


i. INTRODUCTION

Modern microscopic theoxy of superconductivity has been gi-
ven a rigorous mathematical formulation in the classical works
cf N.N.Bogolubov’Y® and others /%% It was shown that the equa-
tions for superconductivity can be derived from the fundamental
electron-ion and electron~electron interactioms. The obtained
set of equations is known as the Eliashberg equations. It enab-
les us to investigate the electrenic and lattice properties of
the metal in both the normal and superconducting states. More-
over, the Eliashberg equations are appropriate for the descrip-
tion of the strong coupling superconductors, contrary to the
so~called Gorkov equations valid in the weak coupling regime
and describing the electrom subsystem in the superconducting
state only.

The extensions of the theory to the disordered superconduc~
tors have been given for the "dirty"/% and dilute alloys/10/ 1i-
mits. Since then still increasing interest in the theoretical
and expevimental study of the disordered superconductors’il/ is
observed. A lot of effort has been devoted to the transition
metal compounds and substitutionally disordered alloys/18.18/

The Gorkov weak coupling approach and the coherent potential
approximation (CPA), to treat discrder, have been used in a num-
ber of papers’ 2l to describe concentrated superconducting al-
loys. They used the following model Hamiltonian with the Cooper
pair sources &
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This group of papers discussed the influence of the disorder
on the electron subsystem. The phonon-mediated parameters of
the effective clectron-electron interaction in alloys entering
the definition of A, in (J.1) have been recently derived /2%
on the basis of the random contact model. On the other haund in
paper /8% there has been studied the effect of the force cons-
tant disorder on the electron-phonon spectral function, while
in’/24/ the influence of atomic ordering in alloys on their T,
by means of the integral equation for the vertex part was in-
vestigated.

The Eliashberg-type theories have also been proposed for su-
percondunting alloys/28.28/ Kerker and Bennemann/25/have used
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the Fréhlich-type Hamiltonian for the electron-phonon interac-
tion and neglected the effect ofi. disorder on the phonon Green
function (GF). Lustfeld’®% has obtained the expression for T,
on the basis of the phenomenological ansatz fqr aver%%ed anoma-
lous self-energy (c.f. the equation (16) for o,y in 6/)

The purpose of the present paper is to develop the microsco-
pic selfconsistent theory for strong-coupling superconductivity
in disordered transition metal alloys. The alloy version/27/ of
the Barisic, Labbe and Friedel (BLF) tight-binding model”28:29/
%s/ﬁﬁgg/for the electronjion interaction: As has beeq shown
in the BLF phonon induced d-4 coupling is the dominant
mechanism for superconductivity in such systems. We derive the
equations for superconductivity in the site representation by
means of the irreducible Green function method’®*“°°/in section
2. We employ there the ideas developed previously in connection
with the derivation of Eliashberg—-type equations for pure tran-
sition metals in the Wannier representation’3%, Various attempts
at configurational averaging are discussed in section 3, where
the formula for T, is also obtained. Section 4 contains the
discussion and conclusions.

2. GENERAI, THEORY

When studying the superconductivity in transition metal al-
loys, one must take care of at least three facts of major impor-
tance:

i) The d-electrons responsible for superconductivity in
these systems have an atomic character (section 2.1).
ii) These materials usually belong to the class of strong-
coupling superconductors (sections 2.2 and 2,3).

iii) They are very often disordered so the obtaining of mean-

ingful results requires the proper averaging (section 3),

2.1, The Hamiltonian

In the so-called modified tight-binding method we write the
Ha?%%;onian for a given configuration of atoms in an alloy,
as

1 , +
i ia+'§".2 U n,_ + ijE‘.awijawaja+He_i+Hi. 2.1)
Here nia=na;&aio , and a;,(aia) creates (annihilates) the d-
electron in Wannier state |i> with spino. The t;; are the hopping
matrix elements, and the prime indicates that the sum over j is

limited to nearest neighbours of i. ¢; and U; are the random
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"energy levels" and intrasite Coulomb matrix elements, respec-
tively. He—j stands for the electron-ion interaction Hamiltoni~-
an, This part of was derived previously 27/ and is a direct
generalization of the BLF/?%fodel,

a a a +
H&"izijza z Ty (0 —u)aigay, (2.2)
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Here ui is the a-th component of the displacement of an ion
at 1i-th site, q% is the Slater coefficient describing an ex-
ponential, az;p(-qér), decrease of the d-electron wave function °¥
It takeg on value qg(qg) when atom at site i is of an A(B) -
type. Rj~E;=Kj is the relative position vector of two ions

at i and j. The last part of the Hamiltonian represents the ion
subsystem and in the harmonic approximation, we use here, is

given by

2
Py
Hy = E-—-—+-}‘-E X u(:d?i?ﬁu}ﬁ.

1 2M; 24§ 48 (2.4)

M; denotes the mass of an ion gt 1i-th site. It is equal to M,
or My The dynamical matrix ®% is in general a random quanti-
ty too.

2.2, Electron Green Function and Mass—Operator

In disordered systems, where the distance between ‘'impurities"
is comparable to the interatomic distance of the host/lo,the
coherence length {(or the Cooper pair size) is greatly reduced.
The proper description of superconductivity in such circumstan-
ces requires the proper description of the Cooper pairs. The
pairing in general takes place between time—regersgl states
but these cagnot be represented as |k :>and |~-k*> in disordered
alloys, for k is not a good quantum number in these systems.
Therefore, we have to start from the states in the site repre-
sentation, describe the pairing (i.e., obtain an expression for
the anomalous electron GF and mass—operator) and only then ave-
rage over various configurations in order to.obtain quantities
comparable to the experimental ones.

To solve for the mass-operator, we use the equation of mo-
tion method for the two-time thermodynamic Green functions’/38:87/
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The Green function @U (w) is a matrix in Nambu representatlon
and is defined for a fixed configuration of ions in space by

+
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where l/’ig '—(aig »34-g) 1§ the so-called Nambu field spinor 7%
Differentiation of the 'Qu(t-—t) over the first time varlable t
gives the following equation for GF (2.5):

~ 'Aa ~ ~ oA B ~
T Ain 8y @ =T+ Uyrg By« oy Tim Cimg (2.6)
where the sign * " denotes matrices in spin indices, :i ,i=1,2,3

are the Pauli matrices and
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To proceed we define the "irreducible" operators as in/38-35/
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giving rise to new equations of the form (2.6) with B repla-

ced by Ir (B and A, replaced by

4

Bk T g e R T miealer .

- — s

(2.8)

im im T Y im

It means that we have extracted from the original GF the Hart-
ree*Fock Bogolubov mean field given here by the difference
(A im-Aim) To proceed we write down the equations of motion
for the GFg (BU) and sz, dlfferentlatlng them over the
second time variable t’ (see /29,38-3%/ ). Then again we go over
to "irreducible" GFs but with respect to the rhs operators
{c.f. (2.7)). The obtained set of ‘equations for various GFs
can be solved exactly. To this end we define the zeroth order
GF as

5 00 2
2Aun mj ’Iij (2.9)
and obtain the following exact equation:
@ =8y @ + 2 Gl R )¢ 8w, (2.10)
where the "scattering" operator Ko is given by
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Equation (2.10) can be written in the form of the Dyson equa-
tion /33:34/

(g” (@) = g“" @) + 2 C%°”(w)511 (@) @gi (@) (2.13)

if ome lntroduces the mass—operator 3]"( _being the "proper
part" of the scattering operator KZ,_ (). Denoting the
random matrices in site—space by g 0 s one can write the
formal solution of (2.13) as

G — (@%@, (2.14)
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To find an expression for the mass operator Ml we proceed in
the same way as previously/zgﬁsﬂ and express the GFs entering
the operator K’ through the correlation functions by means of
the spectral theorem’%83% These correlation functions are de-
coupled in the following way:

<u B + @ - B a +
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(2.15
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by.neglecting the vertex corrections according to the Migdal-
Eliashberg approach’/4:6:29/ Using again the spectral theprem

to the rhs of (2.15), we obtain for the mass—operator n (cf./ass
" ~ of~ph ~ec
mil (co) = mle'a (a)) + mie'g ((D) (2.16)
with the electron-phonon part given by
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The elastic or Hartree-Fock-Bogolubov part of the Coulomb mass-
operator, not included into (2.16) and (2.18), can be written
as (c.f. its definitien in (2.8))

~HF Ui - T Bwnr 1. ~ag L
mlz =——2-—~8iz fs-—‘-—-g—‘ f d.wth—é‘——fa {——;-Im(}n ((1.) +l€)lfs 512 . (2_ ]9)
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The equations (2.13), (2.16)=(2.19) form a set of self-consis-
tent equations for the determination of the random GF and mass-
operator. The calculation of the phonon GF entering the elect-
ron-phonon part of the mass operator is discussed in the fol-
lowing section.

2.3. The Renormalized Phonon GF

The general scheme.of calculations is the same as for the
electron GF. The phonon GF is defined as

B B
i i

We differentiate it twice over the time t and then twice over
the time t’. The zeroth order GF defined as

D‘f(um’):«u“i ®u} )5 =-10¢-t)<lu] Ou’ 6N _>. (2.20)
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l?;’[Mioo Bm5ay -0 ]Dnj (@) =81j ‘o‘aB (2.21)
enables us to write down the Dyson equation

aB oaf oay v, B

Dij (w) =D i () + 2 %, Dlm (w) Hmn (m)Dnj {w) (2.22)
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with the phonon mass-operator (polarization operator) Il given
by '
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The method of calculation Il we use here is the same as for m.
Neglecting the vertex corrections, we obtain
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Note, the phonon spectrum in the superconducting state is ad- : Here F}CPA means the CPA averaged GF defined in eq. (3.4). In
ditionally renormalized as compared to the normal state /27,32 88/ order to obtain the lowest order estimation to <Hils  we rep-
lace the GFs entering the definition of M! by their aVeraged
values, whlle the remaining random single site parameters a; =

=1, , qO »e.. €tc., or their products average in the follow-
ing manner;: <

3. CONFIGURATIONAL AVERAGING

roms— . 1 ERO tp s

In this section we discuss different attempts at averaging. ;J { 2 o
Our main task is to obtain the averaged system of equations <a® { > = Xah +Ya P S £
describing the superconducting alloy. For a given, fixed con-
figuration of atoms in a lattice these are given by the set of A <a-iaj> = (3.6)

equations (2.13), (2.16)-(2.19). ’ioughly speaking we need the b

2
<ai><a;> ={(Xa, +Yag), if if& J.
conflguratlonally averaged GF <:;.(w)> Qo) and total mags-opera- LR A B

R B,

tor <m (w)> =1 (m),where The above scheme of averaging is rather crude but workable. It
N . R R . gives some insight into the problem, and moreover, enables us
Mt —cmt (@)> = 'MHF + Meﬁ-ph @ + M (). (3.1) to de.ar%ve t‘:he nonlinearized Ellashberg equations of supercon-
ductivity in alloys. In some sense this scheme resembles the so-~
called Anderson limit of constant order parameter studied in

PRSI

For the later convenience we rewrite equation (2.13) as the CPA in papers’14:20/,
. Fourier transforming the averaged equation (3.5) and expres-
8p ~(e 5 + t r--)!t @® w—B . 3.2 ) = . .
%((‘"0 g ¢ i 273 o ¢ ))G")zl (@) @-2) sing the averaged mass-operator M '(») in terms of the Pauli
In this paper we are not interested in the dynamir'al effect of matrices ;i in a standard way/4-8:.12/
the electron—electro1 interaction and neglect the mass—opera-— - “ i
tor mc ( ) 48,12/ Thus, the electron correlations are treated M (@) =11~Z@)org+ x@)rg + $lw)r (3.7)
in the' artree—Fock approximation.
We start the discussion of averaging with the simplest pos- we arrive to equations“e/

sibility where only the random energy levels ¢; are described
in the CPA and other random parameters U, 'I‘ij are averaged

to the lowest order of concentrationms x. [1-Z ()] w u—widw Ko )Re— “’-Zz—(-—-)SIgnw . (3.8)
()
: ; A@)Z K Re ——=2(® )
3.1. The Simplest Method of Averaging {(w) (cu)~ f do Ko )Re ——x e signew -
Vo TA%w)
In the following we assume the hopping integrals tj; to be we Bw’ A ) (3.9)
nonrandom, periodic quantities, or replace the actual parame- ~ Ve { dw “th—— Re e
ters by an average, i.e., Vo 206 °)
- /127
bij + by =% t“}A +2xytAB+ yzl‘.ij . (3.3 where Alw)=¢(w)/Z(w) and
’Ihe average, ozf the alloy Green function § =80, 8OM QG where V.= NG, )<U >/ (1-N( )< U;> n L) (3.10)
~ JIHF , fpefph ang (ggj is defined by e i we
s or 5y -, ~ y -—t,..g; ) ég (@) =5, R 3.4 N (e, ) is the density of states of an alloy at the Fermi energy
4 01 bosrt 8 ] ue ¢; » and the kernelX(w’w) 1is given by
is assumfad to be - \ thE2 +cth-%—z-
s 2 » 2. Kw'w) = [ dza“(2)F(z) —
G-3% + 3% <Ntsq. (3.5) oo G- 7w tic

CPA CPA
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Here a2(w)F() is the electron-phonon spectral (O0r Eliashberg)
function

2
o @)F @)= | d ! -;ﬂz;n EDI* 1= FmDg.g 1)1+
F F
(3.11)
e | gh @40 - L mDg_ LS r
SF Vp k

All the information about the system needed td calculate T, and
A(w) 1s contained in this function.

Ig *,)! =~——3=————- E [e (vk—v ne
A
2 Q1 Qg a a a a a.qR
k» ) ndingie ] - - .
ig( D = Aa E[ekpq,h(vk Vorq * Viep Vqﬂ 3.12)

2 2 2 2 2
Q= xdy+yays Qo=x'al+ 2va,ap+ vo0 :

-1 - i a afk
" =N E i exp [ ik(R; ~R j;)] N vk=a_....kd .

Here a denotes the distance between nearest neighbours in a cu-
bic lattice, ek A and Dk Alw) denote, respectively, the phonon

polarization vector and the averaged GF of a phonon branch AR/

The- phonon GF DkA&u) itself is a solution of the equation
{shorthand notation is used)
D=D%+ DI D (3.13)

where D° as defined in £2.21) is calculated in the CPA, but
the phonon mass-operator I (w) giving the renormalization of

the phonon spectrum in an alloy is calculated here in a similar
\

/277

way as M (c.f. ). In general, it is important to use the

fully renormalized phonon GF, for the anomalous phomon contri-
bution_to the high T  comes mainly from the phonon linewidth
(~ hn[](w)) 732/ The renormalization can remarkably change the
spectrum of the superconductor giving rise to a new localized
phonon mode /387,

10
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3.2, General Scheme of Averaging

All the quantitjes of the theory developed in Sec.2 sulh
as mass-operators W%, (0) , Hyw) , GFs, etc. depend on the
configurations of the whole alloy. The most important, however,

is the dependence on the occupancy of the so-called terminal

points i,f. The rest of the atoms can be replaced by an effec-

tive medium. It means that we replace the functions MJ(w) ,
?é@u), etc., by their conditionally averaged counterparts

{l

~ . ~ j N
M?Y(a))=<mle' o >iﬂ H G& = Qig(cu) s (3.]4)

Here <."u.>:z means the configurational conditional averaging
over all lattice sites {jl different from i1 and £, the conditi-
on being the fixed types of atoms at site i and f. Evaluation
of various conditional averaged Mj , MiAgB . requires in
turn the knowledge of conditionally averaged electron and phonon
GFs. The best way to calculate them is to use the off-diagonal
CPA developed in/8%/ for electrons and its extension to pho-
nons’ %/ The resulting set of equations is difficult to solve
numerically, and therefore, we shall not discuss it further.

To make the problem tractable we resort in the next subsec-
tion to additional approximation leading to the single-site
description.

3.3. The Random Contact Model

In the contact model the electron scattering processes, cau-
sed by ‘the electron-electron and electron-phonon interactions,
are taken into account only if the two electrons are initially
both at the same site i and finally both at the other site
j/84-28/ 1 our tight-binding approach it means that we neglect
all off-diagonal (in site indices) matrix elements of the elect-

ron and phonon GFs and of the mass-operator. Thus, we obtain

:mu @)=¢;7 _%L ?dwzt Boy 7 {--.-1 Q (w +le)}r -
Baey Bwg
cth t+ th
-1y frda,1da,2___:_§: = = T, (=i @+ i)+ DY (0 #1003, 15)

w - (1)1 (1.)2

Lt ma
m2+k)h3Tmi .

~ e
xr3{—%4m9mm(

Note, that we have incorporated the random energy levels
into the definition of the mass—operator matrix. The sum over m
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is limited here to nearest neighbouring sites to 1 (c¢c.f. the
definition of T{, ). Denoting ‘the distance between neighbour-—
ing sites as previously by a=|§rﬁ"‘Ri‘ and a=|R}~R{|, we can
rewrite equation (3.15) as -

~ P B
o A Do 1. A RS
MA(Q))= EAT3- T—L dwzth-é—-fai-——-ﬂv-lnl(} AU (C()z + 16)}73 - )
| c:h%oilnhﬁ;ﬁ. 18,2 0
- ﬁ‘ffdmldw? - aE 2" 4{2qulmDi(w 1+i()><
77~ —oo R O Bl a (3.16)

" -y - 2 .
x73ImG y (@t 16)7g + (4 1+ 0y D} (0 1+ 1) + InDY (@, + ie))x

xr3ImGg(w2+ie);al

with a similar formula for Mg@n) Here t denotes the value of
the hopping integral for neighbouring atoms in a cubic lattice
(cf. eq. (3.3)). According to the discussion in Sec.3.2 and in
order to have true single-site description of M, we have condi-
tionally averaged equation (3.15) with a condition i=A. G, (Dy)
means conditionally averaged electron (phonon) GFs. The third
term in (3.16) resulting from the electron-phonon interaction
has exactly the same form as an expression for o, , in 7?6/,

The above defined single-site matrices M{(w) , i=A,B are
the only random quantities in our model and serve as input pa-
rameters in the matrix CPA equations. The output of these equa-
tions are: i) the coherent potential matrix X () replacing
M?(w) in an effective medium, and ii) the Green  function

G () describing the properties of the averaged system. As usual
the existence of the nonzero solution for the off-diagonal in

spin indices (i.e., anomalous) part of the i(w) matrix deter-
mines the superconducting transition temperature.

The model as stated above is appropriate for the discussion
of possible coexistence between superconductivity and magnetism,
but this is outside the scope of the present paper. Therefore,
in the following we omit the spin index o .

3.4. CPA Equations for Superconductivity in the Contact Model

Here we briefly discuss the calculations of the averaged
electron GF 6(@) and G;(w), i=A,B. The avé;aged GF G(w) is rela-

ted to the configuration dependent one § by/41/

12 )

e A W T W TR s e

Tem O e . T W TTE

A

G@) =G+ G)T @0 ) (3.17)

where the scattering operator J refers to the whole system.
In the single-site CPA the condition <J>=0 determining the
averaged GF is replaced by the following/41/

~ A A A lil# i
<T;>=xT, +yTp=0; Ty=<J >, (3.18)
with the single~site T-matrix
To¥, 4 1, 0,8 (3.19)
Here
i [rme- e M.fz(w),— 5, @)
e @) B0, <My o)t Be) | (3.20)
Gi@)  Gjp)
& ()= 3.21)
Gy (@*), =Gy (w).
and
RN B euaiiute) '
o= rep=2@No + e + 2, C0)-Z) (@) 2], %)
5'12(@)=K11— s 3 o) f3.22)
k lo-e, =2y @Ikot+ e+ 2y Coll-Zy, @2 ©)

A very important relation, connecting the anomalous and normal
part of (3.21), follows from the last two equations, namely

G ()= G11(@)=Gyy(w)
12 20 +3; (0)—- 211 (@)

3,0). (3.23)

To close the set of equations (3.15), (3.17)-(3.23) we need the
expression for the single-site GF, G; (w). In the CPA it is gi-
ven by 741/,
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G, @) =60 + Gl)T, @)G@)=1-G@,- $YT!E, (-a.B). (3.24)

The resulting set can be solved numerically and the transition
temperature T, determined. At this temperature there appear
the nonzero solution for the anomalous part of these equations.
Therefore we expect at T-T, »249(@)*0 and M (w)+ 0, thus

. . . . ; 12077 .
making possible the linearization and the simplification of the
problem., It is a subject of the next section.

3.5. Linearized Equations and the Transition Temperature

The simplest way to obtain the linearized, with respect to
Zy5@) and Mllz(w), equations of the previous sections is to
write every matrix F as a sum of normal F" (diagonal) and
anomalous (i.e., purely off-diagonal, superconducting) F® parts
and use the matrix identity (A-B)"ia~1ia'l B(A-B)~! repeated-
ly. Up to linear order in 3, the diagonal part of (3.i0) gi-
ves the so-called Soven equation’/42/

’

%, @) =xMA @)+ yMp ©) =My =3 ;@) ;@)ME )-3, @)

_ N (3.25)
Qo)=L+ 3 1
11
N k w—-qk—zn(w)
while the off-diagonal part can be written as
- . G, () . .
Gy ()= <Gy @) e 4 25 (@)= My G | (). (3.26)
Gy @)Gy(-w)
. e e i ~1 i -1
Noting the definition Gy )= Gy, (w)—,Mlll(“’)+ 2“(@)) and

the identity

611(‘3) )"611@0)

Gy 1 @)y (~0)

. . i
G;l (w)—Glil("w)"Gll(&))[ + 211((,_))-:211 (—w)+

(3.27)
i i i
+Mpy o) =M @)Gy o)
and defining the auxiliary function §'12(“’) (cf./n'm'%/),
i @)= 3. 20
12l@0) = 25 (@) (3.28)

20 + 211(—(0)-211(@):
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we obtain from (3.26) and (3.23) the CPA equation for ilz(“’)

i i
i ~ 20-M, (- WM 4 (@) i
<G11@) 245 @) o Home Gy o> =

(3.29)
<G (0IM,@)G 1, CoP .

~

Note, equation (3.28) has the structure of the so-called Abri-
kosov-Gorkov relation/10:21,28/ It expresses the additional
changes of the 2,,(w) due to the disorder in the normal part
of the problem., It is easy to verify that

G (©)=Cy 4(0)=0y  @N2o + M} (@)-M. C0)IG! (o) =
“E 12(&))+

(3.30)

Gixz(“’) =

+ G} @M, (@)Gy ().

Equation (3.15) or (3.16) and (3.30) determine the input para-
meters, M;?(w). for (3.29). It is worth while to note the pre-
sence of the terms (M{I(nm)-Mill(w)) in (3.29) and (3.30).They
express some additional influence of the electron-phonon disor-
der (only the electron-phonon part of M; 1is energy dependent
in our treatment) on the superconducting behaviour of an alloy.
However, we expect this effect to be weak and 'neglect it
(cf./25.26/ )‘

Combining equations (3.27), (3.30) and (3.15) we obtain from
(3.29) the equation

o b “+ie
212'(0.)) =_f dw’Ke“ (a;',m)RG{—-—E%....L_:}—:

-~

3 i (3.31)
00 ‘ +1
~NGe Wy [ o mE2Re 12122710

0

w

f
replacing the Eliashberg equation for the order parameter A(w)
(cf. eq. (3.9)). The kernel K,y is defined as usually/12/

Bz Bw’

+ th-,
= z_. (3.32)

2+ ~w -le

:cth

Borr (@' )= [ dz a®(2)F (2)

where the Eliashberg function
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SRE—— -y & 2 .
az@ﬂFQu)=2Etzzé-ix%iNA&fﬂ-u%ImDZ@)+leD+
a 7

2 1 . 1 : .
+ g ap) Ny (NGl M= D+ i SImDw+ i)+ (3,33)

+ P2 () (= = ImDE w0+ 1) 1/N (e

2
N(‘T)Ueff“<UiNi(£f)/N(€f)> , (3.34)

N; (¢;) and N(,) denote, respectively, the partially and to-
tally averaged electron densities of states at the Fermi level
i >
Nije,)=- -%-Im(}n(ef), i=A,B
(3.35)
N )= 2ImGy (e )=xNy e )+ Nyleg )

Following the work of McMillan’®/, we can write down the formula
for T, ‘
1.04(1+ A
Tc=-$i—exp{— (+ Xerr ) 1, (3.36)
145 Aorr i ger(1+0.624 o)
wheré the electron-phonon coupling constant
=2 %, ~a 2 i 2
Aoge = :;‘:’ t _;5{XNA(€f)DA[XqANA(ff)+ —Z-'Y(QA+QB) Nple )T+
- . . o (3.37)

+ YNg () DEIYEN (e ) + 2-x(a 0 0 ¥ N, /NG, )

and the Coulomb pseudopotential
. W
Bag = NE Uy /U4NGE Uy In ). (3.38)

both depend on the alloy parameters, particularly on the concen-
tration x, thus giving rise to the concentration dependence of
the transition temperature T,. The calculation of T, versus x for
various transition metal alloys will be a subject of the next
paper.
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In the above formulae ¢ is of the order of the Debye tempe-
ratire of an alloy, W is the alloy band width/2%/and ﬁ? is

~

da.
DY =- B .[do M., izA,B.
s

1
w -

, (3.39)

3

To obtain T, for various alloys one has to solve the CPA equa~
tion (3.25) then calculate Nj(c,) sN (¢, ). The phonon GFs D (»)
and D{  are calculated from the equation similar to (3.25)/27ﬁ3/

A
4. DISCUSSION AND CONCLUSIONS

We have developed the theory for strong coupling superconduc-
tivity in disordered transition metal alloys. The use of the
alloy version of the BLF model ensures the proper treatment of
an atomic character of d-electrons responsible for superconduc-
tivity in such systems. We were able to obtain the closed set
of equations determining the electron and phonon GFs and mass
operator. These equations give the general microscopic descrip-
tion of an alloy in the spirit of the Migdal-Eliashberg approach.
Written in a Wannier space they refer to the fixed configurati-
on of atoms in an alloy. Therefore, the averaging is needed.
This was performed in two different ways. First, in section
3.1, we used very simple approximation for the averaged GFs.

As it was mentioned previously this approximation gives the
workable scheme for the derivation of the usual nonlinear Eliash-
berg equations written in terms of alloy microscopic parameters,
The second approach is fully based on the CPA. We take into ac-~
count the randomness not only through the parameters of the Ha~
miltonian but also, in a self-consistent way through the confi-
guration dependence of the single site electron mass-operator,
Although similar to/25:27/ oupr paper contains further develop-
ments of these theories for strong-coupling superconductivity
in disordered alloys. Contrary to’/25/ye take into account the
effect of disorder on the phonon GF, and we do not replace, as
already mentioned, the single-site GFs G, , Gy in mass operator
by the averaged GF G. In paper/28/ the electron-phonon interaction
Hamiltonian is not expressed through the microscopic parameters
like qi »tij, etc. The expression for the self-energy in/26/is
limited to the contact model only, and in order to average the
GF over configuration this author resorts to some phenomenolo-
gical ansatz for the anomalous self-energy. Contrary to that

we derived the mass-operator in the general way by means of the
"irreducible" GFs, which permit the derivation of the exact ex-
pression for M by the separation of the Hartree-Fock-Bogolubov
mean-field terms, It must be emphasized that for the random con-
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tact model limit we derived and exploited the exact general re-

latioship between normal and anomalous' parts of the electron

GF, performing the configurational averaging in the spirit of
~the CPA without any additional ansatz.

The present theory in its general, as well as contact model

version,will be used in the hear future for the discussion of

the concentration dependence of T, in some transition metal
alloys.
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