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I. INTRODUCTION 

In a very well-known paper/1/ Feynman, Hellwarth, Iddings 
and Platzman (thereafter called FHIP) developed a powerful method 
to calculate the polaron conductivity free of the assumptions 
commonly made when theBoltzmannkinetic equation is applied to 
this problem 12•61 • FHIP calculated the expectation value of the 
electron coordinate by means of the non-equilibrium density ma
trix of the~ele~ctron phonon system in an external harmonic elec
tric field E = Eo e-icut and expressed the corresponding linear 
response function through a double path integral over electron 
trajectories. After approximating the path integral with the 
aid of Feynman's one-oscillator model of the polaron/8/ FHIP 
obtained a general expression for the polaron impedance, expec
ted to be a very good approximation in the overall interval of 
the coupling strength a, at all temperatures T and arbitrary 
frequency cu-.General expressions for the polaron effective mass 
(at zero temperature) and the polaron drift mobility were ob
tained from the FHIP impedance. In papers 17,8/ the results of 
ref. 111 were used to obtain the optical absorption coefficient 
'""'.f' .f',..n.n 1"'\1""\l..,,...,....,....co .,t- 'l' ll Tt- T:roco cohnT.Tn t-'h.,t- t-'ho ,..oconl ~;~., ..... O'V'<n,...oC'O-
-- ---- r-----··- -- - --· -- .. _ ............. _. ........ -··-- ---- --------.. o --.. r---
sion describes, at least qualitatively, all the expected featu-
res of the absorption spectrum such as one-phonon peaks and tran
sitions to Franck-Condon and relaxed excited states. In papers/9,10/ 
the approach of FHIP was generalized to include the effect of 
a static magnetic field and the interaction ~ith other phonon 
modes and applied to the analysis of galvanomagnetic phenomena 
and cyclotron resonance in polar crystals. 

On the other hand there are some difficulties in the FHIP 
approach that have not been overcome up today. The first and 
perhaps less important one is that it is mathematically very 
complicated, because a general non-equilibrium density matrix 
is used to calculate the linear response function, a quantity 
which could be obtained in the framework of equilibrium theory 
(by using Kubo's formula). This leads to the appearance of 
a double path integral over trajectories defined in an infinite 
time interval where a much simpler integral over trajectories 
defined in a finite imaginary time interval could be used. The 
second difficulty is that the physically correct expression for 
the impedance is obtained by FHIP with a mathematically nonjus
tified expansion of a less accurate expression obtained for the 
admitance. In fact there is some uncertainty in this approach 
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concerning which expression for the impedance corresponds to the 
Feynman approximation. The third difficulty is that the expres
sion for the drift mobility at low temperatures differs by 
a factor 3/2{3 ( f3 == 1/kT, k is the Boltzmann factor) from the ge
nerally accepted result obtained from the Boltzman equation/2-6/ 
which must be correct at least at weak coupling and low tempe
ratures. This incorrect expression for the mobility has been 
obtained in two quite independent ways 111~ and the source of the 
discrepancy or the way to overcome it while preserving the good 
features of the approach are not clear at all. 

The present paper is a first attempt to solve the above-men
tioned difficulties. By using Kubo's formula the polaron con
ductivity is expressed in terms of a double time retarded com
mutator Green function which can be obtained by analytical pro
longation to the upper half-plane of the current-current Xatsu
bara Green function. The last is exactly expressed by a simple 
path integral 'over cyclic electron trajectories defined in[O.~] 
Calculation of this integral in the framework of the variatio
nal principle for the polaron free energy leads in zeroth order 
to the FHIP results. The source of the discrepancy in the low 
temperature expression for the drift mobility and the way to 
overcome it are discussed. The expressions for the low tempera
ture polaron effective mass and lifetime in this approximation 
are given and compared with the previous results. 

2. KUBO' s FOR11ULA AND POLARON GREEN FUNCTIONS 

We start 
polaron~'12/ 

~ p2 
H =-+ 

2 

with the well-known Frohlich Hamiltonian for the 

1 7t~ i ... + 1 Q(k) (a ... + a"~)e ikr•; Q(k) =< 2v2~ra )112 
1 (I) 

... k 1!. ... k k ~ 0 k"' 
Ak 

where r and p = -iV are respectively the electron radius vec
tor and quasimomentum operators, i ~ , ; k are the creation 
and annihilation operators for longitudinal optical phonons with 
quasimomentum k and 0 is the volume of the system. In (I) the 
phonon frequency, the conduction electron m~ss and the Planck 
constant are taken equal to unity. 

Let us consider the double-time, retarded commutator Green 
function '13/ 

g R (t- s) = i8(t- s) < [p H(t), pH (s)]>, 

where: 

-f3H Sp [e .... ] [A A ] A A A A 

-=-----"-; A(t),B(s) ==A(t)B(s) -B(s)A(t) 
Spe-f3H 

< ... > == 
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and 
1, t > 0 e (t) = 1 
0, t < 0 

By using Kubo#s formula, the conductivity u~w) for the electron
phonon system (I) can be expressed in terms of the Fourier trans
form of g R (t) I 13/ 

e2 +oo dE lmg R (E) 
u(w) =- f-

317i -oo E E + W + iE 
+oo 

- 1wt gR(w) = J dte gR(t). 

(2) 

-oo 

The function gR(w) is analytic in the upper half-plane of the 
complex variable w and hence can be obtained by analytical pro-

longation from the points iwn = ~in(n=1,2, ... ) .To obtaingR(iwn)we 

define the Hatsubara Green function 114/ 

G (r - u) = < T I p (r ) p (u )I > ; r , u ~ [ 0, f3 ] , 

f3 tw r 2TTI1 
G(w )= fdre n G(r); Wn=--; n=0,±1, ±2, •••• , 

n 0 f3 

(3) 

A ,.. A A 

where p(r)=eHr pe-Hr and TIA(r)B(u)l = ®(r-u)A(r) B(u)+®(u-r)B(u)A(r). 
As is well-known 1141 

g R (iw n ) = G(w n ) ; n = 1, 2, •.• 

Then to obtain gR(w) we must calculate G(wn) and prolong it 
analytically to the upper half plane. 

3. PATH INTEGRAL REPRESENTATION 
FOR THE MATSUBARA GREEN FUNCTION 

Now we pass to obtain an exact path integral representation 
for G(r-u) using the general method described in ref /161• To 
do this we first apply to H the Bogolubov canonical transforma
tion•11&./ and ~ite it :.n the following way: 

A A 1 -t "' ""+ A A A+ 

H = H
0 

+ -
2 

p 2 + H 1 H 0 = I b ... b ... H 1 = I Q (k) (b k-+ + b k ) ( 4) 
k k k k 

where 
...... 

b ... = ; -+ e ikr 
k k 

...... b + A+ -ikr 
k = ak e 

The Green function Q(r-u) can be written in terms of the opera
tors in the interaction picture /14/ 
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A f3 A 1 :2 
u(f3) = T exp 1- r dr [HI (r) + - p I (r )] I . 

0 2 

Let us define the generating functional 

{JH {3 ,.. 1 ~2 . ... ~ 
Z(Y> = Spe- 0 Texpl- r dr[HI (r) +2PI (r) + Iy(r)pi (r)] I. 

0 

It is not difficult to verify that 

1 ~2 Z(y) 
ZH= Z(O); G(r-u) =- -- . . ! -+ 

0 Z(O) ~y(r) ~y(u} Y = 

On the other' hand Z(n can be expressed as an integral over 
Wiener# s measure '17/ 

1 f3. 2 
-+ - 2(~ (r)dr 

Dxe o z(y) = -+ r 
X (0)= 0 

Then trom (b) and U) ~t tallows that 

1 f3 . 2 
-+ -2 ( dT i (r) -+ 

z = 
H r ... 

X (0) = 0 

D x e o W 0 (x) 

1 f3 '42 
1 -- r dT X (r) 

G (r -u) = - J Die 2 o 
ZH ;(0)=0 

a 2 w 0 (i) 

8 l(r)8 i(u) 

Integrating by parts the last expression we obtain 

1 . -+ 

G (r-u) .. ~ (r- u) - - ... r D X e 
ZH X (0)=0 

f3 • 
( dT x2(r) 

2 0 

(5) 

(6) 

(7) 

(8) 

To obtain the explicit expression Jor Wo (Xl we must calculate 
the trace in formvla (7) for Wo(~. The procedure to do this is 
described in ref.' 181 and the result is: 

... ... ... v[;] 
W (x) .. 08[x(f3) - x(O)] ZH e 

0 0 

(10) 
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where 

V[x] = ~ Q 2 (k) 
k 

f3 T ~ -+ .,. 

( dr fdaC(r-a)eik[x(r)-x(a)] 

e' e~ · 
C (r) = -R.- + ____;;._~ 

e,.... -1 1 - e-13 

Taking into account (8), (9) and (10) we obtain 

a (r - 0') = 3 B (r - 0' ) - < X (r ) X (a) > s 

where 

<A[x]>
8 

and 
-{3F e 

f D i e -s[i1 A [i] 

'i<o> .. 'i<f3> 

r 
; <O> ... 'i<f3> 

where F is the polaron free energy given by 1191 

(II) 

(12) 

1 - _qf;'( 
1''=-...;:...ln 1 Dxe ·-·- (13) 

f3 ; <O> = x<f3> 
Formulae (11)-(13) are exact expressions and can be used to cal
culate G(r-a)in different approximations. They represent a con
siderable simplification of the problem, since the phonon va
riables have been exactly excluded and the system is now descri
bed by the electron-electron interaction V[xl. The generaliza
tion of (11)-(13) to include the interaction with several phonon 
modes is trivial. 

4. APPROXIMATE EXPRESSION FOR THE CONDUCTIVITY 

The path integral in (II) can be calculated only approxima
tely. To do this in the framework of the variational principle 
for the free energy, we calculate (II) using the trial action1 1°1 

-+ 1 {3 .:. +.. {3 r -w(r -a) -+ -+ 2 
S 0[xl-- fdrx 2(r) + (dwA(w) fdr fdae lx(r)-X(a)i , 

2 0 0 0 
where A (w) = e {3w .A(-w) >O.To calculate < i(r) ~a)> s we must take 
the second variational. derivative of the functfonal: 

J 

) 

f3 • 
-+ 1 f dr F (r) ;(r) 

J[F]=<e o >s 
0 

{3 f3 -+ -+ 
= e / dr j daH(r-a)F (r)F(a) 

(14) 

where 

The resulting expression for G(cu n) is: 

cu2n G (cu n ) = 3 [ 1 + l. (15) 
Z 0(icun) 

To determine Z 0 (icu n) we use the variational principle for 
the polaron free energy /19/ 

1 
F ::; F o + fr < S- So> So 

where F0 is the free energy 
condition of minimum of the 
the following equation for 

related to the action s 0 [;]. The 
r.h.s. of this inequality leads to 
Zo(icun )/10/ 

2a {3/2 
z 0 (icu ) =- (t) 

2 - - r 
-3/2 

dr C (r )(1 - coscu n r) ell (r), (16) 
n n 3..[iT 0 

ell (r) 4 
=-

{3 
I 

n= 1 

It is very difficult to solve this equation to obtain the best 
z

0
(icun). The FHIP results are obtained if we solve (16) by suc

cessive approximations starting with the expression of ell(r) 
corresponding to the Feynman one-oscillator model, for which

1
1

91 

A o(w') = w3(v 2-1) 1 [8(w'-w) -8(w, + w)]' 
4 1 -e -f3w' 

-wvr -wv<f3~> -f3wv 
1 r v 2-1 1-e -e +e 

ell 0 (r) = -- f(r) ; r(r) = r (1 - -) + -
v 2 {3 w v 1_ e -{3 wv 

Here w .. w(a,{3)and v= v(a,{3)are determined from the condition of 
minimum for the polaron free energy 1 191 . The resulting expression 
for Z 0 (icu n) is: 

2av 3 {3/2 -3/2 
Z0 (iwn) =-w~- --- ( drC(r)(1-coswnr)f (r). (17) 

3..[1T 0 

The analytic prolongation of g R(iw ) to the upper half plane 
is obtained /10/changing z o(iwn) in formula (15) by: 
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. 2 2av 3 .., !wt -3/2 
Z

0
(w)=w --- (dt(l-e )Im!C(-it)f (-it)l. 

3y7T 0 

(18) 

This is the FHIP expression for the polaron impedance. The Green 
function g R(w) is given by: 

g R (w ) = 3 [ 1 - w 
2 

] 
Z 0 (w) 

and the conductivity obtained by putting this expression into 
(2) is: 

a(w) (19) 
Z 0(w) 

T~e treatment here is much simpler than in' 11 and the expres
swns (18) and (19) are obtained "automatically" without any 
complementary physical considerations. Of course the expression 
for the drift mobility which follows from ( 19) is the same as 
. I 11 d . th 1 1 . . . 1n an 1n e ow temperature 1m1t d1ffers from the correct 
result by the factor 3/2~. 

To obtain (19) we have made two approximations. The first 
while changing S by S0 to obtain (IS) and (16) from (II). The 
second while solving (16) in first order to obtain (17). Since 
the last approximation is exact to order a it cannot be the 
sourc~ of the above-mentioned discrepancy which is already pre
sent 1n lowest order. We can then conclude that in order to 
overcome this difficulty the important thing is not to improve 
the Feynman one-oscillator model by using a more accurate quad
ratic functional or even solving (16) exactly. On the other hand, 
c~ .. ~ ~c~ld. ~~i ~v iwp~v-v-.::. (!5) t,:y- ~v..-.. .;.i..!~a:-:i.L .. E, ..-::,~!-.. ~~ ;:~~w.; .iL-.. C.J.l 

expan&ion of dE(r) i(a) > 
8 

in powers of S-8 0 

.:. .:. n 
... -• ... ... ~ « x (r) x (a); (S- S 0) »So 

<x(r)x(a)":>
8

=<x(r)x(a)>8 + ,._ (20) 
o n=1 n! <eso-S >s 

By using (14) and (16) it is possible to show that
0

the first 
correction (corresponding to n = 1 ) is equal to zero. Then (IS) 
is exact to first order in powers of S-8 0 • Since <8-So>So is 
proportional to a (for small a ) one could conclude that (IS) 
is also exact in lowest order. However, this point requires 
a more detailed analysis because for a <<1 and ~ » 1, <8-So>s 
is proportional to a~ and the expansion (20) could not be va-

0 

lid at low temperatures. Then other approximation schemes should 
be developed on the basis of the exact expression (II). 

S. POLARON EFFECTIVE HASS AND LIFETU1E 
AT FINITE TE}WERATURES 
Returning to the FHIP expression for the impedance (18) and 

deforming the contour of integration over t to Ret = 0, O<Imt<~/2 
and 0.$ Ret < .. , Im t = ~/2 ' 11 we obtain the following expres--

8 

.. 

sions for the real and imaginary parts of the polaron impedance 
at finite temperatures: 

R ( 
2 2av3 1 ~12 -8/2 

eZ 
0 

w)mw - -- [ dt[1- coshwt]C(t) f (t) 
av;;- o 

"" sinh ~w 
2 

sinh~ 

-S/2 
[ dt g (t)oostsinwtl 

2 
ImZ 0(w) = 

0 

t2 ~ 
g(t) =- +-

~ • 4 

sinh ~w/2 

sinh~/2 

.., -3/2 r dtg (t) costcoswt. 
0 

cosh~ - cos wvt 

sinh ~wv 
2 

(21) 

For a quasiparticle with effective mass M and lifetime r the 
impedance is ' 

Z 
0

(w) = Mw 2 + i Mw (22) 
T 

~/2 Then at low temperatures e >> 1, when r >> 1, and low frequen-
cies w<<1 the polaron behaves as a quasiparticle with 

M 
-= 

T 

2a~ 3/2 v3 

3 y;T sinh ~/2 1 4(v 2 - 1) v 1 + 
~wv 

where K 1 (z) is the cylindric function of imaginary argument. 
This expression for the polaron effective mass at low tempera
tures is exactly the same as obtained in the previous papert201by 
a quite different method. From the general results for the impe-
dance in a magnetic field of reference /10/ it can be shown 
that M is also the cyclotron mass at low temperatures and weak 
magnetic fields. In the weak coupling limit M coincides with 
the mass parameter M 11 of reference 191 if the last is taken 
at low temperature, low frequency and weak magnetic field. 

At higher temperatures the lifetime rapidly decreases and 
the quasiparticle picture is destroyed. Then the parameter M 
obtained from (21) and (22) does not coincide with the cyclotron 
mass (which is always greater than unity) and cannot be inter
preted as the polaron effective mass. 
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The generalization of the present approach to include the 
action of a static magnetic field and the detailed analysis of 
the temperature and magnetic field dependence of the polaron 
cyclotron mass will be given in a next paper. 

The authors wish to tbank Professor N.N.Bogolubov (Jr.) and 
Doctor N.M.Plakida for helping discussions. 
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<l>eAHHHH B.K., ropmKOB C.H., POAPHrec K. 
MeTOA KOHTHHyanbHOrO HHTerpHpOBaHHH B SaAaqe 
06 3neKTpOnpOBOAHOCTH nonHpOHa 

El7-82-435 

flpeAnaraeTCH HOBhlH llOAXOA K BhlqHcneHHW 3neKTponpOBOAHOCTH 
UOnHpOHa MeTOAOM KOHTHHyanbHOrO HHTerpHpOBaHHH. C UOMO~bW~op
MYJibl Ky6o 3neKTponpoBOAHOCTh nonHpoHa BbipaJKaeTCH qepes AByx
BpeMeHHyw KOMMyTaTOPHYW ~YHKL\HW fpHHa, KOTOpaH MO~eT 6hJTb 
nonyqeHa nyTeM aHanHTHqecKoro llPOAO~eHHH TeMnepaTypHOH ~YHK
l\HH fpHHa THna TOK-TOK. flocneAHHH BblpaJKaeTCH TOqHo qepes 
HHTerpan UO 3neKTpOHHbiM TpaeKTOPHHM. BbJqHcneHHe 3TOrO HHTer
pana B paMKaX BapHaQHOHHOrO npHHQHlla AnH CB060AHOH 3HeprHH 
nonHpOHa npHBOAHT B HyneBOM UOPHAKe K pesynbTaTaM <l>eHHMaHa, 
Xennsapca 'H,z:u:J,HHrca H flnaQMaHa. nonyqeHbl BbipaJKeHHH AnH 3~eKTHB
HOH MaCChi H BpeMeHH JKHSHH nonHpOHa npH HHSKHX TeMnepaTypax; 
npoBeAeHo cpaBHeHHe c pesynhTaTaMH APYrHx pa6oT. 06cYJKAaeTCH 
HCTOqHHK UOHBneHHH HenpaBHnhHOH HHSKOTeMnepaTypHOH SaBHCHMOCTH 
B BhlpaJKeHHH AnH APeH~oBoH noAB~HoCTH. 

Pa6oTa BbmonHeHa B Jia6opaTopHH TeopeTHqecKoH ¢HsHKH OIDIH. 
npenpHHT Oo~eAHHeHHOro HHCTHTyTa RAePH~X HCCfleAOBaHHH, AYOHa I~Hl 
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