies pl-() Slnce

the periodicity for z% !¢ R9°! and the analyticity in jq"
implies the periodicity in ﬂq ! the proof of Lemma 3.3 is
completed.

Proof of Lemma 3.4. From (3.16) and (3.27) it follows

i A 2Ya:E 0.
dzq q

[1(1-26( Y Q) + #(F 1A, ZH a1 0). (3.42)
q

A G =1 0yqz%"Lo)=a(Z " 10).

The veriodicity in 2z 9%"! is obvious. For periodicity in z, the
only thing we have to verify is that

»>q-1
Aq(z
Using (3.4), (3.18), (3.20), (3.32), (3.23) and the defini-

tion of Ag it follows:

=eGE o = 8@ T madE o (3.43)

L L ICAN

- e GrgT TN EHB T neE! L 0~
. 2 q-1 -1,2q-1 »>q~1 ~»q~1

= exp(ing(z NT “(z° YQ(z ,n)Bq(z \77)

-ex(—ing (2 HB T maE T 0)-

S Yein 1 maE )

and the proof of Lemma 3.4 is completed.

13




4. THE WANNIER FUNCTIONS

Applying Theorem 3.1 to the situation described in Theorem
2.2, one obtains

Theorem 4.1, Let 0°(k) , k [ R be an 1solated band of H(}) R

P _F) be the spectral projection of H(k) corresponding to
(k),dunPO(k). . 3Then there exists a vector valued function

xo(ﬁ) analytic in J, and satisfying

W) x°(K) = W(k+K) x °(k +K), kc‘ij, KeTl, 4.1)

x°® e B (MK, xe®)|i=1, ke RS. (4.2)

Proof. Let us first remark that although Theorem 3.1 has been
proved for ﬂa ,the proof goes through without changes for SD
Let A(k) be the QPerator valued function given by Theorem 3.1
apphed to w(klp W l®) and x°< PB(K’, ||x°|/ = 1.Then

°(k) (k)A(k)x satisfies (4.1) and (4.2).
Corollarz 4.1, Let
—19 - - -
wo=(volQ) [ »°(k)dk acD, ap»o0. 4.3
B
Then
3 PR . .
eXp(j_E12n|Kj| ajlx; 1)U “w)(®) e LY(R”), (4.4)

3 nd 3
where x; are coordinates of X with respect to the basis {a;}.

Proof. From the definition of W(E) and Theorem 4.1 it follows

P

-1 . . .
t?at(U g)(ﬁ) is the restriction to R® of an analytic func-
tion in gp. Moreover

/_} - > .2 d
F1U  w)(p+ia)[“dp < =
R3

Now (4.4) follows from the Paley-Wiener theorem.

The Wannier functions corresponding to o°(k) are defined as
follows

wo (%) = wo(x— .Eu a ), v, - integers
jmt 4 ] 4.5)

-

wok) = (vol @) ' f 2 (DK,
[ ¥,

14

where ¢ 4 (%) = exp(ikx)u o B (X) are Bloch functions correspond-
ing to o°(§) Looking at the equation satisfied by the periodic
part Uo,k(x) of Yo, ® one gets that u, +(x) is nothing
but the " X -representation" of x°(K). Comparlng (4.3) with
(4.5) one finds that

wo(%) = (U w) ()
which together with Corollary 4.1 gives:

Theorem 4.2. There exist Wannier functions corresponding to
solated nondegenerated band of H which are exponentially

an 1

localised.

REFE

1.
2.
3.

[o JBREN e YRV N

10.
11.

12.

RENCES

Des Cloizeaux J. Phys.Rev., 1964, 135A, p.685-697.
Des Cloizeaux J. Phys.Rev., 1964, 135A, p.698-707.
Nenciu A., Nenciu G. Dynamics of Bloch Electrons in
External Electric Fields. II. The Existence of Stark-
Wannier Ladder Resonances. J.Phys.A (to appear).
Wannier G.H. Phys.Rev., 1937, 52, p.191-193.

. Kohn W. Phys.Rev., 1958, 115, p.809-821,

Blount I.E. Solid State Physics, 1962, 13, p.305-373,
Rentncoala B (nmm Math.Phys. . 1979, 68. p.173-182.

Reed M., Simon B. Methods of Modern Mathematical Physics.
Academic Press, New York, San Francisco, London, 1978, vol.4.
Kato T. Perturbation Theory of Linear Operators. Springer,
Berlin, Heidelberg, New York, 1966,

Sibuya Y. Math.Ann., 1965, 161, p.67-77.

Krein $.G. Linear Differential Equations in Banach Spaces.
"Nauka'". Moscow, 1967.

Callaway J. Quantum Theory of the Solid State. Academic
Press, New York, 1974.

Received by Publishing Department
on September 13 1982,

15




WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the hooks listed below. Prices - in US 8,

including the packing and registered postage

D13-11807 Proceedings of the III International Meeting
on Proportional and Drift Chambers. Dubna, 1978. 14,00

Proceedings of the VI All-Union Conference on
Charged Particle Accelerators. Dubna, 1978.
2 volumes. 25.00

D1,2-12450 Proceedings of the XII International School on
High Energy Physics for Young Scientists.

Bulgaria, Primorsko, 1978. 18.00
D-~12965 The Proceedings of the International School on

the Problems of Charged Particle Accelerators

for Young Scientists. Minsk, 1979. 8.00

D11-80-13 The Proceedings of the International Conference
on Systems and Techniques of Analytical Comput-
ing and Their Applications in Theoretical
Physics. Dubna, 1979. 8.00

D4-80-271 The Proceedings of the International Symposium
on Few Particle Problems in Nuclear Physics.

Dubna, 1979. 8.50
D4-80-1385 The Proceedings of the International School on
Nuclear Structure. Alushta, 1980. 10.00

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Dubna. 1980.
2 volumes. 45.00
D4-80-572 N.N.Kolesnikov et al. "The Energies and
Half-Lives for the « - and B-Decays of 10.00
Transfermium Elements”

D2-81-543 Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 1981 9.50

D10,11-81-622 Proceedings of the International Meeting on
. Problems of Mathematical Simulation in Nuclear
Physics Researches. Dubna, 1980 9.00

D1,2-81-728 Proceedings of the VI International Seminar
on High Energy Physics Problems. Dubna, 1981. 9.50

D17-81-758 Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Dubna, 1981. 15.50

D1,2-82-27 Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Dubna, 1981, 9.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR
Head Post Office, P.0.Box 79 101000 Moscow, USSR

Henuy I'. 7 E17-82-666
CymecTBOBaHHE SKCIOHEHIHAIBLHO JIOKAJH30BaHHbIX
byHxuuit BoHHbe

NoxasbiBaeTCss AHANMHTHYHOCTBD M HEPHOJHYHOCTH OIJIOXOBCKHX
GYHKIHHA OTHOCHTEJIBHO KBasHHMIyJIbCA OJIa obWero TpexXxMepHoro
KpHcTa/Uia. MeTohd AoKas3aTenbCTBAa OCHOBAH HAa OOHOM a6CTPAaKTHOM
pesynbTaTe, KOTOpPhH 0606maeT MeTOn TPaHCOOPMUPYWIMX GYHKIHHN
B NEepHOJHUYECKOM cJiydae,

Pa6ora BbmosHeHa B JlabopaTopHH TeopeTHYecKoH ¢usuxku OUAU,

NpenpuHT O6BEAMHEHHOrO WMHCTMTYTAa AfQePHHX MccnepoeaHuii. fly6Ha 1982

Nenciu G. E17-82-666
Existence of the Exponentially Localised
Wannier Functions

The existence of exponentially localised Wannier func-
tions corresponding to nondegenerated bands of arbitrary threed
dimensional crystals is proved. The result is a consequence of
an abstract result on analytic families of projections in
Hilbert spaces.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,

Preprint of the Joint institute for Nuclear Research. Dubna 1982






