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Occurring of solitary waves in a variety of one~dimensional
models of condensed matter physics was discussed by now in se-
veral papergl'#/ . Further investigations concerning statisti-
cal properties of such excitations have been carried out in
refs./57 using the ideas of pioneering work of Krumhansl and
Schrieffer 7!/, Some of these theoretical results were confir—
med in neutron experiments /8.

In what follows our concern will be of soliton excitations
in ferromagnetic chains in the classical limit with special
attention paid to the effects of phonon anharmonism and nonli-
nearity in exchange integrals

1. Let us consider for that the Hamiltonian of the interac-
ting phonon and spin systems

HEHL +HS’ (1.])
where
HL='T+U. (1.2a)
1 +a - —at 1 oy 2q 2
H =- szé Jjj+5[sj Sj+8“sj Sj+5] - E‘é J‘fﬁésjsﬁ-ﬁ— (1.2b)
~-ph28Z,

T and U being the kinetic and the potential eneréies of the
lattice oscillations and Jjj+8 = J((xj45 —x ) are the exchange
integrals with the property Jyy=J35, h is the external mag-
netic field, and p is the magnetic susceptibility, j labels
the atoms occupying position x,,8 runs over nearest neighbours,
SI are given by the relation

X y
;= Sj t 18 .
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The previous investigations’/34/ were limited only with
the following approximations.

i) Phonon effects in the harmonic approximation:

mv% 2
AU RL TR (1.3)

a being the lattice distance.
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ii) The exchange integrals in the linear approximation

T(x 5-%, D) = IO ~T; - |xj,5 =%, (1.4)
where
I, =- _Qg_, <0
Jx x X348

We will, however, reject these limitations away. At low
temperature when only a few spln waves are excited we may neg-—
lect all the nonlinear terms in the Holstein-Primakov represen-

tation of the spin operators / reducing them to
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Sj=\/28aj, i 1.9 °

Hamiltonian (1.1) is consequently expressed through Bose ope-
rators ag and aj. Introducing the coherent state

fd> = exphE(qua—: + ¢]* a'j)HO>y

where "vacuum" |0> is the completely magnetized state, i.e.,
Sf|0>=,0, and assuming a weak nonlinearity, i.e.:

+ , o at 2.4,
<®|a a. d1+3a1+8}¢> = f<®|ajaj|@ ><® ‘aj+§ﬂ+8‘®>d ¢ =

o+
- <d)|ajaj‘|d>>‘<<l>|aj+aaj+81<l>>

one gets its classical equivalent

(1.2)

from eq.

<@H|®> = H=K, _._;:_,z

j3 Jjj+8[s(¢}‘¢\j+8+¢j*+3 qu )~

(1.5)
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where p =J3/1 and K, =-8JO)N/2 + s %Jns + shuN, p>0.

We take the kinetic energy of the lattice systems as
T =2LF x
21

and in potential energy (1.3) add the next anharmonic term:
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The exchange integral, however, ‘would be taken so far in the
linear approximation (1.4) to distinguish effects of these
different nonlinearities. We assume Xj; to be monotonic funct-
ion which allows one to write |xj+1-xj| = +(xj+1 - X )

We will show below the validity of this assumptxon Con51der—
ing further the longwave limit we have the expansion

Xjpy=XtXza +-§-x§§ a® +““'"xf§f a® +——"xff§§d

In the expansion of ¢ 41 Ve retain, however, the terms up to
¢ assuming ¢ to be of the same order as x . The field equ-
ations derived from the classical Hamiltonian (1 5) uuder
above assumption take the form

1¢ = Ay —id + X ¢ ~ M| 2 (1.7a)

and

m; = fof + D(x?f)f + Ex:fffrf + 8(!¢|2)§ (1.7b)

where

3
C =af@v?-uMa, D:%—Um, E =mvZat/12, A =210,

g =~21y8(p ~1), A =1J0)s, u =23(J0)~J)d-p)~hu.

In (1.7) the higher order term —BJ ‘(X¢)§{;§ - pdx fff is
neglected.

Differentiating Eq. (1.7b) once by £ and passing to the
function 7 =Xz one gets the set of equations

16 = -Ad,, —ud +enb - Al41% 4, (1.8a)

7 = (C/m)néf + (D/m)(ﬂg)‘ff + (E/m)afn + (g/m)(ld)lz)fg (1.8b)

obtained earlier with A=0
Langmuir plasma waves.

in ref.”% for coupled ion-sound and



These equations describe solitons moving with near sound
velocities (v2+ ¢2=A/m) and were analyzed in detailes ‘in
reviews’ . Since our Eqs. differ from plasma ones by the
last term in (1.8a) we discuss here extra soliton solutions
occurring in our system.

Using the variables

9] > —Slgl, mo S, £ B, e By,
Vv AB¥m ABm Vv C/m C/m

where A, C>0 and introducing the ansatz

$ = emlitzx - (0 —DOIY k¢, £ =x-Vt -Xg,
7 = nk{),
we get

W+ Yy~ + 80l =0,
(1.9)

| w? -1 ~an® —=BTIC¢ -yl =0

with
2 2
a = D.,’ Bu__E >0, -_. ACZ y Q=w -t C>0.

Soliton~like solutions to (1.10) may be of two forms

Substituting the first one into (1.9) we find (if & |¢|®<<n),

Q =-x2, a =-8k%, b=-a\/a+Be, .
(1
k2 =L @+pt, @+ >0, y2=(-v®)l,

2y2

a tanhx ¢
=y W = b (1.10a)
cosh®*«{ coshx{
-2 - D (1.10b)
cosh®x( cosh«{

/7

i.e., the solution known from 710/ The condition of its vali-
dity 8|#|%<<n is therefore equivalent to a >>8b% or

y® 3a+p

3 a+B->>|8|

and is satisfied when y¥>> 18| . It occurs always at p=0 (i.e.,
for X~y system). For more details about solution (1.11) see
ref./w/

The second solution appears only when 8+#0 and gives

™ e

a = —’2K2—-'8b2, Q =—K2 y
(1.12)
b2
- 822, fovE —aBe®s 2.
a a

There are again two possibilities

(i) 86>0, i.e., the usual "compact" case and

(ii) 8< 0, i.e., "noncompact' case.

Let us discuss first case (i). From (1.12) it follows that
(B/a) < 0 or since 8> 0 we have a<O0.From (1.12) one can also

"  obtain
2 Jile~-1]
b2 = 283 B 1), v, lal <38 or UMcmvia i,
5 la] -J(0)
then

1-v2igpe2=ta-L daly . 5o0.
) 3 B

The right-hand side of this relation depends only on parame-
ters of the system considered: a, 8, 8 , hence 4BkZ=¢+ vei1>0
and v®>1 - e.

In the region v®., 1 the soliton amplitude is fixed and defined
by system parameters
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a1 Moreover solitons (l.'12) unlike (1.11) may be supersound as
, well as subsound v z 1 and even sound like v =1. Their inver-
se widths « grow with v, and if e<1 they have minimal veloci-

. All these features differ them substantially
5
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from that studied earlier (see ref./'®’

there in). -

Analogous picture takes place in the second case (8 < 0)
only with the difference that here a may be both negative and
positive since in this case

and references cited

2
bz = _?_5....(1 +38),
18]

a

lal > 38 if a< 0. Whence
45,<2=v2_1=_3_‘(1+—1;--—9—) ot
18} 3 B

i.e., at a> 0 solitons may be only supersound. To proceed
further let us verify the above assumptions. Note that since
kg = =~-8/cosh®x¢ we have for both types of solutions

X = —~ —&‘taﬂhké ,
K

i.e., kink-like' profile for lattice displacements. It means
that x(£) is a monotonic function indeed. It is easily seen
that in the velocity region v -+ 1 the harmonic approximation
a=0 is no longer valid, since

w2

{-v?

-5 00

7~

To make assumptionl¢|§x£§ valid it is enough to have

y(....—l—...__.-
~a+ B

in the first case and x> ¢ oOF

vE Zi1 > (4Be —1)e

in the second one. And longwave limit means that I<<<-%‘, i.e.,

-—1—--<< 2(—3&};&)—:01' € < —L
y2 a a
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2. Now we consider nonlinear effects due to the following
expansion of exchange integral

: ; 2
Jij48 ™ J(0) "'Jlist —'le + Jg lxj+5—-‘xj <,

with potential U being harmonic (1.3). Then using the analogous
procedure one gets the following field equations

i¢ = ~A

—ip +Ex,$ + o )26 ~ABIBI2,
& 3 '

3 2.1

mE = c§x§£+ géf (1% + 01(X§i¢’12)§:

2,2
where €3 =mvga .

as in (1.7).

¢y= 45J  (p~1),other parameters are the same

L. - d
In the quasi-stationary limit (Jx| <« jﬁgx ) we may reduce

&

this system to a single equation:

; ~ CIRE)
ip =-Ad,, —p¢p -d —————e, 2.2
e TH T rall? (2.2)
where
d -4 stz(l-p)z . 83(0) 1 d d - _(3-1—
Cg 2 co

and higher nonlinear terms are neglected. Eq. (2.2) is the well-
known Schrddinger equation with saturable nonlinearity. There
is a great amount of works devoted to it (see ref. 107" and refe-
rences cites there in). It possesses the following features,
physically important from our point of view:

1) there are soliton-like solituions (sLS),

2) these solutions may be stable in (D+1)
Dw 1, 2, 3,...,

3) 'stable SLS may interact with each other creating in par-
ticular bound states (pulsons) and so omne.

space~time with

The detailed discussion of these and other peculiarities of
Eq. (2.2) SLS may be found in refs./10:11/ | Probably the most
interasting feature is the second one since it gives us the
hope to obtain stable SLS in more than one—-dimensional models
of condensad matter physics. '
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0 nenuHeiintix 3ddeXkTax B MArHUTHBIX LeNOuKax
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HcenepoBaum sddbekTt DOHOHHOrC AHTaAPMOHHM3MA H- HEJIHHEHHOCTH
D OGMEeHHHX HHTErpallax M HX BIMAHHE Ha CONHTOHHbE BO36YXIeHHSs
B deppoMATHMTHBIX II€IIOYKaX B KIIaCCHYeCKOM U OJIMHHOBOIIHOBOM Ipe-
pene. IlokasaHo, YTO HepBHEe INPHBOOAT K CHCTEMe CBSI3AHHBIX YpaB-—
Hennit tuna Byccunecka u llpepuurepa, pomyckawmell OBa THIA COIH—
TOHHLIX peMeHHH, BTOphie — K HellMHeHHoMy ypaBHeHuio Wlpemunrepa
¢ Hacwmjalomeiics HelMHeHHoCThI,

Pabora Bemoniena B JlaGopaTOpHH BHUHMCITHTEIILHOH TeXHHMKH
u aBroMaTuku OWAU.
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On Nonlinear Effects in Magnetic Chains

The effects of phonon anharmonism and nonlinearity in ex-
change integrals on soliton excitations in ferromagnetic
chains in the classical and longwave limit are studied. It has
been first shown that the anharmonic effect leads to a system
of coupled Boussinesq and nonlinear Schrddinger equations
allowing two types of soliton solutions. The nonlinear effect,
on the other hand, results in nonlinear Schr&dinger equation
with saturable nonlinearity admitting stable solitons in more
than one-dimensional models.

The investigation has been performed at the Laboratory
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