


The property of invariance under the time reversal is an
important source of selection rules for matrix elements,sta-
tistical mean values, correlation functions, kinetic coeffi-
cients, etc. The derivation of such rules is essentially
based on the (formal) use of "time-reversed" state vectors,
or "time-reversed” wave functions (cf. Martin/! ). For ki~
netic coefficients, such as the tensor of electric conducti-
vityo, this microscopic approach yields the famous Onsager
relations. These relations connect the elements of such ten-
sors. For example, in the case of electric conductivity in the
DC homogeneous magnetic field B these relations read

%8 (n) =98q (—h)
The reason why one should change the orientation of the mag-
netic field h 1is clear. One can use the classical arguments.
Since the time-reversed state means the state of reversed
motion, to get such a motion in the magnetic field, one should
reverse the valocities of charged particles and also reverse
the orientation of the magnetic field (cf. Gottfried /¥ ).

The macroscopic derivation of the Onsager relation is ba-
sed on the principle of positive production of the entropy in
the nonequilibrium state (cf. de Groot, Mazur /3 ). The micro-
scopic quantum mechanical theory gives the explicit expres-
sions for kinetic coefficients but it needs the use of time-
reversed (the motion-reversed) states. In the framework of
quantum mechanics and in the case of absence of the magnetic
field such a discussion is presented in many textbooks (cf.
Chapter 26 of Wigner”s Group Theory 74/, Sec.39 of Gottfried”s
Quantum Mechanics/?%, or Sec.1.46 .0of Roman”s Advanced Quantum
Theory/5/ ). It seems, however, that there is lack of such
a discussion in the case of motion in the magnetic field. It
is the purpose of this paper to present such a discussion.

For reasons of simplicity we like to consider the simplest
exactly solvable example. We choose a free charged particle
in the DC homogeneous magnetic field. This problem was firstly
solved by Landau in 1930, his discussion can be found, for
example, in Quantum Physics by Gasiorowicz/6/. Landau has shown
that the motion in the plane perpendicular to the vector of
the magnetic field h (transversal motlon) separates from the
motion along an axis parallel to h. After Landau we assume
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that the magnetic field h 1is chosen to define the z -direc-
tion. He has also shown that the transversal motion is bounded
and the orbits are circular. Thus the motion is quantized and
is characterized by the Larmore frequency @ =eh /(uc) and
by the so-called classical radius of the ground (Landau)

level ¢ = wﬁ/uﬂ);Here e is the charge, u 1is the mass of a par-
ticle, ¢ is the velocity of light. Landau has shown that the
discussed problem is equivalent to the problem of linear har-
monic oscillator. Johnson and Lippmann/7/ and later Feldman
and Kahn/8/ proposed an elegant algebraic formulation of it.
In section | we consider a minor generalization of the results
obtained by Feldman and Kahn/8/. They discuss the motion of

a charged particle in the field oriented parallel to the z
axis. We shall introduce the matrix notation for both orien-
tations, parallel and antiparallel, simultaneously. In Sec.2
the properties of state vectors and wave functions are dis-
cussed. The matrix notation allows us to introduce the ope-
rator of the time-reversal in a rather natural way. An example
of the derivation of the selection rule is given in Sec.4.

1. THE ALGEBRA OF VARIABLES

-
Since the magnetic field h is directed along the z axis,
parallel or antiparallel, the vector potential is

B o= ox( - bS8y wel, g,
2 2

To take into account both allowed orientations of the magne-
tic field, we shall introduce the direct product representa-
tion for variables related to the transverse motion. The ge-
neral discussion of this representation is given, for example,
by Byron and Fuller /9/. The transverse components of the kine-
matic momentum I, , Hy in this representation are

"x=12®l>x-—12#ﬂa-z®y. ﬂy=12®Py+%-u_ﬂoz@y. (1a,b)

I3 being the unit matrix in the two-dimensional linear space
Cy , 0, is the 2x2 matrix(ggl).The Operators py , py » X 5 ¥y
are acting in space L as respective components of the momen-
tum and position operators satisfying the canonical commuta-
tion relations. The operators II,, Il act in the Hilbert space
H =C,®L%.As vectors of the basis in’ C, we choose the eigen-
vectors of the operator o, , which we denote by u,

g, U, =7u, (o0 = %1).

2 -

The Hamiltonian of transverse motion is

2. (2)

. L (p2
H, = 2 (N + Hy

This Hamiltonian commutes with the operator of the 2z compo-
nents of the angular momentum I, e L ,/8/

Let us introduce raising and lowering operators, which we
shall denote by a, at respectively

at = (2um)'én+, (3a)

a =(2uh)*0_, (3b)
where I ,TI_ are linear combinations of II,, I]y

M, =11_ ¢ iaz'ﬂy . (4a,b)

The operators a, a* are easily seen to obey the commutation
rule
+
[ara]’=l2®1ln

where I, is the unit operator acting in L.
The transverse motion Hamiltonian can be expressed in terms
of at,a as

H, =50 (a*a +-—;—I2alt ). (5

It is well known that spectrum of H: is bounded from below.
The spectrum of the operator of number of quanta N = at a is
0,1,2,.. . The raising and lowesing operators do not commute
with 12@ Lz

{I,eL,,a*1=ba*0s,, (I,eL, ,al=-bao,. (6a,b)
However, the operator I;eL, commutes with N, hence, also
[H,,I,eL,1=0.

We shall introduce the operator of orientation of the magnetic
field

S =7‘zgll.

This operator commutes with the all introduced operators. This
means that the Hilbert space X can be decomposed into mutually
orthogonal subspaces H+ ,» H_.Since the state vectors are la-
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belled by the eigenvalues of the operators N, I,®L,, o,
these subspaces are spanned by the vectors |n,m,+>= n(.)m>+ ),

|n,m,~> =( ?i,m>.. ,respectively.We denote these vectors by |n,mo>.
The state vectors|n,m>, were introduced by Johnson and Lipp-
mann/?7/ (cf. also Feldman and Kahn/8/ ). The component |n,m>_
corresponds to a state in the magnetic field oriented anti-
parallel with n excited quanta and the azimuthal quantum
number m., We have

N|n,mg>=n|n,m,o>, I9eL .| n.m,a->'=f1m| n,m,0>, S|nm,0>=0{n,m,o>.

Thus, the state |n,m,0> with n #0 corresponds to the excited
state since the energy in this state is greater than in the
ground state with n=0.

The matrix element of any physical observable taken bet-
ween two different subspaces H, and H_. vanishes. Similarly,
one can show that a vector of { which has components in dif-
ferent subspaces cannot represent a physical state of the
system. (This is a special case of the superselection rule.
The simple presentation of this problem is given by Roman /5/).
The wave function of the state (n,m,0) is

W¥oms (2Y) = <xy|nm>;
hence, the independent two—component wave functions are

uge ¥, (xy), (o =11),
We complete the algebraic structure of the problem by intro-
ducing additionally two operators which raise or lower only
the azimuthal quantum number m.These operators, which we de-
note by X, ,X_. are related to coordinates of the center of or-
bit (Kubo et al,/10/) ‘

X+ = -;—Ize (x+iy) + Giﬁ-o" @(px+ipy). (7a)
=1 e (x-i S S —i
X_ 3 1,8 (x—iy) + (#Q)aze(px 1py). (7b)

They satisfy the commutation rules

[X,.X_1=2%,®1,, (8)

(10L,.X,0 =hX,, [1,°L,X ] =-hx_. (9a,b)
Using the relations

X+X"= 71-%-(1-”\1 —a'zeLz)"j“(Iz*'”'z)eIt' (102)

a0

X X+ = -’Igﬁ (th —0, eLz )"’ TL—%_(IZ 0y )e It ’ (10b)

and Eqs. (9a,b), we can easily check that the operators com-
mute with H,

(H, ,X,1=0, [H, ,X_]=0. (1)

2. CONSTRUCTION OF STATE VECTORS AND WAVE FUNCTIONS

Now, we consider the state vectors. Suppose that there

exist two degenerated ground states {0,0,0>

N|0,0,0> =0, I, ® L,|0,0,0>=0, ${0,0,0>=0{00,0>". (12)
These relations are consistent with

a|0,0,0>=0, 13)
and in virtue of (10a,b) with

X0.|0,0.0~>'. (14)

We can construct the vectors of an excited state |n,m,0> with
the help of operators at and X _,. Let us construct such

a state vector. First of all, we shall find restrictions on
the allowed values of m. With the use of the commutation ru-
les (9a,b) and formulas (10a,b) a little algebra shows that

»

X, |n,m,+> =20 2 (n-m) | nm+1,+>, X_|nma4>=y\ 20 2(n—m+1) |n,m—1,+>

X+|n,m,—>'-\/i22 2(n+m) | n,m—1,~>, X_ln,m,+>=\/'2l2(n+m+1) | num1, —>

So, the states X+|n.n,+>', X+|n,-n,—> vanish.Hence,for the state

|n,m,+>
~o0 _<_m S n

and for |n,m,~>
-n<m <Leo .,

The general state |n,m,0> is obtained with the help of the ope-
ratots at,X_,



(p~om) 4+ pn

(X4) (a”)

[n,mo> = —=
V(22 2{e=m0Yy_om)in!

l0.0.0"). (15)

Similarly as in the case of an ordinary linear harmonic oscil-
lator the conditions (13), (14) for matrix elements of the
operators a , X,, between the states uze|xy> and |00,0>
yield the differential equations for the wave functions of
ground states. The wave function of an excited state can be
obtained in the way familiar to the theory of linear harmonic
oscillator (cf. Baym/1V/),

3. TIME-REVERSAL OPERATION

Now we shall construct the operator of the time-reversal T.
We demand that operators [l, transform in the familiar way

m—1

TN, T = -1, (a=xy). (16)
From the commutation rule for I, , Il

[, '"y] = -iuﬁﬂo‘z el,
we see that this relation is preserved if

T-a-xeo,‘ (17)

where & is an antilinear operator. The definitions of the ope-
rators NI, , Ml show that 6 is the familiar operator which
changes the sign of momentum

0pa0'l-—pa (a = %,y,2).

In the coordinate basis # 1is simply the operator of complex
conjugation K (Wigner /%, cf. also Gottfried /%, Chern and Tu-
bis /12%/)

<t]8[F’> = K8(1-t"),
where for any complex number a
Ka =a*K, (K=K!a=K*).

We should show that the Hamiltonian is invariant under the
time-reversal operation. For this purpose we shall study the
transformation properties of the operators a, at under time
reversal. By (17) and (3a,b) we have

(18a,b)

TaT lx-a, Ta*t T la-at .

‘

Thus,. the Hamiltonian H: 1is invariant under the time rever-

sal
TH, T !=H,.

This relation follows also from Eqs. (16) and (3a,b). The ope-

rator I,eL, is odd

Tl, oL, T '= -1, 6L, . (19)
The operators X, , X. transform quite diffgrently

TX, T-!=X_, TX_T-l=X_. (20)

The obtained rules of transformation allow us to verify that
all commutation rules remain unchanged. We conclude that the
introduced time-reversal operation does not change the algeb-
raic structure of the theory.

Let us now study the transformation properties of state
vectors and wave functions. It is easy to check that the vec-
tor T|n,m,o> is proportional to |n,~m,~0>.Indeed, T |n,m,0> cor-
responds to the reversed direction of the magnetic field and
to the azimuthal quantum number (—m)

ST|nmo>=T T_ISTI n,m,0 > =-o-T|n,mo> , (21a)

1,eL T|nmo>=TT I, L, T|nmo>=-fmT|nmo> . (21b)

The same consequences follow from relations (15), (l18a,b),
and (20). Since
(<n,m,e|T)(T|nm,o>) = <n,mo |nmo>= 1

the vectors |n,—m,~>,Tin,mg>differ only by a phase factor.

T|nmo> = e % |n~m,-0>. (22)

Since we know the operator of the time-reversal in the coordi-
nate basis, we can find the time-reversed wave function. We
have

(s, Ko ¢ (xy)=u_g @y (xy)=u_,e¢, . ,(xy).

Thus, we conclude that we get the time-reversed wave function
if we interchange the components of the two-component wave
function and change the sign of the azimuthal quantum number.
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4. THE SELECTION RULE FOR THE TENSOR OF ELECTRIC CONDUCTIVITY

For illustrative purposes we shall derive the selection
rule for the tensor of electric conductivity o, . For simpli-
city we shall consider only components of this tensor con-
nected with the transverse motion. This means that pwaxy. To
introduce the electric conduct tensor, we should define the
current density operator j. The electric current is both due
to the motion of center and due to the orbital motion of
charged particles. So, we shall introduce the relative coor-
dinates of the cyclotron motion (Kubo et al./10/ )

E=ou)' ., g=-aw I,
and its center coordinates

= (I® x~§), Y =(Isgy—-1n).
Components of the current carried by a particle in the plane
can be written as :
iy=eX +£), jy=e(Y+n), (23)
where X , €, etc., mean the commutator with H, , e.g.,
; i
X = -[H XI.
All kinetic coefficients, i.e., the components of the tensor
of electric conductivity, are connected with the statistical
mean values. Such mean values are traces with the density ope-
rator p. However, we should remember that here we should ex-
clude the averaging over two possible directions of the magne-
tic field. This means that for any var1ab1e ‘A the mean value
for a system in the magnetic field a[hl zis
Tr(P AP p)
<A> = A S’ LA 3 <P AP >,
o Te(P, p) g o e
where P, is the projection operator onto the subspace H, . In
the basis of vectors {n,m,s> we have
2 <n,m,o|:Aln,mgs>e “PEn
.<‘A>:V7> = BE .
>,
The time-reversal’' operatlon couples the mean values <A> ,<A> .
The Fourier transform of the electric conductivity tensor
auv(w ,0-) is given by the Kubo formula (Kubo et al./10/)

w . B
1 -1t . . . .
9 (©,7) = I g dte or dA <P j, (—15A)1u(t)P7_> .
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