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The present investigation is a continuation of a series of
works devoted to the study of nonlinear Schrddinger equation
(NLSE) for field variables which are elements of some finite
dimensional vector space/le (isospace). When the Hamiltonian
of the system is invariant under some symmetry group acting in
the isospace, the system becomes an integrable one allowing the
formulation of corresponding linear problem for it.

It has been already stressed in a previous work’/3/ that in
spite of the seeming triviality of the generalizations of U(1)
and U(2) symmetric models to the general group GL(n,C) and even
the simple replacement of a compact isogroup U(2) by a noncom-
pact U(1,1), it yields significant nontrivial results connected
with much richer set of physically admissible boundary conditi-
ons.

Moreover in the case of nontrivial boundary conditions even
a global rotation in the isospace generalises a whole class of
new solutions. Local transformations on the other hand give
rise to gauge equivalence of different systems and in particu-
lar equivalence of NLSE and Landau-Lifshitz equation (LLE).
Note that the gauge equivalence of vector NLSE and LLE for dif-
ferent compact groups G was established in ref.’V for Ga=SU(2),
in/5/ for G=SU(3) and in principle for SU(N). Finally the equi-
valence in the case of general matrix mxn NLSE with compact
group G=U(n+m)is analysed in ref./6/. We, therefore, limit
ourselves only with the cases which differ from these conside~
red previously. The most natural in our case is the language of
group theory and bundle spaces. The linear problem may be re-
presented as

v, =Uy, U =Vi. (1)
Then the compatibility or the trivial flatness condition

3,U -3xV+[U,V]=0, (2)

where
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L mny,ep _iRraq, - BLiAR + R,
m m

V = (4)
- in-t-x—llx\Q— Qyx » ——nl %ﬂllx\zln+1QR

gives the system of matrix nonlinear Schrddinger equations
(MNLSE)

~iR+ R+ 2(RQ)R =0,

(5)
1Q; +Q,,+2Q(RQ) = 0.
Here R and Q are,respectively, the nxm andnpxm matrices. It is
convenient to introduce the following notations
U=Ay+XA;, A ( Ry A asis, 3 (Tln‘lm o
0 1 0 iQ 0 4 1 ’ 0 --iIn
) -iR@ R
V=B, +AB;+A%B,, B,= X), By=— DDA . B, . - DHha .
LR 2 0 -Qy iQR) ! mn 0 2' mn !
It is then not difficult to check that T3 =0 and
2 —
s?. Ly, oy , (6)
mn mn

Problem (1) is defined up to some gauge transformations ¢~ g8y
(when g&G is a global group, U and V are subject to similarity
transformation: (U,V) —»g(U,V)g=1). Let us introduce the space
of Jost matrix solutions W, the gauge group G dcting on it tran-
sitively., Moreover ¥ is the linear representation of G and its
principal (left) homogeneous space. In general G GL{mn,c).Group G
acts as well on the manifold M= (U,V) which is also its homo-
geneous space. Let us consider the isotropic group Hy keeping
the pointSe¢M fixed. One may easily check that H =GL(m,C)®GL(n,C)
with field variables R and @ changing as

R’=g Rg3!, Q'=g,Q87!, ,€GLMC)=G,, g, GL(1,C) =G,

s

—— ——

Note that H3 at the same time is the symmetry group of the Ha-
miltonian of the system

-

H«Tr(RyGx—- RQRQ) = Tr (R{ Q5 -R'QR' Q) (7)

and equations (5) are covariant under Hg. ]

Let G be now the local gauge transformation., We consider
its linear representation ¥ and denote the Jost’ solution at
the point A=)y by g (Agixt) = ¢y (Ag;Xt):

gX-UO (Ao)g' gt'VO’()\O)g.

Introducing the matrix
g1 (X)) = g(Xg)
one may easily verify that under the transformation

Y=g(ro)¥

we get

‘plx "Ul ()\')‘0)‘/’1 ’

S (Agi®t)=

= Vi (Aho) ¥y

where y

Up (M Aag) =g~ lUg =g lg, = =i(A=Ag ) S(Xgix,t),

(8)
V, (W) =g Vg —gle, =i B2 25— B L) 88, SR0-Aps,
and
S%a —1—1n+ n-ms N =m+n. 9)
mn mn

Using (2) we may deduce the following equation for matrix $

sl-_...-__[ss (10)

o) = 2r B s,
m+n mn
which is a generalization of the known SU(2) LLE obtained in the
case S ¢ SU(2), Ao =0, m=n=1, when (9) becomes
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It has been mentioned in ref./S/ that by means of gauge
transformation corresponding to Galilean transformation (x',t")=
= (X ~vt, t) one may easily eliminate the term proportional to
Ao in Eq.(10). We note, however, that this may be done only in
the case of trivial boundary conditions (for both compact and
noncompact group G ). For nontrivial boundary conditions (and
noncompact groups G ) the presence of nonzero vacuum (conden-
sate) states breaks the Galilean invariance and hence the
choice of Ay will completely define the solution of the gauge
equivalent LL model.It is the second nontrivial conclusion emer—
ging from noncompact groups. Note that the representation ¥
of group G may only be constructed with matrix Jost solutions
corresponding to continuous spectrum ImA=0. One can, therefore,
come to the point A= 0 through Galilean transformation of
coordinates only in the case of trivial boundary conditions of
NLSE both with compact as well as noncompact internal group
symmetry. The continuous spectrum in the case of nontrivial
boundary conditions (most interesting when the isogroup is non-
compact) possesses gap which results to some limitations in
the choice of Ag. In particular cases of U(0,1) and U(1,1), for
example, | M| >y, where, is defined by boundary conditions
(| ()} 2=p, ¢p=Q=R¥).

Let us consider now quite general case with the transforma-
tion groups and the groups of internal symmetry being noncom-—
pact. For this we concentrate on the equation (10) with Ag #£0:

. 1 .

St' -é—i'[s'sxx]""l)\osx’ 'y (11)
where

'Ss;i sSe Tq ira < 'su(p,q)
with

7 ’(Al""“’AE’ -iAg+l,-iAh2,"”,—iAg+k

i)\aG'su(N), N=p+q.
Then
‘su(p,q) =k of, dimk=p2+q2-1amk
dim ﬂ~=2pq-l’.

The generators r, have the algebraic property

a

ror zgaB+ daﬁyry"' ifaByry, Tl‘ra =0. (12)

a

o

s
-

From the above relations one gets

’

Tt S=0. [°S*[°=8. TI° = (lp° ). (13)
0 -

We impose the ¢- model condition (9) on $ which in the component
form reads as

‘ 1
sa SB =
gaB mn ~ (14)
seghg . D0s |
afBy mn Y
We have
g o= (1,1,....,1, -1,..... , +1)
aB e e ——
? times k times
and denote further ’
r=p~-m, n=q+r1 (r> 0).

Consider some subgroup G of group SU(p,y) elements g of which
reduce matrix 8 through similarity transformations to a diago-
nal one*:

S=g3, g7, (I°g*r)g=1. (15)
It is immediate that %, obeys equations (13) and (14) and hence
diagonal and real and furthermore coinciding with I given above.

Note that one may find some subgroup G, in the group G the

elements of which keep matrix S unchanged (isotropy group),
i.e., we get for

g=8g, » S=gig '=gig las,
if [2,89]1 =0. This naturally implies

G, =S(U(p-ne U(r,q), (r>0)

*We have shown before in a constructing way that such trans-
formations really exist,
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and coincides with isotropy group HS of the linear problem in
the space ¥. Thus we have ¥ isomorphic to G/Hy or in our case
isomorphic to SU’p,q) /S(U(p-r) U(r,q)).

Suppose further G’HE _L; then the cori.'efponding Lie algeb-
ra should be given by :AfG=h ¢, with h and { having the form

=

hy O -~ 0

0 hz)r f-( ),

h = ( 20

h, and hymatrices have dimensions mxn, nxn respectively, and.
f is anxm matrix with

I
Yo'( ).

P -g+y0 ’
' 0 -Ig

Introducing further the left chJ'Lral current Al .-g"léug we may.
express S# through g, 3, and :Au (p=0,1) as

L -1

Su-g[z, ,A# lg

Let A:“takes values only in the complement algebra ¢:

L 0 &
Ap=bo= (o o) (16)

Denoting then A%- B, from the compatibility conditions g, =g,
or Ay, -Bp,+[Ay.Byl=0 one gets

$¢‘#Im ’ éx (a7
¢x ’ ‘(¢a-"ln)

p being the integration constant and ¢ , é being, respectively,
the nxm andmxn matrices.

The linear problem (Eq.(Sj with Ao £0 ) for (11) under the
transformation ¢ =gy reduces to

U-g‘lUg —g"'1 By=i(A=Ag ) Z 4+ A,

Ve Vg —g Tl = BN SAD)T 4 2(A=2g) () A 4 By

From Eq. (2) we get now the NLSE sought for
6

L}
LS
<

\J

1220y 4 g +2(¢dd - pg)=0. '
_2mn xx

Or denoting t’._g_H'_n.t one comes to equation (5) in which ¢=-iQ,
mn

$- iR. The internal group symmetry of NLSE, as we have observed

before, coincides with Hy and in our case it is

S (U (p—) @ U(r,q)) for r>0,

S(U(p,r) o U(g=r)) for r <0,

Constraint (9) completely defines the isotropic group as well
as the projectors on the space in which the field variables
of NLSE take their values:

2
P w M. (I-nS), P aP.
m+n

m,n

Changing the constraint leads to c?r}:ain new gauge equivalent
reductions of LLE (see, e.g., ref. 4 ).

Let us consider simple example showing possible reductions
of LL system to the NLSE:

SU(2) — U(1) 8U(1,1) — U(0,1)

U2 U(1,1)
su@) = ~
U Uu(2,0
sueEn = @0
N, U(1,0)
U,
U(3) vector U(2,1)
SU4) / /‘ } vector
- U@s0) ?
U(2) matrix UGB~ (8,0)
\‘Q‘U(l,l) }
‘ matrix
etc . u0)

It is evident from the above diagram that the number of pos~
sible reductions in the noncompact cases is much greater compa-
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red to that in the corresponding compact groups. Note that the
reductions of SU(2,1) into U(l,1) and U(2,0) are gauge equiva-
lent to each other only for trivial boundary conditions.

Previous investigations on U(l1,1) NLSE/ 1-3/showed that in
noncompact group models the soliton spectrum is considerably
richer due to the existence of various possible boundary con-
ditions. Now, we have demonstrated in a simple example of the
classical Heisenberg model (with o model constraint) that the
spectrum of reductions (and hence solutions) in the case of
noncompact gauge group is much richer., As it has been mentioned
in ref./8/ this result is very important in the theory of ex~
tended supergravity with noncompact groups 97,
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Kyuny A., MaxaubkoB B.I'.,, Ilamaes O. E17-82-601
0 KanM6pOBOYHOM 3KBHBAJIEHTHOCTH YypaBHeHus JlaHpmay-Jludpmuna
U HeJMHejiHoro ypasHeHus llpemuHrepa

YeTanonneHa Kanu6poBouyHAs SKBHUBAJIEHTHOCTb O60OOMEHHOH CIH~
HOBOW uenoukH [eifseH6epra B KJIAaCCHUYECKOM H KOHTHHYAllbHOM Mpe-
nene HemdHeiHoMy ypabBHeHuwo llpeguurepa /HYH/. Oco6weii ymop cpe-
JaH Ha ciayuall HeKoMnakTHeiX I'pynn. HekoTopole oCoB6€HHOCTH
MOHZeNIH C HeTPHBHAIbHBIMH IPAHHYHBIMH YCJIOBUAMH OOCyXHawTCH
mouppoGuo.

PaGora BhronHeHa B Jla6opaToOpuM BBIUHCIIMTENbBHOH TeXHHKH
H aBToMaTusauuu OWIW.

NpenpuHT 06beAMHEHHOrO MHCTUTYTa AAepHLIX uccnegoBanuit. [ybna 1982

Kundu A., Makhankov V., Pashaev O. E17-82-601
On Gauge Equivalence of Landau-Lifshitz

and Nonlinear Schrédinger Equations

The gauge equivalence between a generalized Heisenberg
spin chain in the classical and continuum limit and the non-
linear Schrddinger equation (NLSE), with the special attention
to the noncompact groups, is established. It has been demonst-
rated that the noncompact groups allow a richer spectrum of
possible reductions of the Heisenberg system to the NLSE.

Some specialities of the model with nontrivial boundary con-
ditions are discussed.

The investigation has been performed at the Laboratory
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