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1. INTRODUCTION

In this paper we shall consider one of the few basic ques-
tions of the quantum theory of solids in the one electron ap-
proximation which are not yet completely solved: the existence
of exponentially localised Wannier functions. We shall consider
only nondegenerated bands. For the results obtained so far for
degenerated bands we refer td”ﬂ&3.8ince their appearance’4/ the
Wannier functions played a crucial role in developing the theo-
ry of slowly varying perturbations in solids. The crucial pro-
perty of the Wannier functions which makes them so useful is
their localisation. From the very definition and the Paley-Wie-
ner theorem it follows at once that the exponential localisa-
tion of Wannier functions is equivalent to the analyticity and
periodicity of the corresponding Bloch functions as functions
of the crystal momentum k. To our best knowledge all the re-
sults concerning the localisation of the Wannier functions are
obtained by first proving the existence of Bloch functions
analytic and periodic in k. Our paper is not an exception and
all the discussion below as well as the body of the paper is
about the existence of analytic and periodic Bloch functions.

The one-dimensional crystals with a center of inversion have
been treated in a definitive manner by Kohn in a classic pa-
per’®/. Concerning three-dimensional crystals there is a wide-
spread opinion!?/ that the exponential localisation of the Wan-
nier functions has been proved by Blount /8 -Unfortunately this
1s not true, because a crucial point is missed in Blount”s ar-
gument. More exactly through his paper he tacitly assumed that
the Bloch functions are periodic in k. At the same time he pro-
ved the analyticity in K of the Bloch functions by the kp
perturbation theory: the eigenvalue problem for the periodic
part of the Bloch functions4£s assumed to be solved at a fixed
value kg of kj ; then by the Kp perturbation theory/12/ one obtains
Ehe periodic part of the Bloch EpnctionE in a neighbourhood of
kg as an analyt}g function of k; fix kyin this neighbourhood,
apply again the kp perturbation theory, and so on. But the
Bloch functions thus obtained may not be periodiec (the transla-
tion symmetry implies k periodicity of the Bloch functions only
up to a phase factor). The three dimensional crystals have been
considered by des Cloizeaux L.2/4is method of building analytic
and periodic in kK Bloch functions consists of two steps: i. the
proof that the correspondinuigggL&almpnoéeGti@ﬂw%in which the
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arbitrary phase factor up to which the eigenvalue problem de-
termines the Bloch functions cancels out) is analytic and pe-
riodic in k ii. analytic and periodic Bloch functions are con-
structed, in some way, with the help of the corresponding spect-
ral projection. The first step can be carried out in the gene-
ral case: many—-dimensional crystals and degenerated bands
(see also Section 2 below). The second step is the hard one
(although at first sight it looks almost trivia1/7/) and by his
method of trial Wannier functions, des Cloizeaux succeeded to
build analytic and periodic Bloch functions only if the (three-
dimensional) crystal has a center of inversion’/?/, He was also
able to treat general one-dimensional crystals but in this case
the result is weaker: the domain of analyticity of the Bloch
functions may be smaller than that of the corresponding spect-
ral projections.

. In this paper the condition of the existence of a centre
of inversion is removed. We shall follow the route of des Cloi-
zeaux, In Section 2 up to date presentation of the results con-
cerning the spectral projections corresponding to isolated
bands (degenerated or not) is given, In Section 3 we shall prove
some abstract results (which might be interesting in themselves)
concerning analytic families of projections in Hilbert spaces.
In Section 4 using the results in Sectlon 3 we shall prove the
existence of analytic and periodic in k¥ Bloch functions cor-
responding to nondegenerated bands in arbitrary (i.e., not ne-
cessary with a centre of inversion) crystals of arbitrary dimen-
sionality. Our results are optimal in the sense that the analyti-
city domaim of the Bloch functions coincides with that of the

corresponding spectral projections.
\

2. PRELIMINARIES

In this section we shall recall, in a suitable form, some
general properties of the Hamiltonian

Ha-A+ V(X), (2.1)
where V(X) is a periodic function. Let {d;1 be a basis in R3
and {K }3 , be its dual basis, i.e.,

ﬁi-Kj a27751j

Let Q and B be the basic period cells for the basis {Z;} and

{KiL respectively.
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Theorem 2.1/8/

> . 3 . > -
Let V(x) be a real function on R with V(x+a;) = V(x),i=1,2,3,
Let
Hem %2 =ty ISy 12< w |
my, My, Mg MM g My = mymy, Mg
and

®

[ M dk .

B

Suppose V& LE(Q) and V2 ,m c2? be the Fourier coefficients

of V as a function on Q, i.e.,

~ -1 3 -,
Vo= (v0lQ) [ exp(—i3 mK, .x)V()dk.
m a =1 1]
For k¢ € define the operator H® in X' by
k BaEomi )2 3 ¥
H(k +=(k+ 2'mK,. o Vo> - 2.2
( ()w)m ( i J)¢m +H€z3" o> 5 (2.2)

with the domain

T HE)= To=ty e}l 3 |18 ua 1<l
me z3 "
Then
i. For k< R® H(k) is self-adjoint,
i1, H(k) is an entlre analytic family of type A.
iii. For k< C3, H(k) has compact resolvent.
iv. Let U: L%R2dx)» K be given by

e ~ > 3 - -
m j=1 1)
where f denotes the Fourier transform of f.

Then U is unitary and

-1 @ Lo
UHU "= [ H(k)dk . (2.4)

B
/8/

Proof. See ref. Chapter XIII.
In what follows, k; , i = 1,2,3 denote the coordinates of k K

with respect to the basis IK |1é and K denotes a vector of
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reciprocical lattice, A nonvoid part ao(k) of u(f{‘) Kc BCR® is said to be an
isolated Band of H(K) if there ex1st continuous and periodic
functions f; (k) R3> R f(k)sf (k +K) i=1,2 and a positive

constant ¢> 0 such that fl(k) < fz(k) and

3 -

- -
IT={K|K= 2 pK , p cZ}.
=13 ] )
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Let W; : H’>H’, i = 1,2,3 be the unitary operators given by g«o(_i{) C [fl(k), fz(k)] R

e

(Wyy) o =y o@)nit (k-c, f;(R)+cl=g ix1,2.

;~limgpmg ! (w2l/l)?n= dlml,mg—l,m3

.

(2.5)
Let Po(k) k c R? be the spectral projection of H(k) corres-

ponding to an isolated band o° (k).

(w3 lﬁ)?ﬂ =

¢m1,m2,m3-—1

Since W; are unitary and 1 is not an eigenvalue of W;, there

g

exist unique self-adjoint operators M; such that [[M;]||g 2n /1K, | Lemma 2.2. 7% There exist a>0é DcRD> Iy e R31§1 <al such
and . : that POiE) is the restriction to R® of a bounded projection va-
g - lued function analytic in
Wixexp(llxi‘Mi)‘ (2.6) H 3 - -» - y3 - 3 -»
5D-.fz-x+1y€C lx cR°, y DL

Consider now the bounded operator valued function . Proof. This is a direct consequence of the theory of analy-

R 3 3 R tic perturbations as developed in ref.’8 .
W(k) = exp(i 3 ijj) = [l exp(ik. M,), kg c? 2.7) From Lemma 2.2 it follows, in particular, that dimP; (k) 1is
j=1 =1 3 constant and due to Theorem 2.1 iii, finite. An isolated band

. > . . . oo(_l;) is said to be nondegenerated of Pyl k)- 1.
(remark that M; commute). Obviously W(k) is an entire function Consider the following (antiunitary) involution(: H'-+H}’

of three complex variables and moreover

. _ . R (0‘,/).."' ‘)/ > . 2.12
Wek) = WL k), ke R® . , (2.8) - @12
73/ > . Lemma 2.3. Tor 12 ¢ R?
Lemma 2.1. Let L(k) be given by -
, RSN 0P, (k)0 = P_(~K), (2.13)
1
L&) = WEIHE) W™ (K) (2.9) 0 0

. 0 W(k) 6= Wik ). 2.14
Then for all K& I' and K gcC?® ( )

L(k)= L(k+K). (2.10) Proof. From the reality of V(x) (2.2) and the definition
of 0 it follows that for kK ¢ R®

Proof. The proof is a straightforward, although a little bit OH(YQO,. H(——T{)
tedious verification.

Let o(k) be the (discrete by Theorem 2.1 iii) spectrum of which implies (2.13) via the formula relating Po(k) and the re-
H(k). \ solvent of H(k). From (2.5) and (2.12) it follows that

-1 -
‘ OW 0 =Wy = Wi =exp(~i][K;[M;). (2.15)

Corollary 2.1. As a set 1

On the other hand,

o (k) = o (K+K). (2.11) p -
6 W, 0=0 exp(i[K;[M,)0 = exp(-i|K,|6M;6). (2.16)

-
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Combining (2.15), (2.16) and using the uniqueness of Mj one
obtains ’

OM; 0 = Mi 2.17)
thereof (2.14) follows.

We shall summarize the above results in the following (see
also ref./V ).

Theorem 2.2, Let o°(k) be an isolated band of H(E) JEB(E)
be the spectral projection of H(k) corresponding to o°(k) and
Q) defined by

1

a(k) = WP @)W '®, KeRrR® (2.18)

-

Then Q(k) is the restrictiogn to R® of a bounded projection va-
. .. 3 . .

lued function analytic in SD and satisfying

.

Q) = Q+K), (2.19)

ﬁc-ﬂg, RKel,

0QM0=a(-p), ke R, (2.20)

3. ANALYTIC FAMILIES OF PROJECTIONS IN HILBERT SPACES

In what follows 2’ =(Zy,mn2;) G €1, Bl = (o ,d) € z%
In this section we shall discuss the following two problems.

Problem A.

Let K be a separable Hilbert space, g be a positive inte-
ger, Ji=1z%9c €Y |Imz;|<a, a>0} andQ(z9 be a projection
valued function amalytic in 32 and satisfying

Q(z%=a*(z9, z% RY. (3.1)

Find a bounded with bounded inverse operator valued function
A(z9) analytic in §} satisfying

AZYHA0) =Qz HAaEZ Y, A0)=1, (3.2)

Az =A"1EY), z% RY. (3.3)

!

RS Y

R

Problem B.
v
Under the conditions of Problem A, suppose in addition that
-» . - . . .
Q(za) is periodic, i.e., for arbitrary plc z¢
- q q
z°ed, .

Q(Z%) = Q(z%4+ 2779 , (3.4)

Find A(Zq) satisfying beside the requirements of Problem A

AGZDQO) = AGY+2:92)Q@), 2%yl ple 2% (3.5)
To our best knowledge, up to now only Problem A for ¢ =1
(but in a more general setting: arbitrary simply connected do-
mains, Banach spaces, etc.) has been thoroughly investigated
(see, however/340/ where Problem B for gq= 1 is discussed).
There are (at least two methods of constructing solutions of
Problems A and B. The first one (in a slightly different form

going back to Sz-Nagy/9/) is based on the following result
concerning the unitary equivalence of pairs of orthogonal pro-
jections in Hilbert spaces.

Lemma 3.1{9/

Let Q; , Qy be self-adjoint projections in K satisfying

19, -Qgf<1t. (3.6)
Then the operator

A, =(1-@,~a)F7 %@ 3.7

0.1= (1=(Q, =G, T 7 7(@,Q, +(1-Q,)(1-Q 1) G.7)
is unitary and

-1 .

Ay QA7 = Q,. (3.8)
Proof. See’? II 4.6.

The above lemma gives at once.

Proposition 3.1. Suppose

laE9-a@il<1  for t%c g, (3.9)

Then
1

AGZY = 1-Q(EZ Y- aopd

/8,9/
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(Q(zHQE) + 1~z - (3.10)

is a solution of Problems A and B.

Proof. The proof of (3.8) does not depend on the self—adjoint—
ness of Q1 and Qs. Unfortunately the condition (3.9) is a very
restrictive one (see/9 Remark 4.4 in Chap.II). One can gene-
ralize (3.10) to give a solution of Problem A.

Proposition 3.2, Let 0<R <o  0<b<a.
sitive integer N depending on R and b

Then there exists a po-
such that

N-1 1
24y - —(N=L 29y _q(N=l=1_79y2 %
AN(zq) ?:L [(1=~(Q( N z 1) =Q( N z )" ) "

3.1
N~ - - =1 N-f -1 >
< @i Q=i 4 - e B Z - a2l gy
is a solution of Problem A for z 'c {z ¢ Cq}IRe z;]< R ,|Imz;|<b,
i=1,.0,q )
Proof. This 1is a simple iteration of Proposition 3.1. _Clearly

(3.11) is not suitable for solving Problem B since Abﬁzq) has
no required periodicity properties for N>'1.

The second method of constructing solutions of Problem A has
been put forward 1ndependent1y by Daletsky and Krein and Kato
(see references in/8:1 ), The basic construction is contained
in

79/
Lemma 3.2, Let Q(t) ,t ¢ R be a norm differentiable family of
bounded pre prO]ectlons w1th norm continuous derivative and 'A(t)
be given as unique solution of the equation

i~ A =1 (1-200) 1 Q)A®w), A©) =1. (3.12)
at at

Then

i,

AMAO) = AMA®D, tCR. (3.13)

ii. If Q) 1is self-adjoint then :A(f) is unitary.

L
PR s

g e

Proof. See/sﬁ'lu. \

The above lemma gives at once a solution of Problem A for

g=1 (also the generalization to ¢>1 is straightforward). As
it stands, the above lemma does not give solutions of Problem B
(see ref.”? Remark 4.2 Chap.II). However, Lemma 3.2 combined
with some results in the theory of differential equations with
periodic coefficients allows a construction of :A(Z) solving
Problem B for q=1 (see also’19/ for finite dimensional K ).

. /387 . .
Proposition 3.3. For q=1 Problem B admits solutions.

Theorem 3.1.

Proof. See/34

Summarizing the above discussion, Problem A for all g=1,2,...
and Problem B for g=1 admit solutions without any additional
conditions omn Q(zq) In contrast, it seems very probable that
for ¢>1, in general Problem B does not admit solutions. One
sufficient condition for Problem B to have a solution is provi-
ded by Propositien 3.1. Unfortunately *(3.9) is a severe restric-
tion on the variation of Q(Z % and the result in Proposition /
3.1 seems not to be very interesting for applications (e.g.,
concerning the localization of Wannier functions it covers only
the tight binding limit). Motivated by the concrete problem at
hand, the main new result of this section gives another example
of sufficient conditions for the existence of a solution to
Problem B.

Under the conditions of Problem B suppose:
i.

dimQ(z 9) =1 (3.14)

ii. There exists an antilinear involution 6: K-+ X such that

QYN0 = Q=29 7% RY. (3.15)

Then:A(Eq) satisfying the requirements of Problem B exists.

Proof. The proof is by construction and consists of two steps.
At the first step, using Lemma 3,2 we shall construct B(Z 9
satisfying (3.2-4) but not (3.5). At the second step we shall
"correct" the construction of the first step as to provide A(Z Y
satisfying all the requirements of the theorem. It is the se-
cond step where we shall use crucially the conditions (3.14)
and (3.15). During the proof, some of the technical points are
states as lemmas which are proved at the end. The main point of
the proof is Lemma 3.3 below.

9
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Step 1. Fix zy,..., z and let Bq(Eq) be given as

q~1

a solution of the differential equation

i—dd—z-; B (29 = i((1-2Q(z q))%g@(;q))gq(;q), (3.16)
Bq(Eq"I 0)=1.

Lemma 3.2 and standard results about analyticity properties of
the solutions of differential equations in terms of the analyti-

city properties of the coeff1c1ents imply /8/,/9 184/ that
Bq(zq) is analytic 1nﬂ ., has bounded inverse and
B*q(‘z’q) = Bq (z%, z49c R (3.17)
- -»q—1 - - - q
B,(zHQz" .0 = QZYHB,(zY), z%c{, . (3.18)

One can repeat the same procedure starting from Q(z a-1 ,0)
= (- . .
and construct Bq,l(zq 1). After q steps one obtains B(E 4) in
the form

B(ZY B (IMB  (z91)... B () (3.19)
which satisfies (3.2) and (3.3).

Step 2. Consider It

TET )« B (2T B G a, (3.20)

From (3.2), (3.4) and (3.20) it follows that

[TE %), @@ YT, m)l=0 3.21)

This implies that with respect to the direct sum decompositi-
on

K=a@""mK +«a-a@""" a0k (3.22)
T(Zq"f) takes a direct sum form
TET) = mETY) G (3.23)

It follows (remember that dimQ(Z9) =1 ) that if f €K is decom-
posed according to (3.22)

f=t,(ET7T )09 )

10

S, ———TT . 3.
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P

-
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A - —————————t" Tt T

e Trw

S

-

then

TG =@ T E T s (Tt E YT ), (3.24)

where A(z9"!) is a complex-valued function.

Lemma 3.3. There exists a unique function ¢ (z9— 1 analytic in

q E"I , with the properties

AG YT Y mewp (2rigp 2 ), (3.25)
$0)G [0,27), (3.26)
6T pGoty, 2T R, (3.27)
6ot 1 2pt ) w gGY), Dl 2 g L (3,
Consider

B (3% = e (-iz b (XTI NB Y. (3.29)

is analytic in 43 has a bounded in-
Aq(0)=1 and

By construction ‘A (z )
verse, is unitary for z9¢cRrRY ,

A EHAGT,0=aEDAED. (3.30)

The periodicity properties of Aq(z B are given in the fol-

lowing

q
Lemma 3.4. For‘EqGﬂa and pic 21

Aq(‘z’q)e(‘i -1 0) = A (thfp%@(zq“l,m. (3.31)

correctlng By(z ) one can construct the
Then one can verify that

In a similar way
corresponding Ag(z ).

A(ZY) = A (z 9. <Ay (zg) (3.32)

satisfies all the requirements of the theorem. Let us verify
for example (3.5) for q= 2

B (Z%)A [(2)QO)=A(27)Q(2 1,004 (2 ) G (0) =
= Az(z + 2np )Q(zl,O)Al(z1+ R7p; ) Q) =
= A, (2%4 208%)Q(2 1+ 27Dy,00:A,(2; + 27D1) Q(0)

11



= A%+ 20D%)A (2, + 27p,) Q(0). (3.33)
The proof of Theorem 3.1 is completed.

Proof of Lemma 3.3. The invertibility of T(2%"! ) and (3.24)
imply that A(zT1 )40 for zol g 3%1.Let now f€ Q(09-1,,)K.
There exists a neighbourhood X of 0 in €T! guch that
(£, QT )f) 40. Then from (3.24) it follows that

AZ D e (1,007 @, ) T Y1) (3.34)
wherefrom A(z 9=1" ) is analytic in X. By an analytic continuation
argument Az 91 ) is analytic in Si_{ It follows that (3.25)

is true with ¢(z9-1) analytic in ﬂg"l.The“function 4z )y is
uniquely fixed by its value at zero. For 241 ¢ Rq”l.’T(gq“l)
is unitary and the decomposition (3.22) is an orthogonal one
which proves (3.26). From (3.16) and (3.4) it follows that

B(ﬁEq ) is periodic in z9~! which implies the periodicity of

«ird2 s d¢ are periodic whereof it fol-

7 a1 Since
Az ). Zj dz; dz |

lows that
q-1

Za1) = ¢z 71y I (3.35)

where ¢/ is periodic and py are integers. We shall prove now

that (3.15) implies
q-1

XA P YO (3.36)
From (3.15) and (3.16) it follows
. d 2 q . g d 2q >
L 9B (= - - _a. 74
ldzq ol mZ U= 1(1~2Q(z ™) dqu‘Z NOB(-ZN0 (3.37)
whereof
GBq(—Eq)G- BJE(U. (3.38)

Taking into account (3.38) and the definition of T one ob-
tains

OT(~2 01 )g=T " 1(Zo-1y 39l g9t (3.39)

From (3.15) and (3.4) one has

- q—~1

0QEZ T, o= Q-2 sa). (3.40)

12
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Let now f & Q(—z ! K.
(3.40)

Then using (3.27), (3.39) and

OT(ZI Y )0t = exp(—2rig (=2 TINI =
. R . (3.41)
= exp(~2rigp (291 Nt , 2Tl gRrY

which proves (3.36). Now (3.36) implies pp=0 in (3.35). In—-
deed, for example ¢(-#,0,...,0)=/(~7,0,...,0)—p 7= U (7,0,0..,0) + 7Py
which together with the periodicity of ¢ implies p;=0. Since
the periodicity for 291 R 9! and the analyticity in ¢ %!
implies the periodicity in §¥"! the proof of Lemma 3.3 is
completed.

Proof of Lemma 3.4. From (3.16) and (3.27) it follows

i-4 A 2Y%a3 o)
dzq q

[1(1-20(2' Y- QE") + (2 T 1)1, (2901 0), (3.42)
q
A0 aG oy =a o).

The periodicity in z 9! is obvious. For periodicity in z q the

only thing we have to verify is that \
> Qq— > Q= -1 -1
8, GV wmaE Tho = a T maE o, (3.43)

Using (3.4), (3.18), (3.20), (3.32), (3.23) and the defini-
tion of Ay it follows:

AL ona@E@ Tho)-

-1 > q-1

~ e UrgGT TN @B G ez L 0.

-1 S>(—1

= epirg G YT T EY @I B G ) -
= exp(-irg ZHB (2, maE o) -
=4 (2%, HaE Tl

and the proof of Lemma 3.4 is completed.

13



4, THE WANNIER FUNCTIONS
Al

Applying Theorem 3.1 to the situation described in Theorem
2/2, one obtains
Let 0°(k) k c R be an 1solated band of H(k) ,
) be the spectral prOJectlon of H(k) corresponding to
),dunPo(k) 1. Then there exists a vector valued function
) analytic in Jp; and satisfying

Theorem 4.1,
Py (R
oo (k
x° (&

W) x °(8) = Wk +K) x°(k+K), kc-gD, KeTl, 4.1)

® e B}, Iydl=1, o RD. (4.2)

Proof. Let u% first remark that although Theorem 3.1 has been
proved for §, .the proof goes through without changes for SS

Let A(k) be the qurator valued function given by Theorem 3.1
applled to w(klpo(k)w Y&) and x°< B@X ', ||x°|| = 1-Then
X o(kK)= W™ (k)A(k)X satisfies (4.1) and (4.2).
Corollary 4 Let
-1 @ - Bl >
wo=(volQ) [ x°(k)dk ac D, ap»0o. 4.3)
B
Then
32 -1 -1 . 2 3
exp(j_12anjl a;lx; 1)U " w)(x) & LY(R"), (4.4)

. nd . -
where x; are coordinates of x with respect to the basis {a;}.

Proof. From the definition of W(E) and Theorem 4.1 it follows

/_1\—5
tht(U . . . 3 .
a g)(p) is the restriction to R of an analytic func-
tion in Jp. Moreover
P

LU YW (P +i3)[Rdp <
R3

Now (4.4) follows from the Paley-Wiener theorem.

The Wannier functions corresponding to o°k) are defined as
follows

w (X) = w°(x— J21V1 2.), v - integers
(4.5)

-

wo(k) = (vol @) [ v, p (D dk,
B ’

14

T Kairw W T ¥ Wy Tx W

T T

Ty v

B

R e o
e
o i vt

e

vhere ¥ (%) = exp(ikn)u o i (X) are Bloch functions correspond-
ing to ¢® (k Looking at the equation satisfied ,by the periodic
part Uo,k(x) of Yo one gets that u, 2(X) is nothing
but the " % -representation' of x°(k) Comparlng (4.3) with
(4.5) one finds that

-1

wo(X) = (U7 w) (%)

which together with Corollary 4.1 gives:

A
Theorem 4.2. There exist Wannier functions corresponding to
an isolated nondegenerated band of H which are exponentially
localised.
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