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1. INTRODUCTION 

In this paper we shall consider one of the few basic ques­
tions of the quantum theory of solids in the one electron ap­
proximation which are not yet completely solved: the existence 
of exponentially localised Wannier functions. We shall consider 
only nondegenerated bands. For the results obtained so far for 
degenerated bands we refer td 1.2,3( Since their appearance I 41 the 
Wannier functions played a crucial role in developing the theo­
ry of slowly varying perturbations in solids. The crucial pro­
perty of the Wannier functions which makes them so useful is 
their localisation. From the very definition and the Paley-Wie­
ner theorem it follows at once that the exponential localisa­
tion of Wannier functions is equivalent to the analyticity and 
periodicity of the corresponding Bloch functions as functions 
of the crystal momentum k. To our best knowledge all the re­
sults concerning the localisation of the Wannier functions are 
obtained by first proving the existence of Bloch functions 
analytic and periodic in k. Our paper is not an exception and 
all the discussion below as well as the body of the paper is 
about the existence of analytic and periodic Bloch functions. 

The one-dimensional crystals with a center of inversion have 
been treated in a definitive manner by Kahn in a classic pa­
per15/. Concerning three-dimensional crystals there is a wide­
spread opinio~l2l that the exponential locplisation of the Wan­
nier functions has been proved by Blount t61. Unfortunately this 
is not true, because a crucial point is missed in Blount's ar­
gument. More exactly through his paper he tacitly assumed that 
the Bloch functions are periodic in ~ At the same time he pro­
ved the analyticity in f of the Bloch functions by the ii 
perturbation theory: the eigenvalue problem for the periodic 
part of the Bloch functions is assumed to be solved at a fixed ... ... __,.... I I 
value ko of k 0 :then by the kp perturbation theory 12 one obtains 
the periodic part of the Bloch functions in a neighbourhood of 
ko as an analytic function of k; fix k1 in this neighbourhood, 
apply again the kp perturbation theory, and so on, But the 
Bloch functions thus o~tained may not be periodic (the transla­
tion symmetry implies k periodicity of the Bloch functions only 
up to a phase factor). The three dimensional crystals have been 
considered by des Cloizeauxi1· 2!His method of building analytic 
and periodic in i Bloch functions consists of two steps: i. the 
proof that the correspondi~ • .tm._~~l:;al~--P"baj.eo4:,ion~-fi'l1 which the 
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arbitrary phase factor up to which the eigenvalue problem de­
termines the Bloch functions cancels out) is analytic and pe­
riodic in k; ii. analytic and periodic Bloch functions are con­
structed, in some way, with the help of the corresponding spect­
ral projection. The first step can be carried out in the gene­
ral case: many-dimensional crystals and degenerated bands /1/ 
(see also Section 2 below). The second step is the hard one 
(although at first sight it looks almost trivial/7/) and by his 
method of trial Wannier functions, des Cloizeaux succeeded to 
build analytic and periodic Bloch functions only if the (three­
dimensional) crystal has a center of inversion/2/, He was also 
able to treat general one-dimensional crystals but in this case 
the result is weaker: the domain of analyticity of the Bloch 
functions may be smaller than that of the corresponding spect­
ral projections.• 

~n this paper the condition of the existence of a centre 
of inversion is removed. We shall follow the route of des Cloi­
zeaux. In Section 2 up to date presentation of the results con­
cerning the spectral projections corresponding to isolated 
bands (degenerated or not) is given. In Section 3 we shall prove 
some abstract results (which might be interesting in themselves) 
~oncerning analytic families of projections in Hilbert spaces. 
In Section 4 using the results in Section 3 we shall prove the 
existence of analytic and periodic in k Bloch functions cor­
responding t6 nondegenerated bands in arbitrary (i.e., not ne­
cessary with a centre of inversion) crystals of arbitrary dimen­
sionality. Our results are optimal in the sense that the analyti­
city domairr of the Bloch functions coincides with that of the 
corresponding spectral projections. 

2. PRELIMINARIES 

In this section we shall recall, in a suitable form, some 
general properties of the Hamiltonian 

H .. -6+V(x), (2.1) 

where ... V("i) is a periodic function. Let { ai l be a basis in R 3 

and {K.l 3 , be its dual basis, i.e., 
I 1•1 

... ... 

a i • K j "' 2 rr o ij • 

L~t Q and B be the basic period cells for the basis l a i l and 
{K .l, respectively. 

I 

2 

\. 

i 

J 

Theorem 2. 1 /8/ 

..... . 3 • ... -t ;. 

Let V(x) be a real funct1.0n on R Wlth V(x+ai) .. V(x),i-1,2,3. 
Let 

J< ' .. e 2(Z
3

) .. ! ,p I i I t/1 1
2< "" l 

m1' m2' m 3 m1,m Z m3•-oo ml'm2' m3 

and 
(I) ... 

}{ .. f H'dk. 
B 

Suppose Vt:;;. L 
2

(Q) and V it , m t:;;. Z 3 be the Fourier coefficients 
of Vas afunctiononQ, i.e., 

-1 3 ... ... ... _, 
V ... ,. (volQ) f exp(-i l m.K .. x)V(x)dx. 

m Q j•1 J J 

-+ 3 
For k (;; C define the operator H(k) lU }{' by 

(H(kH,) .. -
m 

.. 3 ... 2 
(k+l'm.K.),P + l v ... ,p ...... 

j•1 J J ~ ~ ~ Z 3 n m - n 
(2.2) 

with the domain 

T (H(k))- T- 0 -11/1 c; J<'j l I mi 2 14/J ... 12 <"" l. 
~~ z 3 m 

Then ... 
i. Fork~ R3 

,H(k) is self-adjoint. 
ii. H(k) is an entire analytic family of type A. 

_, 3 ... 
iii. For k.c; C , H(k) has compact resolvent. 
iv. Let U: L2(R~d ... x)-+ }{ be given by 

-+ ,........,. 3 -+ ... 
(Uf) ... (k). f(k + l mJ.KJ.); 

m j•1 
k t:;;. B, (2.3) 

where f denotes the Fourier transform of f. 
Then U is unitary and 

UHU- 1
• j H(k) dk. (2 .4) 

B 

/8/ Proof. See ref. Chapter XIII. 

In what follows, ki , i ... = I 2,3 denote the coordinates of k 
with respect to the basis I KJ 1 Ri and K denotes a vector of 

3 



reciprocical lattice, 

... ... 
-f',.{KI K,. 

3 ... 
~ p.K. ' 
j•l J J 

pj ~ z l. 

Let W i : J{ ' ... J{ ', 1,2,3 be the unitary operators given by 

(Wl,P)~ .. .pmcl.mzma (W 2</I) Ih"' .prnl,m2-1' rna 
(2.5) 

(W3 ,P)ih .. <Prnl,rn2,m3-1 

Since Wi are unitary and I is not an eigenvalue of Wi, there 
exist unique self-adjoint operators Mi such that IIMi 11,$: 2rr/IKi I 
and 

... 
W i = exp (i I K i I M i) . (2.6) 

Consider now the bounded operator valued function 

... 3 3 ... 3 
W (k) ,. exp ( i ~ k . M j ) "' ll exp ( ik. M . ) , k ~ C 

j•l J j><l J J 
(2. 7) 

... 

(remark that Mi commute). Obviously W(k) is an entire function 
of three complex variables and moreover 

... 
~k ~ R 3 W*Ck) .. w- 1 

(k). (2. 8) 

/3/ ... 
Lenuna 2. I. Let L ( k) be given by 

L(k)·x W(k)H(k)W-
1 (k) (2. 9) 

... ... 
Then for all K ~ 1 and k J;;;: C

3 

..... ...... -· 
L(k) .. L(k+K). (2. IO) 

Proof. The proof is a straightforward, although a little bit 
tedious verification. 

Let a (k) be the (discrete by Theorem 2. I iii) spectrum of 
H (k). 

Coro...!_lary ..3..:_!_:_ As a set 
... ... ... 

. a (k) .. u· ( k + K ). (2. II) 

4 

'\ 
I 

4 ....... -) 3 
A nonvoid parta·0 (k) of a(k) ,k~ BcR is said to be an 

isolated ~and of H(k) if there exist continuous and periodic 
. _,. 3 ..... -+ ... 
functions fi(k): R ... R f.(k),..fi(k+K) i-1,2 and a positive 

1 ... ... 
constant c > 0 such that f 1(k) < f 2 ( k) and 

... ... ... 
a· 0 (k)C [f1(k), f 2 (k)}, 

a·(k)rl[f/k)-c, rJk)+c},.¢ i"' 1' 2 . 

Let P
0

(k) , k ~ R3 be the spectral projection of H(k) corres­
ponding to an isolated band a 0 (1~ ). 

Lemma 2. 2/
7 

'
81 

There exist 
that Po (I{) is the restriction 
lued function analytic in 

3 ... 3 -· 
a>O DcR~D)Iy.c;;R'Iyl_s:al such 
to R§ of a bounded projection va-

ct3 ...... -to ... 3 -+ 3 ...... 
,J 0 -.!Z-X+iyt;;C lxt;;R, yc; Dl. 

Proof. This is a direct consequence of the theory of analy­
tic perturbations as developed in ref. 181

. 
From Lemma 2.2 it follows, in particular, that dimP0 (k) is 

constant and due to Theorem 2.I iii, finite. ~1 isolated band 
a 0 (k) is said to be nondegenerated of P 0 ( k) • 1 . 

Consider the following (antiunitary) involution():}('.,}(' 

(O•f;) ..... '0 ... 
m -m (2. 12) 

Lemma 2.3. For k ~ R 3 

OP0 (k)O· P
0
(-k), (2.13) 

ow(k)O-W(-k). (2.14) 

Proof. From the reality of v(l). (2.2) and the definition 
of o:it follows that for k <;. R 3 

e H ( k) e - H <-"k ) 

which implies ... (2. 13) via the formula re~ating P0 (k} and there­
solvent of H(k). From (2.5) and (2.12) ~t follows that 

-1 ... 
e \Vi 0 - w i - w r - exp (- i I K i I M i). (2. 15) 

On the other hand, 
... ... 

e w i e .. e exp (il Ki I Mi )0,. exp(-il K.il 0Mi6 ). (2. 16) 

5 
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Combining (2.15), (2.16) and using the uniqueness of Mi one 
obtains ' 

eMie .. Mi (2. 17) 

thereof (2.14) follows. 
We shall summarize the above results in the following (see 

also ref/ 11 ) • 

The?rem 2. 2. Let a 9 (k) be an_, isolated band of H(k) 4 P0 (k) 
be the spectral projection of H(k) corresponding to a

0 (k) and 
Q(k) defined by 

Q(k) .. W(k)P0 (k)W- 1(k), 
... 
k r;;. R 3 (2. 18) 

... 
Then Q(k) is the restriction 
lued function analytic in 5 ~ 

to R3 of a bounded projecti'on va­
and satisfying 

..... -+ -+ ..... 3 ..... 
Q(k) .. Q(k+K), k ~·50 , K t;;.r , (2. 19) 

... ... 

e Q(k)e .. Q(-k). k ~ R 3. (2. 20) 

3. ANAJ"YTIC FAMILIES OF PROJECTIONS IN HILBERT SPACES 

... j j ... j j 
In what follows z -(z1' ... ,zj) (; C , p • (p 1, ... ,pj) ~ Z. 

In this section we shall discuss the following two problems. 

Problem A. 

Let K b~ a separable Hilbert space, q be a positive inte­
ger, 5i=l~q\;·Cqi1Imzil<a, a>·o l andQ(z<l) be a projection 
valued function analytic in 5q and satisfying 

a 

Q(zq) .. Q*Cz~. ;, q(;; Rq (3. I) 

Find a pounded with bounded inverse operatqr valued functi.on 
A(z q) analytic in 5 i satisfying 

~A(z q) Q(O) .. Q(;, q):A(z q), A(Q) .. 1, (3. 2) 

... -1 ... q :A*(zq),..A (z ), ;q.c; R q . (3. 3) 

6 

Problem B. 

Under the conditions of Problem A, suppose in addition that 
Q(z' q ) is periodic, i.e., for arbitrary p q ~ Z q 

... ... ... q ... q q 
Q(zq) • Q(zq+ 277P ) , z t;; 5a . (3.4) 

Find A(zq) satisfying beside the requirements of Problem A 

A(zq)Q(O) • A(~q+ 217p 2)Q(O), ~ q t;; 5 q' p q .c; z q . 
a (3. 5) 

To our best knowledge, up to ,now only Problem A for q -1 
(but in a more general setting: arbitrary simply connected do­
mains, Banach spaces, etc.) has been thoroughly investigated

18
·
91 

(see, however/3,10/ where Problem B for q,. 1 is discussed). 
There are(at least two methods of constructing solutions of 
Problems A and B. The first one (in a slightly different form 
going back to Sz-Nagy 191) is based on the following result 
concerning the unitary equivalence of pairs of orthogonal pro­
jections in Hilbert spaces. 

Lemma 3. 1 ~9/ 

Let Q
1

, Q2 be self-adjoint projections inK satisfying 

II Q 1 - Q 2ll < 1. 

Then the operator 

2 -1/2 
A2,t•(1-(Qt-Q2)) (Q2Ql+(l-Q2)(l-Ql)) 

~s unitary and 

A2,1Q1A2.~- Q2. 

Proof. See 191 II 4.6. 
The above lemma gives at once. 

Proposition 3.1. Suppose 

IIQ(zq)-Q(O)JI.< 1 
_., '\q 

for z q ~ 3 

Then 
2 -'h A(~ q) .. (1-(Q(zq)- Q(O)) ) 

I 

a 

(3. 6) 

(3.7) 

(3. 8) 

(3. 9) 

7 



I 
l1 

Ill' ~ 
'Ill 

I"· 

(Q(~q)Q(O) + (1-Q(~q))(1-Q(O))) (3. I 0) 

~s a solution of Problems A and B. 

Proof. The proof of (3.8) does not depend on the self-adjoint­
ness ofQ1 andQ2.Unfortunately the condition (3.9) is a very 
restrictive one (see 191 Remark 4.4 in Chap.II). One can gene­
ralize (3.10) to give a solution of Problem A. 

Proposition 3.2. 
sitive integer N 

Let O<R .< oo, O<b<a. Then there exists a po­
depending on R and b such that 

N-1 
AJzq),. 11 [(1-CQC~ z~) -Qcl:l.-r-L-zq))2 )-~12_ 

P .. o N N 
(3. II) 

N-E ->q N-E-1 ->q N-E ... N-E-1 _,<h] 
X (Q(--z )Q(--·Z) + (1-Q(--zq))(1-Q( ·Z J)) 

N N N N 

is a solution of Problem A for '; qt; f ~ q ~;; C ql I Re z i I< R , lim zil.<b, 
i- l, .... ,q l. 

Proof. This is a simple iteration of Proposition 3.1. Clearly 
(3:Tl) is not suitable for solving Problem B since :Arf..~ q) has 
no required periodicity properties for N > · 1. 

Tl!e second method of constructing solutions of Problem A has 
been put forward independently by Daletsky and Krein and Kato 
(see references in18 ,11/ ). The basic construction is contained 
~n 

LeiiUna 3. 2.
191 

Let Q(t) , t <;; R be a norm differentiable family of 
bounded projections with norm continuous derivative and !A(t) 
be given as unique solution of the equation 

i-d-,A(t) .. i ((1-2Q(t))-~ Q(t))A(t), A(O)"' 1. 
dt dt (3. 12) 

Then 
~. 

·A ( t) Q (0) = Q ( t) A ( t), t t; R. (3. 13) 

ii. If Q(t) is self-adjoint then !A(t) is unitary. 

8 

~~~ 
{ ~ 

\l 
.\ 

P f . s /8,9,111 roo . ee . , 
The above lemma gives at once a solution of Problem A for 

q .. 1 (also the generalization to q > 1 is straightforward). As 
it stands, the above lemma does not give solutions of Problem·B 
(see ref. 191 Remark 4.2 Chap.II). However, Lemma 3.2 combined 
with some results in the theory of differential equations with 
periodic coefficients allows a construction of ~(~ solving 
Problem B for q .. 1 (see alsof10/ for finite dimensional K ) • 

. . 3 3 131 bl d . . P!opos~t~on . . For q-1 Pro em B a m~ts solut~ons. 

/3/ Proof. See · 
--stlmmarizing the above discussion, Problem A for all q"' 1,2, ... 
and Problem B for q .. t admit solutions without any additional 
conditions on Q(;q ). In contrast, it seems very probable that 
for q> 1, in general Problem B does not admit solutions. One 
sufficient condition for Problem B to have a solution is provi­
ded by Proposition 3.1. Unfortunately ~3.9) is a severe restric­
tion on the variation of Q(zq) and the result in Proposition t 

3.1 seems not to be very interesting for applications (e.g., 
concerning the localization of Wannier functions it covers only 
the tight binding limit). Motivated by the concrete problem at 
hand, the main new result of this section gives another example 
of sufficient conditions for the existence of a solution to 
Problem B. 

Theorem 3.1. Under the conditions of Problem B suppose: 
i. 

dim Q ( ~ q) ,. 1 (3. 14) 

ii. There exists an anti linear involution e, K ... K such that 

e Q c-z q ) e .. G c- ~ q ) • ->a z • t;, R q. (3. 15) 

Then:A(zq) satisfying the requirements of Problem B exists. 

Proof. The proof is by construction and consists of two steps. 
At the first step, using LeTILTJla 3.2 we shall construct B(z'I) 
satisfying (3.2-4) but not (3.5). At the second step we shall 
"correct" the construction of the first step as to provide :A(z ~ 
satisfying all the requirements of the theorem. It is the se­
cond step where we shall use crucially the conditions (3.14) 
and (3.15). During the proof, some of the technical points are 
states as leniiUas which are proved at the end. The main point of 
the proof is Lemma 3.3 below. 

9 i 
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Step I . Fix z1 , .... z q-1 and let B q(zq) be given as 

a solution of the differential equation 

d -->q -+q d __, ->q 
i- Bq(z ) - i((1-2Q(z ))-Q(zQ))Bq(z ), 

dz q dz q 
(3. 16) 

Bq (~ q- 1 ,0) .. 1. 

Lemma 3.2 and standard results about analyticity properties of 
the solutions of differential equations in terms of the analyti-
city properties of the coefficients imply /8/.19 II§ 4/ that 
B (:tq) is analytic in g q . has bounded inverse and 

q a 

B*q(:tq) • B~1 (Z'c~. ;t qc; R q. (3. 17) 

-+ct. __, q- 1 __, __, _, q q 
Bq(z JQ(z ,0)- Q(zq)Bq(zq), z ~;; .. 1 a. (3 .18) 

One can repeat the same procedure starting from Q(z q- 1 ,0) 
and construct Bq. 1 (zq- 1 ). After q steps one obtains B(z q) in 
the form 

B(~q) .. Bq(zq)Bq. 1 (~q-
1 ) ... B tCz 1) (3. 19) 

which satisfies (3.2) and (3.3). 

S~ep 2. Consider !"' 
__, q- 1 _, q- 1 - 1 _, q-1 

T(z ) .. Bq(z ,rr)Bq (z ,-rr). (3. 20) 

From (3.2), (3.4) and (3.20) it follows that 

[ _, q-1 -+ q- 1 J T(z ), Q(z ,rr) .. o. (3. 21) 

This implies that with respect to the direct sum decompositi-
on 

_, q-1 ->q-1 
K-Q(z ,rr)K +(1-Q(z ,rr))K 

T(lq-i) takes a direct sum form 

T(z q·1) .. T1(~ q-1) ; 'J2 (~ q-). 

(3.22) 

(3. 23) 

It follows (remember that dim Q (z q) .. 1 ) that if f c; K is decom­
posed according to (3.22) 

-+ q-1 _, q 1 
f,.f

1
(z )+f(z-

• 2 

10 

!\ 

.. 

. ' 
~ ' 

'. 
I ,, . . \ 

I: 
!j 

\~· 
1; 
I 

~ 
~ 

I 
'! . 

' 

then 

T<;q-1)r .. A.ctq-1 )f1(tq-1 lt<T2r2)c:tq~1 ). (3.24) 

where ,\(~ q- 1 ) is a complex-valued function • 

Lemma 3.3. 
3 q-!. with 

There exists a unique function ¢ (zq-1) anal¥tic in 
the properties 

a 
-+ q-1 .... q-1 

,\ (z ) .. exp (2rri ¢ (z ), 

¢ (0) r:;. [ 0, 2rr ) , 

¢ (~ q-1 ) - ¢ (~ q-1 ) • 
-+ q-1 q-1 
z .; R , 

(3. 25) 

(3 .26) 

(3. 27) 

¢ (iq-1 + 2rrpq- 1 ), ¢Czq- 1 ). 
1 q -1 _, q· 1 q- 1 pq- J;;Z ,z .;; g& · (3.28), 

Consider 

->q _, ->q-1 ->q 
Aq(z )• exp(-izq¢(z ))Bq(z ). (3.29) 

By construction ·Aq(zq) is analytic in g ~ , has a bounded in­
verse, is unitary for ~q;;; Rq , Aq(0)·1 and 

Aq<zq)Q(~q- 1 .o) .. Q(zq)Aq<~q). (3. 30) 

The periodicity properties of A qCz q) 
lowing 

are given in the fol-

Lemma 3. 4. For ~ q c; g ~ and p q ~ Z q 

AqCz~Q(zq- 1 ,o) ... A/zq+2rri>qJQ(zq- 1.o). (3 .31) 

In a similar way "correcting" Bp(ze) one can construct the 
corresponding Ae(zf ). Then one can verify that 

A(iq) .. Aq(zq) ... A1Cz1 ) (3. 32) 

satisfies all the requirements of the theorem. Let us verify 
for example (3.5) for q .. 2 

->2 -> 2 ~A 2 (z ):A
1

(z
1
)Q(O)=A 2(z )Q(z 1 ,0)A 1(z 1) Q(O) = 

-->2 -> 2 ~ A2(z + 2rrp )Q(zl'O)A 1(z 1 + 2rrp1 )Q(O) .. 

_, 2 -+2 . 
= A2(z + 2rrp )Q(z 1+2rrpl'O)A 1(z1 + 2rrp 1) Q(O) 

11 
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... 2 ->2 
""A(z + 211p )A 1(z 1 + 217p 1)Q(O). (3.33) 

The proof of Theorem 3.1 is completed. 
Proof of Lemma 3.3 .. The invertibility of T(zq- 1 _) and (3.24) 

imply that A(z q·l ) ~0 for ;q-l t;; B 11 . Let now f t;; Q (0 q-1 ,· rr) K. 
There exists a neighbourhood X of 0 in cq- 1 such that 
(f,Q(~q- 1 , 17 )f) {. 0. Then from (3.24) it follows that 

A (~ q- 1 ) • ( f , Q ( z q- 1 , rr) ff 1 ( f, Q (~ q- 1 , 11) T (~ q·- 1 ) f) (3. 34) 

wherefrom A(;, q- 1- ) is analytic in X. By an analytic continuation 
argument A(~q-l) is analytic in ~~- 1. It follows that (3.25) 
is true with¢(~q-1) analytic in 1q- 1.The function ¢(;q- 1 ) is 
uniquely fixed by its value at ze'r~. For ·iq- 1 <;; Rq- 1 , T(iq-1 ) 
is unitary and the decomposition (3.22) is an orthogonal one 
which proves (3.26). From (3.16) and (3.4) it follows that 
Bq(~q) is periodic in z!J-1 which implies the periodicity of 

-+q-1 · dA .,d,;, d¢ 'd' h f' fl A(z ). s~nce -- •1/\...:::..:t:.... , --are per~o ~c w ereo ~t o -
dzi dzi dz i 

lows that 

q--1 
.. .. q-1 "' ¢ ( z q-- 1 l ~ ~~, < z ) + .:- P v z r . 

f-1 
(3. 35) 

where 0 is periodic and Pp are integers. We shall prove now 
that (3.15) implies 

.. q-1 • q-1 
~6(z l-t0(--z ). (3.36) 

From (3.15) and (3. 16) it follows 

i-g_UB (-i'~)Uw i((l-2Q(;'~))-q_ Q(zq))OB (-zq)O 
dz q dz q 

q q 

whereof 

... q ... q 
OBq(-z )8. Bq(z ). 

Taking into account (3.38) and the definition of T 
tains 

eTc-z q-1 ) e .. T - 1 ( z: q- 1 ) . ... q-1 q-1 
z .;; R . 

From (3. 15) and (3.4) one has 

... q 1 ... q-1 OQ(z- ,11)8- Q(-z ,11). 

12 

(3.37) 

(3. 38) 

one ob-

(3.39) 

(3.40) 

. ~ 
~ 

! l 

' • > 

., 
• 

II 
~ )' . . ,, 

·~ 

'\ 

·I 

t 
i . 
i 

' 

.1 

~ 

' 

Let now f.(! Q(-~q- 1 ,11)K. Then using (3.27), (3.39) and 
(3. 40) 

OT(zq- 1 )Of,. exp(-217i¢(-~ q- 1 ))f ,.. 

~ exp ( -211 i ¢ (; q-1 )) f , ~ q~1 ~ R q-1 
(3 .41) 

which proves (3.36). Now (3.36) implies Pe·O in (3.35). In­
deed, for example ¢(-17,0, ... ,0) .. tjJ(-17,0, ... .D)-pl.17=t/J(17,0, ... ,0)+17P 1 
which together with the periodicity of tjJ ~mplies p 1 .. 0. Since 
the periodicity for ;,q- 1 t;;- R q- 1 and the analyticity in ~ ~-l 
implies the periodicity _in 5 i- 1 the proof of Lemma 3.3 is 
completed. 

Proof of Lemma 3.4. From (3.16) and (3.27) it follows 

d .. q ... q-1 
i- A q ( z ) Q ( z , 0) = 

dz q 

[ i(1-2Q(z~>~- GcZ'q> + <t>Cz q- 1 >Hq c;~Q<zq-l .o>. 
dz q 

(3.42) 

·A qC~ q-l .o> Q (z q- \o),., Q (z q- 1• o). 

The periodicity in ~ q~l is obvious. For periodicity in z q the 
only thing we have to verify is that 

... q-1 ... q-1 ... q-1 ... q-1 
Aq(z , ~11)G(z ,0) .. Aq(z ,17)Q(z ,0). .(.3.43) 

Using (3.4), (3.18), (3.20), (3.32), (3.23) and the defini­
tion of Aq it follows: 

/""! q-1 ... q-1 
Aq~Z ,-17)Q(z ,0),.. 

... q- 1 -1 ... q- 1 ... q- 1 ... q- 1 
exp(i11¢(z ))T (z )Bq(z ,17)Q(z , 0)-

... q 1 -1 ... g-1 ... q- 1 ... q-1 
~ exp(i11¢(z- ))T (z· )Q(z ,11)Bq(z ,11) .. 

... q-1 ... q-1 ... q-1 
.. exp(-i11¢(z )Bq(z ,11)Q(z ,0)= 

~A q(;, q-l, 11) Q(;, q- 1,0) 

and the proof of Lemma 3.4 is completed. 
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4. THE WANNIER FUNCTIONS 

Applying Theorem 3.1 to the situation described in Theorem 
' • I 2.2, one obta1ns 

... ... 3 
Theorem 4. I. Let a.O(k) , k c; R be an isolated band of H(k) , 
P0 (ft) be the spectral projection of H(~) corresponding to 

a 0 (~ ), dimP0 (k) ,.1. Then there exists a vector valued function 
)(

0 (1t) analytic in 5~ and satisfying 
-+ .... ... ..... -+ _, ..... 3 -+ 

W(l\)x 0 (k)"' W(k+K))( 0 (k+K), k1;;·5D' Kc;T, (4.1) 

xo(k) c; Po (k)J<'. II xo (k) II· 1, k c;;. R 3 
. (4. 2) 

Proof. Let us first remark that although Theorem 3.1 has been 
proved for 5 ~ , the proof goes through without changes for 5 ~. 
Let A(k) be !he o2erator valued function given by Theorem 3.1 
appJied to_.W(klPo(k)W- 1 (k) and )(0 i;;Po(O)W,JL•<0 JJ .. l.Then 
)(

0 (k) .. W- 1 (k)ACIOx0 satisfies (4.1) and (4.2). 
Corollary 4.1. Let 

Then 

-1 Ell ... ... 
w -(volQ) J x0 (k)dk 

B 
a~;;D, ai>O. 

3 -1 ... -1 ... 2 3 
exp(.l 2rrJKjJ ajJxjJ)(U w)(x)c; L(R ), 

)'" 1 

(4. 3) 

(4 .4) 

where xi are coordinates of; with respect to the basis lad. 

Proof. From the definition of W(k) and Theorem 4. I it follows 

~ 
that (U- 1 w)(p) is the restriction to R3 of an analytic func-

• • d 3 t1on 1n J D. Moreover 
~ ... ->2 ... J J(U w)(p +ia)J dp < oo 

R3 

Now (4.4) follows from the Paley-Wiener theorem. 
The Wannier functions corresponding to a 0 (k) are defined as 

follows 1121 

-+ .... 3 .... 
W0 (x) -w0 (X- l v. a.), 

v j-1 J J 
vj - dntegers 

(4. 5) 

-+ -1 .... -+ 
w0 (x) .. ( vol Q) J rj; k ( x) dk, 

B o, 

14-
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.I 
' . 
; I 

... 

~ ~ 
' 

I! 
I 

. 
~ 
·~ 

I l 
~ 

l 

l 
.J 
! 
• 

'· 

_. ... ... .... 
where rj; 

0 
... ( x) .. exp(ikx) u 

0 
k (x) are Bloch functions correspond-

ing to a.o'(~). Looking at the equation satisfied by the periodic 
part u

0
,k, (x) of rj; o,lt (x) one gets that u o,itCx) is nothing 

but the II X -representation" "Of )( 0 (k). Comparing (4.3) with 
(4.5) one finds that 

... -1 ... 
w0 (x) ,. (U w; (x) 

which together with Corollary 4.1 gives: 

' Theorem 4.2. There exist Wannier functions corresponding to 
an isolated nondegenerated band of H which are exponentially 
localised. 
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Wannier Functions 
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The existence of exponentially localised Wannier func­
tions corresponding to nondegenerated bands of arbitrary three 
dimensional crystals is proved. The result is a consequence of 
an abstract result on analytic families of projections in 
Hilbert spaces. 
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