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l. lNTRODUCTION 

Hodern mj crosco!Jic t.heory of superconductivi.ty has been gi­
ven a rigorous mathematical formulation in the classical 'Vmrks 
of N.N.Bogolubov 11· 3/ and others 14"81 . It was shown that the equa­
tions for nuperconductivity can be derived from the fundamental 
electron-ion and electron-electron interactions. The obtained 
set of equations is known as the Eliashberg equations. It enab·· 
les us to investigate the electronic and lattice properties of 
the metal in both the normal and superconducting states. More··· 
over. the Eliashberg equations are appropriate for the descrip­
tion of the strong coupling superconductors, contrary to the 
so--called Gorkov equations valid in the weak coupling regime 
and describing the electron subsystem in the superconducting 
state only. 

The extensions of the theory to the disordered superconduc­
tors have been given for the "dirty" Ill/ and dilute alloys 1 10/ li­
mits. Since then still increasing interest in the theoretical 
and experimental study of the disordered supe.rconductors 111/ is 
observed. A lot of effort has been devoted to the transition 
metal compounds and f!ubstitutionally disordered alloys/12,18/. 

The Gorkov weak coupling approach and the coherent potential 
approximation (CPA), to treat disorder, have been used in anum­
ber of papers1 14· 211 to describe concentrated superconducting al­
loys. They used the follm~ing model Hamiltonian with the Cooper 
pair sources 6.1 

H - '<'' + '<.'(A + + A* ) = 2. a1 n1u 1- "" t 1j a 1uaja-""' '-'t a 1ta 1 + '-' 1 a!+a lt • 
l a lja ! ~ 

( l. I) 

This group of papers discussf~d the influence of the disorder 
on the electron subsystem, The phonon-mediated parameters of 
the effective electron-electron interaction in alloys entering 
the definition of h 1 in (I . J) have been recently derived 1221 

on the basis of the random contact model. On the other hand in 
paper 1231 there has been studied the effect of the force cons­
tant disorder on the electron-phonon spectral function, while 
in /24/ the inf luencf~ of atomic ordering in alloys on their T c 
by means of the integral equation for the vertex part was in­
vestigated. 

The Eliashberg-type theories have also been proposed for su­
pcrconducting alloys 125•261. K~_:·J<-~2-:~!lnd. Bennellk'mn/25/have used 
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the Frohlich-type Hamiltonian for the electron-phonon interac­
tion and neglected the effect o~·disorder on the phonon Green 
function (GF). Lustfeld 1261 has obtained the expression for '1' 0 

on the basis of the phenomenological ansatz for. aver~ed anoma­
lous self-energy (c.f. the equation (16) for ;ou in 61 ). 

The purpose of the present paper is to develop the microsco­
pic selfconsistent theory for strong-coupling superconductivity 
in disordered transition metal alloys. The alloy version/27/ of 
the Barisic, Labbe and Friedel (BLF) tight-binding model128·29/ 
is used for the electron-ion interaction. As has been shown 
in130' 321 the BLF phonon induced d-d coupling is the dominant 
mechanism for superconductivity in such systems. We derive the 
equations for superconductivity in the site reP,resentation by 
means of the irreducible Green function method 133

"
351 in section 

2. We employ there the ideas developed previously in connection 
with the derivation of Eliashberg-type equations for pure tran­
sition metals in the Wannier representatior/ 35~ Various attempts 
at configurational averaging are discussed in section 3, where 
the formula for T0 is also obtained. Section 4 contains the 
discussion and conclusions. 

2. GENERA4 THEORY 

When studying the superconductivity in transition metal al­
loys, one must take care of at least three facts of major impor­
tance: 

i) The d -electrons responsible for superconductivity in 
these systems have an atomic character (section 2.1). 

ii) These materials usually belong to the class of strong­
coupling superconductors (sections 2.2 and 2.3). 

i~i) They are very often disordered so the obtaining of mean­
ingful results requires the proper averaging (section 3). 

2.1. The Hamiltonian 

In the so-called modified tight-binding method we write the 
Hamiltonian for a given configuration of atoms in an alloy, 
as/27/ 

}{ = ~ E 1 n. + _!_,~ U. n
1 

n. + ~'-t .. a+
1 

a. + H . +H
1

• 
iu 1a 2 ia 1 u 1-u iju lJ u JU e-1 (2. I) 

Here n1ucaiuaia, and aia<a 1u) creates (annihilates) the d­
electron in Wannier state I i> with spin a. The tij are the hopping 
matrix elements, and the prime indicates that the sum over j is 
limited to nearest neighbours of i, Ei and Ui are the random 
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"energy levels" and intrasite Coulomb matrix elements, respec­
tively. He-i stands for the electron-ion interaction Hamiltoni­
an. This part of }{ was derived previously 1271 and is a direct 
generalization of the BLF 128~odel, 

He-1 = ~ I. 'I~ (uf -uj)a{aaja 
ija a 

with 

Ta 
ij 

qb + qd 
-2--tij 

a a 
~J-·Rt 

!RJ -·Ri I 

(2 .2) 

(2,3) 

Here u~ is the a -th component of the displacement of an ion 
at i -th site, q~ is the Slater coefficient describing an ex­
ponential, exp (-q~ r), decrease of the d -electron wave functior/2~( 
It take_p on value q~(q~) when atom at site i is of an A(B) -
type. Rj -Ri =Rjt is the relative position vector of two ions 
at i and j. The last part of the Hamiltonian represents the ion 
subsystem and in the harmonic approximation, we use here, is 
given by 

2 
Pt 1 a af3 f3 

H 1 "' l: -- +- !. !. u1 ~IJ u J • 
i 2M I 2 ij af3 

(2.4) 

M! denotes the mass of an ion ~t i -th site. It is equal to MA 
or M B" The dynamical matrix cll~j is in general a random quanti­
ty too. 

2.2. ~lectron Green Function and Mass-Operato~ 

In disordered systems, where the distance between "imlurities" 
is comparable to the interatomic distance of the host110 , the 
coherence length (or the Cooper pair size) is greatly reduced. 
The proper description of superconductivity in such circumstan­
ces requires the proper description of the Cooper pairs. The 
pairing in general takes place between time-reversal states 
but these ca!}not be represented as I k -1- >and 1-k t > in disordered 
alloys, for k is not a good quantum number in these systems. 
Therefore, we have to start from the states in the site repre­
sentation, describe the pairing (i.e., obtain an expression for 
the anomalous electron GF and mass-operator) and only then ave­
rage over voJ:>ious oonfigw.'ationa in order to .obtain quantities 
comparable· to the experimental ones. 

To solve for the mass-operator, we use the equation of mo­
tion method for the two-time thermodynamic Green functions 13~,37~ 
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The Green function §~ (w) is a matrix in Nambu representation 
and is defined for a fixed configuration of ions in space by 

~~~ (w) = 
[ 

<<atal aja »w 

«ai-alat »w (2. 5 )" 

«alai aj-a»w] 

«a 't-al aj-a»w 

+ 
= «•ha lrfrju »w, 

where r/11~ = (aia. a i-a> is the so-called Nambu field spinor 151 • 
Differentiation of the '§~ (t-t') over the first time variable- t 
gives the following equat1on for GF (2.5): 

"" ~a ,.. ,.. ,., {3 ""' 
; Aim ~mj (w) =I IJ + U! r3 Bij + ~ Tim Cim,j (2. 6) 

where the sign "A, denotes matrices in spin indices, r 
1 

, i= 1,2,3 
are the Pauli matrices and 

Aim = w; 0 - G e i 8 !m + tim ) ; 3 ; ~ ij = 8 !j; 0 

[ «a n I a:>> «a,. n ,_.,I a J~ >> ~ J !a 1-a JU w 
B .. = 

IJ 

«a.+ n. l'a ~ » «at n 1 I a . » 
1-Q" 10" JO" w -a (] J-a w 

[ 

f3 + 
<<u im a rna I a ja >> w 

«u~~ a: -a I a! a»(,) 

<<u 1f3 a I a. » ] m rna J-<'1' w 

f3 + « u .a I aJ ..... >> m1 rn-a -,, w 

.... 
qrn,t 

ua =Ua __ ua 
!m i m 

To proceed we define the "irreducible" operators as in /33-35/ 

!r c· I + I + « a. n. )a. » =«a
1 

n
1 

aj >> -;a 1-a JU w a -a a w 

·. I + + I + -<ni-a><<aia aja »w + <aiaai-a ><<ai-u aja >>w 
(2. 7) 

giving rise to new equations of the form (2.6) with Birn repla­
ced by ir (B im) and A lm replaced by 
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" 1 
Aim 

,., 
Aim-'Ui 

< n i-a> 

+ + 
-< ai-aa ia> 

-<aiaai-a > 

-<n > !a 

0im (2. 8) 

It means that we have extracted from the original GF the Hart­
r~e-Fo~k-Bogolubov131 mean field given here by the difference 
(A ~m -·A 1m). To,.., proceed w_.e write down the equations of motion 
for the GF 6

1
r (B lj ) and C im,j differentiating them over the 

second time variable t' (see 129•33-351 ) • Then again we go over 
to "irreducible" GFs but with respect to the rhs operators 
(c,f. (2.7)). The obtained set of ·equations for various GFs 
can be solved exactly. To this end we define the zeroth order 
GF as 

,., 
"1 .- Oa " 

I Aim ~ mj = I ij 
m 

and obtain the following exact equation: 

"a ~Oa "oa "a ~Oa ~ ij (w) = B !j (w) + I § in (w) K nm (w) b mj (ill), 
nm • 

where the "scattering" operator i{a is given by 

ir -a )I -a + ir « (pima P• a ) » ma til na w 
!r( -a ( a !r « p a )I P11 a ) » 

!m ma tn n-a w 
.... A(] "<' 

K (w) =~'a 
if ron 

ir ( a + 'I -a-+ )ir ir (p a + )I a ) ir << Pimam-<7' Pfn ana >> w << 1m am::-a Pfn a n-o >> w 

P ~ = U i n ia 8 ij + I T~ (u~ - u f )-
a 

(2. 9) 

(2. 10) 

(2. II) 

'3 

(2. 12) 

Equation (2. 10) can be written in the form of the Dyson equa­
tion /33,34/ 

/'o ,.. ,.. "' ,.. 

~ ~ (w) = § ~7 (ru) + J §~~(illdli1f' (w) ~ ~ (w) (2. 13) 

if one introduces the mass-operator m~e being the "proper 
II /33 34/ f h • I "(] ( ) , part ' o t e scatter1ng ope~ator K

1
f w. Denot1ng the 

random matrices in site-space by ~ ' ~ 0 ' m one can write the 
formal solution of (2.13) as 

~ =·I <~0 .) -1_ m ~-1 . (2 .14) 
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To find an expression for the mass operator m we proceed in 
the same way ~s previously 129•351, and express the GFs entering 
the operator Ka throu~h the correlation functions by means of 
the spectral theorem1 6 • 37~ These correlation functions are de­
coupled in the following way: 

<ufj_ (t)a~a·(t)u~n ana> .. < u~e (t)u~ > < a:a (t)a nu >, 

+ + ) <n~ (t)a._(t)n
1 

a
1 

>"' <nn (t)n
1 

><a._(t a. > 
t-a w -a u L-a -a w lCJ 

(2. 1·5) 

by neglecting the vertex corrections according to the Migdal­
Eliashberg approach 14

•11 •
291

• Using again the spectral th~rem 
1351 to the rhs of (2.15), we obtain for the mass-operator m (cf. ) 

"a "e£-ph "c 
mif (w) = m tf,a (w) + mif,u (w) (2.16) 

with the electron-phonon part given by 

{3w 1 {3w2 
f.- 00 cth"2 + th --· a 1 {3 a 

_;e ph( ) 1 {f _,_, "·· 2 l: T ( --Hm«u
1 

lu n» 
1 

x '.111 w =- uw 1 uw2 tm 
17 

m nt w
1
+£ 

tf.a 2 -oo w-·w 1-w2 rnn (2.17) 

"' 1 ,.a ,.. ""d 
X T (- -Hm § (w2 +it) r3 T d 3 rr mn nt 

and· ·energy dependent Coulomb part 

i~ (w) = UIU£ fJ"" cthf3wl+th f3w2 
2.rr2 -oc dw1dw2 

2 
2. 

w-w 1 -w2 

x(r ~t (w 1) g n (w 2) -riJ;£ (w 1) g s (w2)) 

with 

a a ) rtf (w = Im 

«nl In~ » -a L-a w 0 

X 

0 «nla Info » w 

(2. 18) 

«a ja~_» 
Ia w w 

0 0 <<a!alae-a» w 
n 

g if (w) = Im 
0 

; g1f(w)~Im 
«a+ la6 » I I «a+ !at» 

i-a t-a W !-a LfJI W 
0 

6 
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The elastic or Hartree-Fock-Bogolubov part of the Coulomb mass­
operator, not included into (2.16) and (2.18), can be written 
as (c.f. its definitivn in (2.8)) 

;, HF Ut ,.. Ut "" f3w" 1 ,.. -a " 
Jll.n =-8 n r -·-· f dwth-r l--ImO. (w +idlr 8 n 

lL 2 it 3 2 2 3 . 1T h 3 It ......, 
(2. 19) 

The equations (2.13), (2.16)-(2.19) form a set of self-consis­
tent equations for the determination of the random GF and mass­
operator. The calcula~ion of the phonon GF entering the elect­
ron-phonon part of the mass operator is discussed in the fol­
lowing section. 

2.3. The Renorrnalized Phonon GF 

The general scheme.of calculations is the same as for the 
electron GF. The phonon GF is defined as 

D~~ (t-·t') = «u~ (t)u~ (t')» = -W(t-t')<[u7 (t)u~(t')] >. (2. 20) 

We differentiate it twice over the time t and then twice over 
the time t'. The zeroth order GF _defined as 

~[M 1 w2 8 1n8ay -tll:]D~rf3(w) =811 8a{3 

enables us to write down the Dyson equation 

Daf3(w) = DOa{3(w) + l: I Doay(w) Dyy'(w)Dy'/3 (w) 
lj lj mn yy' !m mn nj 

(2. 21) 

(2. 22) 

with the phonon mass-operator (polarization operator) n given 
by 

' 1 I I n yy , (w) "' -2 2 n •6, 
y + + pp 

I (8 -8 .,.)T ol«a a. ja, ,a.,,» I x 
mm · , nL n t 

, mn mt· nL nu LU n a L a w 
(}'(}' (2. 23) 

y' 
X T -~, (8 , , 

n L n m -Bf'm'). 

The method. of calculation ll we use here is the same as for m. 
Neglecting the vertex corrections, we obtain 

yy' 1 n ,(w) = - Jf dwl dtv2 
rnm 2s72 ._, 

{3w 1 thf!.w2 
th,-- -r l l 

w-clll+w2 nf n'f' 
I. X 
a 

X I (8 mn - llmf ) rr:f [ Iro« aea I a: a» (t)l Im «a~ 'a I a;(}'» (t)2 

- Irn« a+ I a+,(}' » Irn« a.. , I an » ] T r. ,(8 , , -B 6, , ) I . 
n--o-n Wt ta LU w 2 nL nm tm 

(2. 24) 
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Note, the phonon spectrum in the superconducting state is ad­
ditionallY renormalized as compared to the normal state /27,3~. 38{ 

3. CONFIGURATIONAL AVERAGING 

In this section we diseuss different attempto at averaging. 
Our main task is to obtain the averaged system of equations 
describing the superconducting alloy. For a given, fixed con­
figuration of atoms in a lattice these are given by the set of 
equation~ (2.13), (2.16)-(2. 19). Roughly speaking we need the 

'"' r. 

configurationally averaged GF <gj(w}>='O(w) and total mass-opera-
" ' ~ t tor < m (w) > "' M ·(w), where 

~-t A t :.'HF ~et- h :. c 
M = < m (w) > "' M + M P (w) + M (w) • (3. I) 

For the later convenience we rewrite equation (2.13) as 

... " A ... ,.... t ru a 1 (wr 0 0 je - (E i Bie + tie)r3 -JIIi£,a (w}) tl£j (w) = oij • (3. 2) 

In this paper we are not interested in the dynamical effect of 
the electron-electron interaction and neglect the mass-opera­
tor m~p (cd)114•6•121 • Thus, the electron correlations are treated 
in the1llartree-Fock approximation. 

We start the discussion of averaging with the simplest pos­
sibility where only the random energy levels ei are described. 
in the CPA and other random parameters U1 , Tij are averaged 
to the lowest order ,o,f concentrations x. 

3. I. The Simplest Method Qf_ Aver11ging 

In the following we assume the hopping integrals tij to be 
nonrandom, periodic quantities, or replace the actual parame­
ters by an average, i.e., 

t 1J ..... t .. "'x2t~A + 2xytAB+ y2t BB 
IJ Ij ij ij 

(3.3) 

,., ,., 0 ,..0 "'1 ....... 
1;!le averag~ of the al:J.py Green function·~ = § + ).':l m ~. where 
m 1 = ~F + m e~ph and ).':l ?j is defined by 

1 (w;oai£ -ei ;3ate- tif;a) §~J (ru) =oii, ' (3.4) 

is assumed to be 
~· 

a = o.~PA + a~PA < ,n 1 >a . (3. 5) 

8 
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Here G8PA means the CPA averaged GF defined in ~q. (3.4). In 
order to obtain the lowest order estimation to dJll> ''"e rep­
lace the GFs entering the definition of m 1 by their averaged 
values, while the remaining random single site parameters a 1 = 
~ Ui, q~ , ••• etc., or their products average in the follow­
~ng manner; ..;:~ 

r < 2 2 2 ·r . , 

{ 

a 1 >=XaA+YaB, 1 l=J 

<a 1aj> = (3.6) 

<ai>.<aj> =(XaA-'-YaB)
2
, ifi~ J. 

The above scheme of averaging is rather crude but workable. It 
gives some insight into the problem, and moreover, enables us 
to derive the nonlinearized Eliashberg equations of supercon­
ductivity in alloys. In some sense this scheme resembles the so­
called Anderson limit of constant order parameter studied in 
the CPA in papers/14.20/. 

Fourier transforming the averaged equation (3.5) and expres-

sing the averaged mass-operator iVf 1(w) in terms of the Pauli 

matrices ;i in a standard way /4-8,12/ 

i:;f (<d) = r 1- z (,v) l (I) T 0 + X (co) ;3 + r,6 (tv) T 1 (3. 7) 

. · I 12/ we arr~ve to equat~ons 

[ 1- Z (uJ)] u.J =- f dcv' K (c.J ',c,J ) Re ---'"-'---signed', 
-'X> '2 A 2( ') vw -u w 

(3. 8) 

A (c,) )Z (w )= f dw' K (<v ',<u ) Re --:::.:.:-~-S~-~) -~- signw '-
-oo I '~( ') \i w -Ll w 

(l)c a , 

- Vc { dca' th ~ Re A (w') 
0 2 I . '2 A2 ( ' ) vw -u w 

(3. 9) 

I /12/ 
where A(w) = r,6 (w )1 Z(tv) and 

( f 
V = .N(c )<U.>/(1-N((r)<U 1>ln--) (3.10) c f 1 w

0 

N (fr ) is the density of states of an alloy at the Fermi energy 
fr , and the kernelK(w',w) is given by 

{3w' f3z 
00 2 th -r + cth 2 

K (w '.w ) == { dz a (z) F (z) --------~- • 
w-z-w'+ic 
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Here a2(w)F(w) is the elect-ron-phonon spectral (6r Eliashberg) 
function 

2 lk d
2
q A ... -+ 2 1 - . 

a (w)F(w)= f __ ,{- 2-[lg 1(k,q)l 1---ImD~t ... A(w+lc)l+ 
s vk s vq A 17 ~· 

F F 

d2p A ... ... ... 2 1 - d 2k 
+ {-.I g2(k,q,p)l {- --ImDit-p-q,A(uHic)l]/ r --

s v 17 s vk 
F P F 

(3. II) 

All the information about the system needed tb calculate T0 and 
t:J. (w) is conta.ined in this function. 

>.. .,. .. 2 Q 9 a a a ]2 
1 g (k,q) 1 =- _..,___. 2. [ e ... .. , c v k- v ) . 

1 2M a2 a k-q, " q 
A 

- A .. -+ 2 Q1-Q2 a. a a a a ]2 
jg2(k,q,p)\ "'sM a2- ~ [ei?.p-q,A (vk-vp+q + vk-p -vq) . 

A 

2 2 . 
Q1= xqA + yqB' 

2 2 2 2 
Q2"'·X qA + 2XyqAqB+ y qB 

-1 -
( k = N ~ t 1i exp [ ik (R1 -R i)] 

lJ 

a ark 
Vk= JTd 

C3. u.n 

Here a denotes the distance between nearest neighbours in a cu­
bic lattice, ek,A and Dk,A.(w) denote, respectively, the phonon 
polarization vector and the averaged GF of a phonon branch A/27/, 
The-phonon GF Dk>,.(w) itself is a solution of the equation 
(shorthand notation is used) 

o=D0 + oono: (3. 13) 

where -I)o as defined in Q. 21) is calculated in the CPA, but 
the phonon mass-operator ll(w) giving the renormalization of 
the phonon spectrum in an alloy is calculated here in a similar 

..::... ( /27/ ) . . . 
way as M c. f. . In general, 1 t 1.s 1.mportant to use the 

fully renormalized phonon GF, for the anomalous phonon contri­
butio~~o the high T0 comes mainly from the phonon linewidth 
(- Im ll (w )/321 . The renormalization can remarkably change the 
spectrum of the superconductor giving rise to a new localized 
phonon mode/ 381. 
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3.2. General Scheme of Averagin~ 
All the quantities of the theory developed in Sec.2 su~h 

as mass-operators :»lfe, (uJ) , llif(w) , GFs, etc. depend on the 
c9nfigurations of the whole alloy. The most important, however, 
is the dependence on the occupancy of the so-called terminal 
points i,L The rest of the atoms can be replaced by an effec­
tive medium. It means that We replace the functions mrf(W) , 
§~E (w), etc., b); their conditionally averaged counterparts 

A a A {j} 
Mir(w)"' <:Ill ie, a >if ; 

A a A a bl 
0 if = < § if (w) >if (3.14) 

lj l h f. . 1 d. . 1 . Here < ...... >if means t e con 1gurat1.ona con 1t1ona averag1ng 
over all lattice sites lil different from i and E, the conditi­
on being the fixed types of atoms at site i and t Evaluation 

f . d' ' 1 d MAA MAB · • o var1.ous con 1.t1ona average 1~ , i£ ... requ1res 1n 
turn the knowledge of conditionally averaged electron and phonon 
GFs. The best way to calculate them is to use the off-diagonal 
CPA developed in/39/for electrons and its extension to pho­
nons140~ The resulting set of equations is difficult to solve 
numerically, and therefore, we shall not discuss it further, 

To make the problem tractable we resort in the next subsec­
tion to additional approximation leading to the single-site 
description. 

3.3. The Random Contact Model 

In the contact model the electron scattering processes, cau­
sed by'the electron-electron and electron-phonon interactions, 
are taken into account only if the two electrons are initially 
both at the same site i and finally both at the other site 
j 124- 261. In our tight-binding approach it means that we neglect 

all off-diagonal (in site indices) matrix elements of the elect­
ron and phonon GFs and of the mass-operator. Thus, we obtain 

A a· A Ui "" f3w2 A 1 A -a A 

:Ill ii (w) = e i r 3 - T -~ dw 2th-2-r3{-,-;Im § ii (w 2+it) l r 3-

f3w1 . f3w2 
1 "" cthy'+ th:r-- a 1 a a 

-- {{dw1d~--- L Timl--n.-lm(Dii (w 1+it-)+Dmm(w 1+k))l(3.15) 
2 -oo w -w 1 -r.u 2 rna 

~ 1 Aa A a 
x r3 !---Im§ (w 2 +it)!r3T . 

TT mm m1 

Note, that we have incorporated the random energy levels 
into the definition of the mass-operator matrix. The sum over m 
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is limited here to nearest neighbouring sites to i (c.f. the 
definition of T1C::U ) • Denoting the _<iistance between neighbour-­
ing sites as previously by a,.,!RnrR 1 ! and a=!Ra-R~\. we can 

· • ) a m 
rewr~te equat~on (3. 15 as -

Aa A UA oo {3w 2 A 1 A-a A 

MA(w)=EAr 3 - 2_~ dw2th 2 ·r3 !--;ImGA (w 2 +if)lr
3

-

{3(/Jl {3w2 
cth-+th--. 

2 2 
- _1_Jfdwldw2 w _,w 1- w 2 

2rr 2_"" 

-2 2 2 a if) x 
:£ -~!2xqAimDA(w1+ (3.16) a a2 

A Aa A 1 2 a. a 
x r3 lmG A (w 2+ ic)r3 + 4(qA+qB) y (ImD A (w 1+ ic) + lmDB (w

1 
+ it))x 

,.. "a ,... 
x r 3 Im G B ( w

2 
+ i c) r 

3 
I 

with a similar formula for M~(w). Here t denotes the value of 
the hopping integral for neighbouring atoms in a cubic lattice 
(cf. eq. (3.3)). According to the discussion in Sec.3.2 and in 
order to have true single-site description of M, we have condi­
tionally averaged equation (3.15) with a condition i=A. GA(DA) 
means conditionally averaged electron (phonon) GFs. The third 
term in (3.16) resulting from the electron-phonon interaction 
has exactly the same form as an expressionAfor a 1 A in 1261 . 

The above defined single-site mal:\r.i."Ces M?(w) , i = A.B are 
the only random quantities in our model and serve as input pa­

rameters in the matrix CPA equations. The outFut of these equa­
tions are: i) the coherent potential matrix l:a(w) replacing 
M~(w) in an effective medium, and ii) the Green function 

A I 

Ga vu)describing the properties of the averaged system. As usual 
the existence of the nonzero solution for the off-diagonal in 

spin indices (i.e., anomalous) part of the l(w) matrix deter­
mines the superconducting transition temperature. 

The model as stated above is appropriate for the discussion 
of possible coexistence between superconductivity and magnetism, 
but this is outside the scope of the present paper. Therefore, 
in the following we omit the spin index a . 

3.4. CPA Equations for Superconductivity in the Contact Model 

Here we briefly discuss the calculations of the averaged 
A A A 

electron GF Ci'(w) and Gi (w), i=A,B. The averaged GF G (w) is rela-
' 

ted to the configuration dependent one ~ by 1411 

" 12 

I 
L 
' 

~ 

,.. ,.. "" ,.. ,.., 

~<w) =a(w)+ a'cw)1(w)G(w) (3. 17) 
A 

.where the scattering operator :T referAs to the whole system. 
In the single-site CPA the cotidition <:T>= 0 determining the 
averaged GF is replaced by the following 141 / 

A A A A ljl,.& i 
<T 1 >=xTA+YTs==0; Ti=<:J>1 (3.!8) 

with the single-site T-matrix 

" ,... ,_ A "'' 

Ti =V 1 + Ti Via; (3.19) 

Here 

and 

V. = l M11 (w)- :£11 (w), 
1 . 

M* 1 (w*) _,I* (w*) 
12 12 • 

i ] 
M12(w)- :£12 (w) 

i ; 
-M11 hu) + ~ 11 (-w) , I 

G11(w), G~lw) 
A 

G(w) .. 

-
or2(w*), -011(-<l,l), 

w+<Jl. +L11(-w) 
~--· 

--· ) 1 "" 
ott<w =·-r:r k' 

[w- ·ck-I11(w)][w + <k + :£11(-w)]- :£12 (w)l:i2Cw*) 

:E12(w) 
a' rw) =-L:E * * 

12' N k [w-<k -:£ 11(w)Hw+ <k + L11 (-w)1-·L12 (w):£12 (w ) 

(3. 20) 

(3. 21) 

(3.22) 

A very important relation, connecting the anomalous and normal 
part of (3.21), follows from the last two equations, namely 

- all (w)-011 (~ __ ) ---· I-12 (uJ) • 
G12(w) =· 2w + :£11 (-w)- :£11 (w) 

(3.23) 

To close the set of equations (3.15), (3. 17)-(3.23) we need the 
expression for the single-site GF, Q i (w). In the CPA it is gi­
ven by/ 4 1/: 
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" ~. ~: ..... ::: ~ "' ,... -1.::.· 
0 i (UJ) = 0 (w) + 0 (UJ) T 1 (c;J) 0 (UJ) = [ 1-0 (M 1- I )] . 0 , (i =A , B ) . (3. 24) 

The resulting set can be solved numerically and the transition 
temperature Tc determined. At this temperature there appear 
the nonzero solution for the anomalous part 9f these equations. 
Therefore we expect at T-+Tc ,I12(w)-+O and M; 2 (UJ)-+ 0, thus 
making possible the linearization and the simplification of the 
problem. It is a subject of the next section. 

3.5. Linearized Equations and the Transition Temperature 

The simplest way to obtain the linearized, with respect to 
I12(UJ) and M1

1
2 (UJ), ~quations of the previ~us sections is to 

write every matrix ~, as a sum of normal Fn (diagonal) and 
anomalous (i.e., purely off-diagonal, superconducting) ~ 8 parts 
and use the matrix identity (A-B)-lA-\A' 1 B(A-B)-1 repeated­
ly. Up to linear order in 1 12 the diagonal part of (3.i0) gi­
ves the so-called Soven equation/42/ 

I 

v A B A. - B 
~11 (w) =X M11 (UJ) + y M11 (w)- (M11(w) -l11(w ))011(UJ)(M11(w)-l11(w)) 

0
11

(w)= ...1. I _ _....._ __ 
N k w- £ k- 111 (w) 

while the off-diagonal part can be written as 

-· i 012 (w) i i 
(\ 2(w)•<011(w)[ _ ---+ ; 2 (rv)-M12(w)]0

11
(-w)>. 

011 (w)(\1(-w) 

Noting the definition o; 1 (w)"' (0~~ (w)-M1\(w)+ I
11

(w))- 1 
the identity · 

(3. 25) 

(3.26) 

and 

, , 1 611 C-w )-a'11cw) 
011 (w)-0 11 (-w)-011(w)[--_-, --= + 111 (w)-.1

11 
(-w)+ 

~ 1 (w)Oll (-w) (3 • 27) 
i 1 i 

+-M11 (-w )-M11 (w)] O 11 (-w) 

ddf .. h '1' f . ~ () (f/17,21,25/) an e ~n~ng t e aux~ ~ary unct~on k 12 UJ c • , 

2w 
i (w) = 

1 1~ (w) -~ (-w)-111 (w) 12 2w + 11 (3. 28) 
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''· 

I 

' 

;1 
\• 

we obtain from (3.26) and (3.23) the CPA equation for 1
12

(w) 

i i 
i - 2UJ-Mq(-w )+M11 (UJ) i 

<011·(w)l12(UJ) 9:. ·-~011 (-w)> = 

(3.29) 
,i i i 

... <(• 11(w )M12(UJ)O 11 (-w)> 

Note, equation (3.28) has the structure of the so-called Abri­
kosov-Gorkov relation 1 1'0,21,261. It expresses the additional 
changes of the 1 12 (w) due to the disorder in the normal part 
of the problem, It is easy to verify that 

i i I i i i 
i 0 11 (w)-011 (-c,J )-011 (w )[2c;J + M 11 (w )-M11 (-w)]011 (-w) -012(w) = -- - --- ---,.l12(w)+ 

(3. 30) 
i i i 

+ 0 11 (w)M12 (w)011(w), 

Equation ,(3.15) or (3.16) and (3.30) determine the ini?ut para­
meters, M; 2 (w), for (~.29). ~t is worth while to· note the pre­
sence of the terms (Mt 1C-w)-MI 1 (UJ)) in (3.29) and (3.30).They 
express some additional influence of the electron-phonon disor­
der (only the electron-phonon part of M1 is energy dependent 
in our treatment) on the superconducting behaviour of an alloy. 
However, we expect this effect to be weak and 'neglect it 
(cf /25,26/ ) • 

Combining equations (3.27), (3.30) and (3. 15) we obtain from 
(3.29) the equation 

"" l12(UJ'+k) 
1ui(w)"' f dr.rJ'Kerr (w',w)Rel 1-· _..., w 

-·N(tr )U r"" A 'thf3w'R I 112 (w'+if) 
(3. 31) 

eff uw -· e - .j 
0 2 I 

I 

replacing the Eliashberg equation for the order parameter ~(w) 
(cf. eq. (3. 9)). The kernel K 0 rc is defined as usually/12/ 

{3z f3w' 
"" ---· cth;r- + th-r 

Kerr (w'.w )= f dz a2(z)F(z)----;-- . (3.32) 
z +w -·w -.If 

where the Eliashberg function 
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2 
------- -2 aa 2 2 2 1 a a2 (w)F(w)=22: t - 2 !x qANA(<r)(-.-IrnDA(uJ+i£))+ 

a a rr 

+ 1~xy(q,+ q
8

)
2

NA C<r )NB(Ef )(- -~IrnDAa(w+iE)-l...ImD~(w+it))+ 4 '~ rr \ rr 

2 2 2 1 a . II +Y q8NB(tr)(- --ImDu(w+lr)) N(•r) 
rr 

N (cr)Uerr =<Ui Ni2(<r)/N(tr)> • 

(3.33) 

(3. 34) 

Ni (fr) and N(•r) denote, respectively, the partially and to­
tally averaged electron densities of states at the Fermi level 

i 
Ni(Er)=- ..lrmG 11(tr), 

rr 
i=A,B 

1 -N(<r)=- -;;.-ImG11(tr)=XNA(Er)+YNa(t(). 

(3. 35) 

Following the work of McMillan181, we can write down the formula 
for T,c 

() 1.04(1+ Aeff ) 
T = --• .exp 1-- ---~,l 

c 1.45 A err -tL :rrC1+ 0.62A eff) 
(3.36) 

where the electron-phonon coupling constant 

2 
-2 a a ..., a 2 1 2 l ,\ rr= :£ t -~-{xNA(Er)DA[xqANA(tf)+ -·Y(QA+qB) NB(Ef) + e a. a2 4 

- 2 1 2 + yNB(t f) D~ [yqBNB(E f)+ 4-x(qA+ qB) NA(c f )Jl/N (t f) 
(3.37) 

and the Coulomb pseudopotential 

/.L : ff = N (c. f ) U e ff / ( 1 + N (E f ) U e ff ln 7) . (3.38) 

both depend on the alloy parameters, particularly on the concen­
tration x, thus giving rise to the concentration dependence of 
the transition temperature Tc. The calculation of Tc versus x for 
various transition metal alloys will be a subject of the next 
paper~ 
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In the above formulae () is of the order of the Debye tempe­

ratire of an ailoy, W is the alloy band width1251 and Of is 

- I d 
D

a. 2 mD ( · ) i =-·--·(dw i w+lf . " . i =A !B. (3.39) w 

To obtain Tc for various alloys one has to solve the CPA equa­
tion (3. 25) ·then calculate Ni (E r) , N (E r ). The phonon GFs D (w) 
and D ~ are calculated from the equation similar to (3. 25)/27 ,43/ 

I • 

4. DISCUSSION AND CONCLUSIONS 

We have developed the theory for strong coupling superconduc­
tivity in disordered transition metal alloys. The use of the 
alloy version of the BLF model ensures the proper treatment of 
an atomic character of d-electrons responsible for superconduc­
tivity in such systems. We were able to obtain the closed set 
of equations determining the electron and phonon GFs and mass 
operator. These equations give the general microscopic descrip­
tion of an alloy in the spirit of the Migdal-Eliashberg approach. 
Written in a Wannier space they refer to the fixed configurati­
on of atoms in an alloy. Therefore, the averaging is needed. 
This was performed in two different ways. First, in section 
3.1, we used very simple approximation for the averaged GFs. 
As it was mentioned previously this approximation gives the 
workable scheme for the derivation of the usual nonlinear Eliash­
berg equations written in terms of alloy microscopic parameters. 
The second approach is fully based on the CPA. We take into ac­
count the randomness not only through the parameters of the Ha­
miltonian,but also, in a self-consistent way through tne confi­
guration dependence of the single site electron mass-operator. 
Although similar to/25•27/ our paper contains further develop­
ments of these theories for strong-coupling superconductivity 
in disordered alloys. Contrary to 7251we take into account the 
effect of disorder on the phonon GF, and we do not replace, as 
already mentioned, !he single-site GFs GA, Ga in mass operator 
by the averaged GF G. In paper/26/ the electron-phonon interaction 
Hamiltonian is not expressed through the microscopic parameters 
like q i , t ij , etc. The expression for the self-energy in/26/ is 
limiteg to the contact model only, and in order to average the 
GF over configuration this author resorts to some phenomenolo­
gical ansatz for the anomalous self-energy. Contrary to that 
we derived the mass-operator in the general way by means of the 
"irreducible" GFs, which permit the derivation of the exact ex­
pression for m by the separation of the Hartree-Fock-Bogolubov 
mean-field terms. It must be emphasized that for the random con-
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~act model limit we derived and exploited the exact general re­
latioship between normal and anomalous- parts of the electron 
GF, performing the configurational averaging in the spirit-of 

-the CPA without any additional ansatz. 
The present theory in its general,as well as contact model 

version,will be used in the hear future for the discussion of 
the concentration dependence of Tc in some transition metal 
alloys. 
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