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1. INTRODUCTION

In a very well-known paper/i/ Feynman, Hellwarth, Iddings
and Platzman (thereafter called FHIP) developed a powerful method
to calculate the polaron conductivity free of the assumptions
commonly made when the Boltzmann kinetic equation is applied to
this problem /2-8/ FHIP calculated the expectation value of the
electron coordinate by means of the non-equilibrium density ma-
trix of the electron phonon system in an external harmonic elec-
tric field B = Eg e ' and expressed the corresponding linear
response function through a double path integral over electron
trajectories. After approximating the path integral with the
aid of Feynman's one-oscillator model of the polaron/8/ FHIP
obtained a general expression for the polaron impedance, expec—
ted to be a very good approximation in the overall interval of
the coupling strength a, at all temperatures T and arbitrary
frequency w.General expressions for the polaron effective mass
(at zero temperature) and the polaron drift mobility were ob-
tained from the FHIP impedance. In papers /":8/ the results of
ref.’! were used to obtain the optical absorption coefficient
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sion describes, at least qualitatively, all the expected featu-
res of the absorption spectrum such as one—phonon peaks and tran-

sitions to Franck-Condon and relaxed excited states. In papers/9:10/

the approach of FHIP was generalized to include the effect of

a static magnetic field and the interaction with other phonon

modes and applied to the analysis of galvanomagnetic phenomena
and cyclotron resonance in polar crystals.

On the other hand there are some difficulties in the FHIP
approach that have not been overcome up today. The first and
perhaps less important one is that it is mathematically very
complicated, because a general non-equilibrium density matrix
is used to calculate the linear response function, a quantity
which could be obtained in the framework of equilibrium theory
(by using Kubo®s formula). This leads to the appearance of
a double path integral over trajectories defined in an infinite
time interval where a much simpler integral over trajectories
defined in a finite imaginary time interval could be used. The
second difficulty is that the physically correct expression for
the impedance is obtained by FHIP with a mathematically nonjus-
tified expansion of a less accurate expression obtained for the
admitance. In fact there is some uncertainty in this approach
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concerning which expression for the impedance corresponds to the
Feynman approximation. The third difficulty is that the expres-
sion for the drift mobility at low temperatures differs by

a factor 3/28 {(B8=1/kT , k is the Boltzmann factor) from the ge-
nerally accepted result obtained from the Boltzman equation’Z2-5/
which must be correct at least at weak coupling and low tempe-
ratures. This incorrect expression for the mobility has been
obtained in two quite independent ways /117" and the source of the
discrepancy or the way to overcome it while preserving the good
features of the approach are not clear at all.

The present paper is a first attempt to solve the above-men-
tioned difficulties. By using Kubo’s formula the polaron con-
ductivity is expressed in terms of a double time retarded com-
mutator Green function which can be obtained by analytical pro-
longation to the upper half-plane of the current-current Matsu-—
bara Green function. The last is exactly expressed by a simple
path integral over cyclic electron trajectories defined in(0,8]
Calculation of this integral in the framework of the variatio-
nal principle for the polaron free energy leads in zeroth order
to the FHIP results. The source of the discrepancy in the low
temperature expression for the drift mobility and the way to
overcome it are discussed. The expressions for the low tempera-
ture polaron effective mass and lifetime in this approximation
are given and compared with the previous results.

2. KUBO"s FORMULA AND POLARON GREEN FUNCTIONS

We start with the well-known Frohlich Hamiltonian for the
polaron 12/
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where r and B = -1V are respectively the electron radius vec-

tor and quasimomentum operators, af , ap are the creation
and ann1h11at10n operators for longitudinal optical phonons with
quasimomentum K and Q is the volume of the system. In (1) the
phonon frequency, the conduction electron mass and the Planck
constant are taken equal to unity.

Let us consider the double-time, retarded commutator Green
function "13/
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By using Kubo”s formula, the conductivity atw) for the electron-

phonon system (l) can be expressed in terms of the Fourier trans-—

form of Bg(V) /13/
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The function ER(w) is analytic in the upper half-plane of the
complex variable w and hence can be obtained by analytical pro-

longation from the points iw, = ;2.”_“l(n=1,2,,,_)_'1'0 obtain ER(iwn)we

define the Matsubara Green function’14/
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where :p;(r)=eHr %e"“’ and TiAG)B(o)} = B(r~0)A () B(o)+8o—r)B0)Al).

As is well-known /14’
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Then to obtain gR(m) we must calculate G(w,) and prolong it
analytically to the upper half plane.

3. PATH INTEGRAL REPRESENTATION
FOR THE MATSUBARA GREEN FUNCTION

Now we pass to obtain an exact path 1ntegra1 representatlon
for G(r~o) using the general method described in ref. 718/ 1o
do this we first apply to H the Bogolubov canonical transforma-
tion/18/and write it In the follow1ng way:

zcmo(b +65), (W)
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The Green function Q(r-~o) can be written in terms of the opera-
tors in the interaction picture 714/
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Let us define the generating functional
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It is not difficult to verify that
1 52Z(y)

= 2(0); G(r-0) =~ : 2 | . (6)
Z0) 59¢)870) Y=0
On the other hand Z(y) can be expressed as an integral over

Wiener’s measure 17/
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then trom (6) and (/) 1t tollows that
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Integrating by parts the last expression we obtain
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To obtain the explicit express1on for Wo(X) we must calculate
the trace in formula (7) for o (*) . The procedure to do this is
described in ref. 18/ and the result: is:

W@ - 0l 10z, e (10)
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Taking into account (8), (9) and (10) we obtain
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where F is the polaron free energy given by 719/
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Formulae (11)-(13) are exact expressions and can be used to cal-
culate G(r~o)in different approximations. They represent a con-
siderable simplification of the problem, since the phonon va-
riables have been exactly excluded and the system is now descri-
bed by the electron-electron interaction Vv(x]. The generaliza-
tion of (11)-(13) to include the interaction with several phonon
modes is trivial.

4. APPROXIMATE EXPRESSION FOR THE CONDUCTIVITY

The path integral in (11) can be calculated only approxima-
tely. To do this in the framework of the variational principle
for the free energy, we calculate (11) using the trial action/10/
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where A(w)=eﬁwA(-w)>0.To calculate <i’(r) ;ﬂo)>s we must take
the second variational. derivative of the functional:

6

ﬁ B -» -
[ ar ofdoH(r—o)P(f)F(O)
[+

it farF(r) x(f)> e , (14
SO

J[l':"]s<e o

where

® % coswylr—o)

H(f—o)=-1— p

B -1 Zy(wy)
2 * dw A(w)
ZoUe,) = (w,) !1+4_£TW1.

n

The resulting expression for -(.}(wn) is:
Glw ) =311 + A 1. (15)
Z g(iwy,)
To determine Z y(iw,) we use the variational principle for
the polaron free energy /1%

F<F
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where Fo is the free energy related to the action So[;]. The
condition of minimum of the r.h.s. of this inequality leads to
the following equation for Z (e, )/ 10/
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It is very difficult to solve this equation to obtain the best
Zo(iwn). The FHIP results are obtained if we solve (16) by suc-—
cessive approximations starting with the expression of o)

corresponding to the Feynman one-oscillator model, for which’19/
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Here Wwe=w(a,B)and v= via,B)are determined from the condition of
minimum for the polaron free energy’!%/. The resulting expression
for Zg(iw,) is:
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The analytic prolongation of ER(i“’u) to the upper half plane
is obtained /19/changing Zy6e,) 10 formula (15) by:

Zy (o) =—w§ -



2aqp 3

Zy(w)=w? - [ a1 -e'" —i6y 2
ol@) =@ "= [a(l-e )ImiC(-ie)t (~it)} (18)

This is the FHIP expression for the polaron impedance. The Green
function g plo) is given by:
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and the conductivity obtained by putting this expression into
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The treatment here is much simpler than in’! and the expres-
sions (18) and (19) are obtained "automatically" without any
complementary physical considerations. Of course the expression
for the drift mobility which follows from (19) is the same as
in’!’ and in the low temperature limit differs from the correct
result by the factor 3/28.

To obtain (19) we have made two approximations. The first
while changing 8 by 8, to obtain (15) and (16) from (11). The
second while solving (16) in first order to obtain (17). Since
the last approximation is exact to order e it cannot be the
source of the above-mentioned discrepancy which is already pre-
sent in lowest order. We can then conclude that in order to
overcome this difficulty the important thing is not to improve
the Feynman one-oscillator model by using a more accurate quad-
ratic functional or even solving (16) exactly. On the other hand,
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expansion of <kﬁ)§(a)>s in powers of 8-8,
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By using (14) and (16) it is possible to show that the first
correction (corresponding to m=1) is equal to zero. Then (15)
is exact to first order in powers of S-Sg. Since <8-8g>g is
proportional to a (for small a ) one could conclude that (15)
is also exact in lowest order. However, this point requires

a more detailed analysis because for a<<1 and B>>1, <8-8g>s
is proportional to af and the expansion (20) could not be va-
1id at low temperatures. Then other approximation schemes should
be developed on the basis of the exact expression (11).

5. POLARON EFFECTIVE MASS AND LIFETIME

AT FINITE TEMPERATURES

Returning to the FHIP expression for the impedance (18) and
deforming the contour of integration over t to Ret =0,0<Imt<B/2
and 0< Ret < =, hnt::B/2/b/we obtain the following expres4_

sions for the real and imaginary parts of the polaron impedance
at finite temperatures:
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For a quasiparticle with effective mass M and lifetime r the
impedance is

Zo(co)=Ma)2+i—M‘—Li . (22)
r

/2
Then at low temperatures eB >>1, whenr>>1, and low frequen-
cies w<<1 the polaron behaves as a quasiparticle with

g B/e 2 -t
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where Ky(z) 1is the cylindric function of imaginary argument.
This expression for the polaron effective mass at low tempera-
tures is exactly the same as obtained in the previous paper’ 20/by
a quite different method. From the general results for the impe-
dance in a magnetic field of reference 710/ it can be shown
that M is also the cyclotron mass at low temperatures and weak
magnetic fields. In the weak coupling limit M coincides with
the mass parameter My of reference /9/ {f the last is taken
at low temperature, low frequency and weak magnetic field.

At higher temperatures the lifetime rapidly decreases and
the quasiparticle picture is destroyed. Then the parameter M
obtained from (21) and (22) does not coincide with the cyclotron
mass (which is always greater than unity) and cannot be inter-—
preted as the polaron effective mass.



The generalization of the present approach to include the
action of a static magnetic field and the detailed analysis of
the temperature and magnetic field dependence of the polaron
cyclotron mass will be given in a next paper.

The authors wish to thank Professor N.N.Bogolubov (Jr.) and
Doctor N.M.Plakida for helping discussions.
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MeTon KOHTHHYAllbHOT'O HHTErPHPOBAHHMA B 3agaue
06 351eKTPOINPOBOOHOCTH MOJISAPOHA

IIpeanaraercs HOBHE NMOAXOA K BbIYHCIIEHHI0 3JIeKTPONMPOBOOHOCTH
MoNIApOHAa MEeTOAOM KOHTHHYA/IbHOT'O HHTerpHpoBaHusa. C momoumbio dop-—
My Ky60 3J1eKTpONpOBOOHOCTB MNOJIIPOHA BhHIPAXaeTCs depe3 ABYX—
BpeMeHHYI0 KOMMYTATOPHYl &yHKIHI ['pHHa, KOoTOopas MoxeT G6bITh
MoJiydyeHa IyTeM aHAJHTHYEeCKOI'o MPOOOJDKEHHs1 TeMnepaTypHOH ¢yHK-—
uuy 'pHHa THNA TOK-TOK. JlociniegHsas BelpaxaeTCs TOYHO 4depes
HHTErpasn o 3JI€eKTPOHHbIM TPAaeKTODHAM. BhYHCIIeHHe 3TOr0 HHTer-
palla B paMKaxX BapHALHOHHOTO MpHHIHNA OJA CBOGOOHOH 3SHEPTHH
MONsipOHA NPHUBOOHUT B HyJIeBOM NopsAgKe K pesynbraraMm @QeiiHMmaHa,
Xemnsapca,dpgunrca u IlnauMasa.llonydeHs BblpaxeHHs Ona 3dekTHB-
HOH Macchl H BpeMeHH XH3HH IIOJIIPOHA NIPH HU3KHX TeMNeparypax;
npoBeleHO cpaBHeHHE C pesynbTaTaMH AOpYyrux pabor, O6cyxpaercs
HCTOYHHMK [IOABJIEHHS HENpaBWJIIBHOH HH3KOTEeMNepaTYpHOH 3aBHCHMOCTH

B BblpaXeHHH O5A AOpeHdoBOH MOOBHXHOCTH.
Pa6ora BumosHeHa B JlabopaTOpHH TeopeTuueckoi# dusuku OHAH.
NpenpuHT 06BEAUHEHHONO WMHCTUTYTa AAEPHLIX uccneposanun . fQybna 1982
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Path Integral Approach to Polaron Conductivity

A new approach to calculate the polaron conductivity
using path integral methods is proposed. By using Kubo”s
formula the conductivity is expressed in terms of a double
time retarded commutator Green function which can be obtained
by analytical prolongation of the current-current Matsubara
Green function. The last is exactly expressed by a simple path
integral over electron trajectories. Calculation of this in-
tegral in the framework of the variational principle for the
polaron free energy leads in a very simple way to the FHIP re-
sults. The expressions for the low temperature polaron effec-~
tive mass and lifetime in this approximation are given and
compared with previous calculations. The source of the discre-
pancy in the low temperature expression for the drift mobility
is discussed. :
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