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The present investigation is a continuation of a series of 
works devoted to the study of nonlinear Schrodinger equation 
(NLSE) for field variables which are elements of some finite 
dimensional vector space I I, 2/ (isospace). When the Hamil toni an 
of the system is invariant under some symmetry group acting in 
the isospace, the system becomes an integrable one allowing the 
formulation of corresponding linear problem for it. 

It has been already stressed in a previous work/3/ that in 
spite of the seeming triviality of the generalizations of U(D 
and U (2) synnnetric models to the general group GL (11, C) and even 
the simple replacement of a compact isogroup U(2) by a noncom
pact U(l,l), it yields significant nontrivial results connected 
with much richer set of physically admissible boundary conditi
ons. 

Moreover in the case of nontrivial boundary conditions even 
a global rotation in the isospace generalises a whole class of 
new solutions. Local transformations on the other hand give 
rise to gauge equivalence of different systems and in particu
lar equivalence of NLSE and Landau-Lifshitz equation (LLE). 
Note that the gauge equivalence of vector NLSE and LLE for dif
ferent compact groups G was established in ref . 141 for G. SU(2), 
in/S/ for G. SU(3) 1-nd in principle for SU(N). Finally the equi
valence in the case of general matrixmxn NLSE with compact 
group G-U(n+m)is analysed in ref/0/. We, therefore, limit 
ourselves only with the cases which differ from these conside
red previously. The most natural in our case is the language of 
group theory and bundle spaces. The linear problem may be re
presented as 

t/J X - UrjJ, r/1,-Vt/J. (I) 

Then the compatibility or the trivial flatness condition 

a,u -axV +[U,V)- 0, (2) 
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gives the system of matrix nonlinear Schrodinger equations 
(MNLSE) 

-iR 1+ Rxx+ 2(RQ) R .. 0, 

iQ 1 + Qxx+2Q(RQ),. 0. 

(4) 

(5) 

Here R and Q are, respectively, the nxm and nxm matrices. It is 
convenient to introduce the following notations 

U .. ~A 0 +.\~A 1' 
0 .R 

~Ao .. ( 1 ) 
iQ 0 • 
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It is then nbt difficult to check that 'Tr:£ .. 0 and 

2 1 n-m (6) :£ .. -·I+ --:£. I 

mn mn 

Problem (I) is define~ up to some gauge transformations ~·~g~ 
(when gc;G is a global group, U and V are subject to similarity 
transformation: (U,V) --..g(U,V)g-1 ). Let us introduce the space 
of Jost matrix solutions 7, the gauge group·a acting on it tran
sitively. Moreover 'P is the linear representation of G and its 
principal (left) homogeneous space. In ge'neral G .. Gl(mn,c).Group G 
acts as well on the manifold M .. (U,V) which is also its homo
geneous space. Let us consider the isotropic group H:£ keeping 
the point:£(.; M fixed. One may easily check that H .. GL(m, C)®GL(n,C) 
with field variables R and Q changing as 

R , R -I Q' Qg-1 
.. g1 g 2 \ - g 2 1 ' g 1c;GL(m,C) .. G 1 , g 2 c;. GL(n,C),.G
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Note that·H:£ at the same time is the symmetry group of the Ha
miltonian of the system 

J( .. Tr ( R xQ x- R Q R Q) .. Tr (R~ Q~- R'Q'R' Q') (7) 

and equations (5) are covariant under H:£. 
Let G be now the local gauge transformation. We consider 

its linear representation 'P and denote the Jost' solution at 
the point A •Ao by g (Ao; x, t) .. ~ (Ao; x,t): 

g x • Do < A o ) g • gt .. Vo·<Ao)g. 

Introducing the matrix 

S(A
0

;x,t) .. g-1 (>.0 ) :£ g(A0 ) 

one may easily verify that under the transformation 

'P • g(Ao)'PI 

we get 

~~ x • u 1 (A. Ao) ~ 1 • 

~#It .. VI (A,Ao) ~1' 

where ; 

u1 ( .\, >. 0 ). g-1 u g- g-1 g x - -i( >.-·Ao ) s (X0 ; x, t), 
(8) 

V
1 

(A, >.
0
). g-1 Vg -g-1g .i ~(A 2- A

0
2 )S- ~(A-A0 ) SSx ~(>.->. 'S 

t mn m+n m+n 0" x 

and 

S 2 1 1 n-m 8 --- +--. mn n mn 
N. m+n. (9) 

Using (2) we may deduce the following equation for matrix S 

S 1 - ..!!!!L + [ S, S xxl - 2 >.0 .!!!±!!. S x 
m+n 1 mn 

(IO) 

which is a generalization of the known SU(2)LLE obtained in the 
case S c; SU(2), >.

0 
.. o, m•l)•1, when (9) becomes 

g2- I. 
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It has been mentioned in ref./S/ that by means of gauge 
transformation corresponding to Galilean transformation (x' ,t')• 
• (x- vt, t) one may easily eliminate the term proportional to 
,\0 in Eq.(JO). We note, however, that this may be done only in 
the case of trivial boundary conditions (for both compact and 
noncompact group G). For nontrivial boundary conditions (and 
noncompact groups G ) the presence of' nonzero vacuum (conden
sate) states breaks the Galilean invariance and hence the 
choice of,\0 will completely define the solution of the gauge 
equivalent LL model.It is the second nontrivial conclusion emer
ging from noncompact groups. Note that the representation ~ 
of groupG may only be constructed with matrix Jost solutions 
corresponding to continuous spectrum lm,\ .o. One can, therefore, 
come to the point ,\ .. 0 through Galilean transformation of 
coordinates.only in the case of trivial boundary conditions of 
NLSE both with compact as well as noncompact internal group 
symmetry. The continuous spectrum in the case of nontrivial 
boundary conditions (most interesting when the isogroup is non
compact) possesses gap which results to some limitations in 
the choice of AO· In particular cases of U(O,l) and U(1.1), for 
example, 1 ,\0 1 >.ll, where ll is defined by boundary conditions 
( 11> ( 00 ) I 2 -ll' 1>- Q - R*) • 

Let us consider now quite general case with the transforma
tion groups and the groups of internal symmetry being noncom
pact. For this we concentrate on the equation (10) with ,\ 0 .,{O: 

1 . 
St. 2i[S,Sxx1+4A0 Sx, 

where 

s.!, sa r 
a a 

with 

i r ~ ·s u (p,q) a 

ra -(,\1, ..... , Ae • -·iAe+t' -iAp+2'""' -iAe+k 

i ,\a r.; su(N), N • p + q. 

Then 

·su (p,q) .. k Ellf, dim k ,., p2 + q 2_1 • k 

dim e .. 2pq- p • 

The generators r a have the algebraic property 

r Tt). • g {:).+ d a rY + if a rY, 
a fJ afJ afJy afJy 
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From the above relations one gets 

Tr s-o. r o s+ r o • s. ro • ( IP., 
0 

0 ) • 

-Iq 
(13) 

We impose the a model condition (9) on S which in the component 
form reads as 

1 sa g s {:3 
af3 mn (14) 

sa sf3 d - ~ s 
a{:3y mn Y 

We have 

gaf3 • (1,1, .... ,, 1, -1, ..... , + 1) 

ftimes ktimes 

and denote further I 

r-p-m, n. q + r (r _2> 0). 

Consider some subgroup G of group SU(p,q) elements g of which 
reduce matrix S through similarity transformations to a diago
nal one*: 

-1 
S.g!,gg ' ( ro g + ro) g - 1. (15) 

It is immediate that!g obeys equations (13) and (14) and hence 
diagonal and real and furthermore coinci4ing with ~ given above. 

Note that one may find some subgroup Go in the group G the 
elements of which keep matrix S unchanged (isotropy group), 
i.e., we get for 

g .. ggo ' 
~ - ~ 1 1 
S .. g!,g- .g~g- .s 

if [~,g0 ] .o. This naturally implies 

G
0

• S(U (p-r) Ell U(r, q)), (f.? 0) 

*We have shown before in a constructing way that such trans
formations really exist, 
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and coincides with isotropy group H~ of the linear problem in 
the space 'P. Thus we have 'P isomorphi,c to GfH~ or in our case 
isomorphic to SU'p,q) /S(U(p-r) U(r,q)). 

Suppose further G-H~ L; then the corresponding Lie algeb
ra should be given by ~Mo. h f, with h and e having the form 

hi 0 ) 
h .. <o h2 • 

- o r ) 
r - < -r o · 

h1 and h 2 matrices have dimensions mxn, nxn respectively, and. 
r is a nxm matrix with 

- + 
y ... r Yo 

Ir 0 
Yo • ( ) • 

0 -Iq 

Introducing further the left chi_ral current ~AL • - g-1a g we may. 
express S

11 
through g , ~ , and ~All ( 11 • 0,1) as 11 11 

L -1 
sll.g[~.·Aillg. 

Let A~ takes values only in the complement algebra f: 

L 
~A I • ~Ao • ( 0 ¢ ) . 

-¢ 0 (16) 

Denoting then A~. B0 from the compatibility conditions gxt. g 1x 
or A0 1 - B0 x +l:A 0 ,8 0].0 one gets 

Bo --i ~ ('¢¢-lllm 
2mn 

¢x ' 

' ¢x ) 

-(¢¢ -11 In) 

(17) 

11 being the integration constant and ¢ , ¢ being, respectively, 
the nxm andmxn matrices. , 

The linear probl~m (Eq. (8) with .\o ,4 0 ) for (II) under the 
transformation tfr • g..p reduces to 

U • g-lug -g-1 gx• i(.\-.\o) ~ + ~Ao 

V • g-lvg -g-lgt ... 2i(.\2 -.\~)~ + 2 (.\-.\o) ( m;nn) 2 ~Ao + Bo. 

From Eq. (2) we get now the NLSE sought for 
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i ...!!!.±..ll¢ + ¢ + 2(¢'¢'¢- ll¢) ... 0. 
.2mn t xx 

Or denoting t' -~t one comes to equation (5) in which ¢·-i Q,, 
2mn 

¢-iR. The inteFnal group symmetry of NLSE, as we have observed 
before, coincides with H~ and in our case i't is 

S (U (p-r) <D U(r,q)) 

S (U(p,r) Ql U(q-r)) 

for r.? 0, 

for r .< 0. 

Constraint (9) completely defines the isotropic group a& well 
as the projectors on the space in which the field variables 
of NLSE take their values: 

p • ~(I - n'S), 
m,n m+n 

2 
p • P. 

Changing the constraint leads to c7rfain new gauge equivalent 
reductions of LLE (see, e.g., ref. 7 ). 

Let us consider simple example showing possible reductions 
of LL system to the NLSE: 

'SU(2)--+ U(l) 

SU(3) .,-" U(2) 

' U(1) 

U (3) vector 

SU(4) / 

""'-.. U (2) matrix 

etc . 

SU(1,1)- U(O,l) 

. · U(1,1) 

SU(2,1) (_.. U(2,0) 

~ U(1,0) 

u (0,1) 

/ U(2,1) 1 
SU(3,1)__.U(3,0) J 

~ 
" U(1,1) } 

U(2,0) 

vector 

matrix 

It is evident from. the above diagram that the number of pos
sible reductions in the n9rifompact.,cases ik much greater compa-
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red to that in the corresponding compact groups. Note that the 
reductions of SU(2,1) into U(l,l) and U(2,0) are gauge equiva
lent to each other only for trivial boundary conditions. 

Previous investigations on U(l,l) NLSE/ 1- 3~howed that in 
noncompact group models the soliton spectrum is considerably 
richer due to the existence of various possible boundary con
ditions. Now, we have demonstrated in a simple example of the 
classical Heisenberg model (with a model constraint) that the 
spectrum of reductions (and hence solutions) in the case of 
noncompact gauge group is much richer. As it has been mentioned 
in ref,/8/ this result is very important in the theory of ex
tended supergravity with noncompact groups/ 9/. 
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KYHAY A., MaxaHhKOB B.f., llamaen 0. El7-82-601 
0 ICaJ1H6pOBO'lHOH 3KBHBaJleHTHOCTH ypanHeHH}l J1aHp;ay-J1H!pillHD;a 
11 Hen~meJhiO!'O ypanHeHHH Illpep;HHrepa 

YcTanonneHa KanH6ponoqHaH 3KBHBaneHTHOCTh o6o61J1eHiw:H: cnH
HODOR u;ellO"llCH fe:i13eH6epra B KJlaCCH'leCKOM H KOHTHHyaJlbHOM npe
p;ene HemmetiHOMY ypanHeHHIO Illpep;mirepa /HYlll/. Oco6biH ynop c,o;e
nan Hll cnyqati HeKoMnaKTHbiX rpynn. HeKOTOPbie oco6eHHOCTH 
MO,D;eJIH C HeTpHBHaJlhHb!NH rpaHH'!HbiMH yCJlOBHHMH 06CylKp;a!OTCH 
no,o;poOuo. 

PaOoTa BblllOJlHeHa n J1a6opaTopHH nwmcnHTeJlbHOH TeXHHKH 
H aDTOMaTH3aD;HH OHHH. 

npenpHHT 06beA~HeHHOro ~HCT~TyTa RAePHWX ~ccneAOBaH~A. Ay6Ha 1982 
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The gauge equivalence between a generalized Heisenberg 
spin chain in the classical and continuum limit and the non
linear Schrodinger equation (NLSE), with fhe special attention 
to the noncompact groups, is established. It has been demonst
rated that the noncompact groups allow a richer spectrum of 
possible reductions of the Heisenberg system to the NLSE. 
Some specialities of the model with nontrivial boundary con
ditions are discussed. 
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