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The property of invariance under the time reversal is an 
important source of selection rules for matrix elements,sta
tistical mean values, correlation functions, kinetic coeffi
cients, etc. The derivation of such rules is essentially 
based on the (formal) use of "time-reversed" state vectors, 
or "time-reversed" wave functions (cf. Martin II/ ) . For ki
netic coefficients, such as the tensor of electric conducti
vityu, this microscopic approach yields the famous Onsager 
relations. These relations connect the elements of such ten
sors. For example, in the case of electric conductivity in the 
DC homogeneous magnetic field ti these relations read 

... ... 
aaf3 (h) = '7{3a (-h). 

The reason why one should change the orientation of the mag
netic field ~ is clear. One can use the classical arguments. 
Since the time-reversed state means the state of reversed 
motion, to get such a motion in the magnetic field, one should 
reverse the valocities of charged particles and also reverse 
the orientation of the magnetic field (cf. Gottfried 12/ ) • 

The macroscopic derivation of the Onsager relation is ba
sed on the principle of positive production of the entropy in 
the nonequilibrium state (cf. de Groot, Mazur /3/ ). The micro
scopic quantum mechanical theory gives the explicit expres
sions for kinetic coefficients but it needs the use of time
reversed (the motion-reversed) states. In the framework of 
quantum mechanics and in the case of absence of the magnetic 
field such a discussion is presented in many textbooks (cf. 
Chapter 26 of Wigner~s Group Theory /4/, Sec.39 of Gottfried~s 
Quantum Mechanics/2/, or Sec.J.46.of Roman~s Advanced Quantum 
Theory/5/ ). It seems, however, that there is lack of such 
a discussion in the case of motion in the magnetic field. It 
is the purpose of this paper to present such a discussion. 

For reasons of simplicity we like to consider the simplest 
exactly solvable example. We choose a free charged particle 
in the DC homogeneous magnetic field. This problem was firstly 
solved by Landau in 1930, his discussion can be found, for 
example, in Quantum Physics by Gasiorowicz/6/. Landau has shown 
that the motion in the plane perpendicular to the vector of 
the magnetic field h (transversal motion) separates from the 
motion along an axis parallel to b. After Landau we assume 
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that the magnetic field h is chosen to define the z -direc-
tion. He has also shown that the transversal motion is bounded 
and the orbits are circular. Thus the motion is quantized and 
is characterized by the Larmore frequency n = eh I (I' c) and 
by the so-called classical radius of the ground (Landau) 

level f == vtil~-t{l)• Here e is the charge, 11. is the mass of a par
ticle, c is the velocity of light. Landau has shown that the 
discussed problem is equivalent to the problem of linear har
monic oscillator. Johnson and Lippmann/7/ and later Feldman 
and Kahn/8/ proposed an elegant algebraic formulation of it. 
In section I we consider a minor generalization of the results 
obtained by Feldman and Kahn/8/, They discuss the motion of 
a charged particle in the field oriented parallel to the z 
axis. We shall introduce the matrix notation for both orien
tations, parallel and antiparallel, simultaneously.·In Sec.2 
the properties of state vectors and wave functions are dis
cussed. The matrix notation allows us to introduce the ope
rator of the time-reversal in a rather natural way. An example 
of the derivation of the selection rule is given in Sec.4. 

I. THE ALGEBRA OF VARIABLES 
~ 

Since the magnetic field h is directed along the z axis, 
parallel or antiparallel, the vector potential is 

!A -= ± ( - ~ y ll en x o ) 
2 ' 2 ' • 

To take into account both allowed orientations of the magne
tic field, we shall introduce the direct product representa
tion for variables related to the transverse motion. The ge
neral discussion of this representation is given, for example, 
by Byron and Fuller/9/.The transverse components of the kine
matic momentum n X ' fly in thiS representatiOn are 

1 1 
llx =-I2®Px- 2 ~naz®y, lly=I2® Py+T~-tOazsy, (la,b) 

!2 being the unit matrix in the two-dimensional linear space 
C 2 , CTz is the 2x2 matrix ( 01~ 1 ), The operators p x , Py , x , y 

are acting in space L 2 as respective components of the momen
tum and position operators satisfying the canonical commuta
tion relations. The operators n X' ny act in the Hilbert space 
}( =- C 2 ®L"2.As vectors of the basis in C 2 we choose the eigen
vectors of the operator a z , which we denote by Ua 

f1~Ua=T·Ua (u=-±1). 
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Th~ Hamiltonian of transverse motion is 

1 2 2 
"~ = - < n + n >. 21' X y 

(2) 

This Hamiltonian connnutes with the operator of the z compo
nents of the angular momentum I 2 ® L z /8/ 

Let us introduce raising and lowering operators, which we 
shall denote by a, a+ respectively 

+ .. -~ 
a = ( 2~-tnO) ll + , (3a} 

+ ~ a s(2"nn)- n_, (3b) 

Where fl+ 9 n_ are linear COmbinationS Of fl X, fly 

n± = n x ± i a z n Y ( 4a, b) 

The operators a, a+ are easily seen to obey the connnutation 
rule 

[a, a+l "'I 2 0 I
1 

, 

where I 1 is the unit operator acting in L 2. 
The transverse motion Hamiltonian can be expressed in terms 

of a+, a as 

H 1 = 1i 0 (a+ a + _!_I 2 e I 1 ) • 
2 

(5} 

It is well known that spectrum of H t is bounded from below. 
The spectrum of the operator of number of quanta N = a+ a is 
0, 1, 2, .... The raising and lowe•ing operators do not commute 

with I 2 ® L z 

r I 2 ® L z 'a+ 1 = t a+ (1 z • r I 2 B L z ,al "' -1i au·z . (6a,b) 

However, the operator I 2 sLz connnutes with N, hence, also 
with H t 

[ H 1 , I 2 eLz]'" 0. 

We shall introduce the operator of orientation of the magnetic 
field 

8=7·zsl 1 • 

This operator commutes with the all introduced operators. This 
means that the Hilbert space }( can be decomposed into mutually 
orthogonal subspaces }(+ , }(_.Since the state vectors are la-
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belled by the eigenvalues of the operators N , I 2® L z• uz, 

these subspaces are spanned by the vectors ln,rn,+>=(n0m>+ )• 

I n,rn,-> ={l~.m>- \,respectively •. We denote these vectors by jn,rn,u>. 
The state vectJrsJn,m>+.were 1ntroduced by Johnson and L1pp
rnann /7 I (cf. also Feldman and Kahn IBI ) • The component I n,rn>~ 
corresponds to a state in the magnetic field oriented anti
parallel with n excited quanta and the azimuthal quantum 
number rn. We have 

N I n,rnu->= n I n,rn,u>, I 2 e L z I n,rn,u> = 1i rn I n,rn,u>, Sl n,rn,u> =u I n,rn,u>. 

Thus, the state I n,rn,u> with n ;lO corresponds to the excited 
state since the energy in this state is greater than in the 
ground state with n = 0. 

The matrix element of any physical observable taken bet
ween two different subs paces }(+ and }(_ vanishes. Similarly, 
one can show that a vector of J( which has components in dif
ferent subspaces cannot represent a physical state of the 
system. (This is a special case of the superselection rule. 
The simple presentation of this problem is given by Rornanl51). 
The wave function of the state (n,rn,u) is 

·'~'nmu.(x,y) = .<x,y I il,rn>u 
hence, the independent two-component wave functions are 

U u ® 'I' nm !7( x,y) • ( u = ±1 ) • 
We complete the algebraic structure of the problem by intro
ducing additionally two operators which raise or lower only 
the azimuthal quantum number rn. These operators, which we de
note by X+,X- are related to coordinates of the center of or
bit (Kubo et al. I 101) 

X+= 2
1 

12e (X+iy) + -*-C7·z e(Px+ipy), 
(~-tu) 

X=~ I2e (x-iy) + (~-tiO)u·ze(px-iPy). 

They satisfy the commutation rules 

[X+,X_l = 2f 2uze I 1 , 

[1 2eLz ,X+l = 1ix+, [ 12 ®Lz,X_] =-1ix_. 

Using the relations 
2 ~ ti X X= --(nN-C7 eL ) +--(I +u ) ®I + - flo z z flo 2 z t 

4 • 

(7 a) 

(7b) 

(8) 

(9a,b) 

(lOa) 

'/,1 

'(f,'t 

I ''"" ~~~ 

2 + 1i :X_X+= flo (nN-uz®Lzl+llo (12-CYz)eit, (lOb) 

and Eqs. (9a,b), we can easily check that the operators com
mute with Ht 

[ H1 , X+] = 0, [i:l 1 ,X_] = 0. (II) 

2. CONSTRUCTION OF STATE VECTORS AND WAVE FUNCTIONS 

Now, we consider the state vectors. Suppose that there 
exist two degenerated ground states I O,O,CY·> 

NIO,O,u> =0, 12 ~ Lzi0,0,C7>=0, SIO,O,u>=CYIO,O,CY·>. (12) 

These relations are consistent with 

a I O,O,u> = 0, (13) 

and in virtue of (IOa,b) with 

X I O,O,CY·>. 
(7' 

(14) 

We can construct the vectors of an excited state I n,m,CY>.with 
the help of operators .a+ and X -CY' Let us construct such 
a state vector. First of all, we shall find restrictions on 
the allowed values of rn. With the use of the commutation ru
les (9a,b) and formulas (JOa,b) a little algebra shows that 

" 
X+ I n,rn,+> - J: 2f 2 (n-m) I n,m+ 1,+>, X_l ri,m,+> = v' 2f 2(n-m+1) ln,rn-1,+> 

-·---
X +I n,m,-> ;..v': 2f 2(n+rn) I ri,m-1,->, X _I ri,m,+>•v' 2t 2(n+m+1) I n,ID+1, -> 

So, the 'states X+ln,n,+>, X+ln,-n,-> vanish.Hence,for the state 
1 n,rn,+> 

-oo .S rn .S n 

and for I il,m,-> 
-n $_rn :;;oo. 

The general state I n,rn,CY> is obtained with the help of the ope
ratols a+ , X -a 
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(n~m) + n 
(~) (a ) 
-=-----=-~.;;:=... I O,O,cr> . 
v(2f 2)(n-mt7\n-(1m)!nl 

1 n,ma > = (15) 

Similarly as in the case ~f an ordinary linear harmonic oscil
lator the conditions (13), (14) for matrix elements of the 
operators a , Xi(T between the states u 17 .® I x,y >. and I O,O,u>· 
yield the differential equations for the wave functions of 
ground states. The wave function of an excited state can be 
obtained in the way familiar to the theory of linear harmonic 
oscillator (cf. Baymllll). 

3. TIME-REVERSAL OPERATION 

Now we shall construct the operator of the time-reversalT. 
We demand that operators lla transform in the familiar way 

Tlla·T- 1
= - lla (a • x,y). 

From the conmutation rule for n X • n y 

[ llx, lly] • -i~-t1iOaz ®1 1 

we see that this relation is preserved if 

T • ux e 8 , 

(16) 

( 17) 

where 8 is an antilinear operator. The definitions of the ope
rators fiX t fi ShOW that (} iS the familiar Operator Which 
changes the si~ of momentum 

8 p 8-l • -p (a .. x,y,z). 
a a 

In the coordinate basis (J is simply the operator of complex 
conjugation K (Wigner I 41, cf. also Gottfried I 21, Chern and Tu
bis ll'l/) .. ... ..... 

. < r I 91 r' > • K 8 ( r- r' ) , 

where for any complex number a 

Ka •a*K, (K-r1 -K+), 

We should show that the Hamiltonian is invariant under the 
time-reversal operation. For this purpose we shall study the 
transformation properties of the operators a , a+ under time 
reversal: By (17) and (3a,b) we have 

TaT-1 .. -a, Ta+ T-1-a + . (I Sa, b) 
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Thus,. the Hamiltonian H t is invariant under the time rever
sa1 

T -1 Ht T = Ht • 

This relation follows also from Eqs. (16) and (3a,b). The ope
rator I 2 ® L z is odd 

T -1 1 2 ® LzT = -1 2 ®Lz, (19) 

The operators X+ , X_ transform quite differently 

TX+ T-1,. X_, TX_ T-1= X+. (20) 

The obtained rules of transformation allow us to verify that 
all conmutation rules remain unchanged. We conclude that the 
introduced time-reversal operation does not change the algeb
raic structure of the theory. 

Let us now study the transformation properties of state 
vectors and wave functions. It is easy to check that the vec
tor Tjn,m,tT> is proportional to I n,-m,-a>.Indeed, T !n,m,u> cor
responds to the reversed direction of the magnetic field and 
to the azimuthal quantum number (-m) 

-1 STI n,m,u >= T T STI n,m,11 > '"'-u·TI n,m,u > , (21a) 

I 
2 

8 L z T I n,m,11 > • T 'I'"" 1 I 2 ® L z T I n,m,u > =-11m T I n,m,a > (21b) 

The same consequences follow from relations (IS), (18a,b), 
and (20). Since 

( <n,m,a IT) ( Tl n,m,11 >) = <n,dla I n,m,u>• 1 

the vectors ln,-m,-J_7>,Tin,mp>differ only by a phase factor. 

'8 T I n,m,u > • e 1 I n,-m ,-u> . (22) 

Since we know the operator of the time-reversal in the coordi
nate basis, we can find the time-reversed wave function. We 
have 

(:7j, 8 K) 1\,-8 t/J nm u (x,y)= u-a ® t/l~mJ.x.y) "' u_u ® 1/Jn,-m,a (x,y). 

Thus, we conclude that we get the time-reversed wave function 
if we interchange the components of the two-component wave 
function and change the sign of the azimuthal quantum number. 

t 
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4. THE SELECTION RULE FOR THE TENSOR OF ELECTRIC CONDUCTIVITY 

For illustrative purposes we shall derive the selection 
rule for the tensor of electric conductivity a· • For simpli
city we shall consider only components of thi/~ensor con
nected with the transverse motion. This means that ll+V=X,y. To 
introduce the electric co~duct tensor, we should define the 
current density operator j. The electric current is both due 
to the motion of center and due to the orbital motion of 
charged particles. So, we shall 
dinates of the cyclotron motion 

introduce the relative coor
(Kubo et al./10/ ) 

e :; (nil )-1 lly • TJ = -(nil )-1 
llx • 

and its center coordinates 

X = ( l2® x-e), Y=(IhY-TJ)· 

Components of the current carried by a particle in the plane 
can be written as 

j x = e (X +~) , iy=e(Y+TJ). (23) 

where X , e, etc., mean the commutator with Ht , e.g., 

X = ~ [ Ht ,Xl • 

All kinetic coefficients, i.e., the components of the tensor 
of electric conductivity, are connected with the statistical 
mean values. Such mean values are traces with the density ope
rator p. However, we should remember that here we should ex
clude the averaging over two possible directions of the magne
tic field. This means that for any variable !A the mean value 
for a system in the magnetic field a jhj ~ is 

Tr(P !AP p) 1 <·A> = __ !L___!!._· - = - .<P A P >. , 
a Tr( p a p) 2 a· a 

where Pa is the projection operator onto the subspace Ha . In 
the basis of vectors jn,m,a·> we hOve 

~ .<n,m,a I !A I n,mp> e - En 
<A> = .!!L~------------

7 ~ -(3 En' 
*"' ,e 

The time-reversa'l'~peration couples the mean values .<~A>7 ., <!A> . 
The Fourier transform of the electric conductivity tensor~· 

a (w,a ) is given by the Kubo formula (Kubo et al. /10/) 
ILV 

1 ~ ~wtf3 . 
a;w (w ,!7·) = -- ( dte ( d,\ <P j (-iti.\) j (t)P. > • 

r- 2V 
0 0 

a v p. a 

8 .. , 

The operators jp. ' jv are taken in the Heisenberg picture, 
e. go.' iHtt _ iHtt 

-r- --r-
j,.,. (t) • e j,.,. e 

Consider a component a (w,-a) 
p.v 

~ -iwt f3 
a,v(w,-a-)=fdte fd,\~ 

r- 0 0 mn 

-f3En 
<m,n,-a I j ( -i'ft ,\) j (t) I n,m,-a·> e (3 • 

v !l . ~ e- En' , , 
m ,n. 

The sum of matrix elements of the product of currents 1s equal 
to 

, , . , , • . . -,\(En-En') T(En-En..) 
~ <n,m,-a·l j In ,m ,-a> <n ,m ,-a I J I n,m,-a> e e 
m,,n , V -ll· · 
m ,n 
where we introduced ... the unit operator ~ .ln',m'p'><n',m',a'l· 
Since the operator j does not couplen'M subspaces H+, H_ 
only elements <n,m,-aj jv I n',m', -a> do not vanish. Reversing 
the sign of m and m', using Eq. (22) and the Hermiticity of 
the current density operator, we get for this sum 

~ <n,m,a·! j (-ih,\)j (t)j il,m,a>~ 
m,n ll· V 

This means that 

a· (w ,-a·) =a· (w ,a), (24) 
ILV vp. 

This is the Onsager 
duct ion. 

relation for the tensor of electric con-

The author would like to express his thanks to Dr. A.Z.Jad
czyk who has contributed greatly to the content of this paper 
through valuable discussions •• 
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