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I. INTRODUCTION 

One of the most important aims of the statistical mecha
nics is to calculate mean values of various variables. For 
systems of interacting particles it is not trivial task to 
compute these mean values. In order to diminish the computa
tion work one uses some sum rules and selection rules. The 
selection rules couple different components of tensors, real 
and imaginary parts of Fourier transforms, etc. They follow 
from symmetries of considered systems (cf. for example the 
paper by Bogolubovll/ ). It is well known that one of the 
most restrictive symmetry property in this respect is an in
variance under the time reversal (cf. for example Gotze and 
Michel/2/ or Paszkiewicz /3/ ) • Since usually the variables 
of quantum statistical mechanics are expressed in terms of 
field operators or even more frequently in terms of particle 
operators, the knowledge of the transformation properties of 
these basic operators is very useful. It seems that this prob
lem has not been discussed in the frame of nonrelativistic 
quantum mechanics. The discussion given in quantum field 
theory (cf. for example Kallen/4/) is not very well suited 
for the purposes of nonrelativistic quantum statistical mec
hanics. So, we shall give a simple and complete discussion of 
this topic. 

2. TRANSFORMATION PROPERTIES 
OF THE FIELD AND PARTICLE OPERATORS 

As usually in nonrelativist-ic quantum statistical mechanics 
we shall limit ourselves to the case of spinless bosons and 
spin-1/2 fermions. Our discussion can be generalized to more 
complicated cases. 

Let us begin from a simpler case of spinless bosons. De
note an arbitrary n -particle state vector ~n and an arbitrary 
case vector in the position basis by 'Pr1 ... r 0

• For a matrix ele
ment of the time reversal operator(} we have (Wigner /5/ ) 
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... n r1 , ... ,r 0 being the n -partl.cle wave funct1.on. In order 
to establish the transformation properties of the field ope
rators .p(1) we shall use the formula connecting the wave 
function tll 0 (-;l•"'•-;n) with the mean value of the product of 
field operators (cf. for example Robertson /6/ ) 

... .. 1 .. .. 
Ill n ( r l'"'' r n> = -==.. ( Oo • rp (r I) .... rp (r n) Ill n ) • 

where 0 0 is the v'Jt~ndegenerate vacuum of particles. Consider 
the time reversed state 8 tlln . Since the vacuum state is inva
riant under the time reversal we have 
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0
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-1 .. -1 .. ' * = ( 0 0 , 8 . rp (r 1 ) 8 ... 8 rp (r n) 8 tlln ) . 

Comparing this formula with Eq.(l) we see that it is consis
tent to set 

.. 1 .. 
8 "'(r) 8- = "'(r), 8 .p+ (~) e-I • .p+(;), (3) 

This means that for the time dependent operators we get 

8 .p (;,t) 9-1,. .p (;, -t), 8 .p+ (;,t) 9-1 • .p+(;, -t). 
where for example 

iH t iH t .. T .. -11 rp (r,t) = e rp (r)e • 

Analogously, using the transformation rules for Pauli-spi
nors in the position basis (Wigner/5/), w~ obtain for the spin 
-1/2 particles 

8 rp _j_ (;,t) 8 -I 
s 

2 

-1<s+1) .. 
.. (-1) .P_.J...1r,-t), 

2 (4) 

...!.(!tt-l) + .. 
(-1) 2 1/1 _ -l. 

8 
(r,-t), 

2 

8 r/1~ (;,t) 8-1 
= 

2 8 

where s = ±1. 
Since the field operators are not measurable, the transfor

mation rules (3), (4) are not unique. This is a quite general 
property. For example, in the quantum field theory two diffe
rent rules are used. One of them was proposed by Wigner and 
another one by Schwinger (cf. Kallen/4/). 
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• The occupation number representation requires the introduc
tion of th~ complete orthonormal set of one-particle wave func
tions I u (r) I . The field operators are expanded in terms of 

• D th1.s set. e.g., .. ... 
rp (r) == ~ u (r) a • 

D D D 

With the use of the transformation rules (3) and the ortho
normality condition for the set lu (~!,the transformation 
properties of the annihilation and

0
creation operators can be 

easily established. For example 

8 8-1 
an = 

3... ... ... 
(5) ~ ( d r u (r)u , (r) a , , 

, n n n 
n 

-}<!tt-l) ... ... 
8a 1 8-I = ~ (-1) (d 3r u (r)u -(r)a, I • (6) 

n,2s n' n n n,-2s 

For the complete set of plane waves in a box of the volume V 
we have 

...... 
... ... 1 ikr 

uk {r) • --=- e 
.. v'V 

where k is a wave vector. ~rom Eqs. (5) and (6) one can de-
duce that 

1 -l(1+s) 
8 ak-+ 8 - 1 = a_.., , (} a ... k _J_ 8 - .. ( -1) 2 a -:_ _ _.!_ . 

·k • 2 s ..... 28 
(7) 

Note that the first rule differs from those proposed by Enz 
for the phonon operators/7/. • 

Let us consider two simple examples of the derivation of 
the transformation rules for physical variables. Using the 
relation ~3) one can easily check that the current density 
operator j (f) 

...... ii +.. ... + ..... 
j ( r) = -

2
-. [ r/1 (r) V r/1 (r) - (V rp (r)) rp(r) ] 
!Dl 

is odd under time reversal 
... ... -1 ...... 

8j(r)8 =-j(r). 

The second example is the Fourier transform of the spin den
sity operator ;t 

... 1 ... 
sk ..... -.}. ,(cr) , a+ ...... k 1 a ... 1 , , 

2 q, s,s ss q- '28 q, 28 

wh~e ; is the vector which components are the Pauli mat-
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rices. The second of the relations (7) and the corresponding 
relation for the creation operator imply that 

.. 1 .. 
(J ·sk o- = - ·s-k 

3 . THE EXAMPLE 

Now we can present a simple 'example of the selection rule 
which follows from the established transformation rules. For 
this purpose we shall consider the mean value of an operator 
~A in the time reversed basis which we shall denote using the 

index (-h), where his a vector of the strength of a magnetic 
field or the angular velocity. We shall use the formula (Zu
barev /8/ ) 

(} (} - 1 . A l A+ . < ~A > -h = <~ > 1i • .<! >h ' (8) 

where <~A'> means the expectation value of the variable !A for 
the system in the thermodynamic equilibrium. As a simple 
example we take the density of electrons 

+ .. .. 
~A .. r/J 1 (r) r/J 1 (r). 

Relations:2(4) and:2{8) yield 

+ .. .. -1 + .. .. 
<8 r/J 1 (r)r/1 1 (r)O > .... <r/1 1 (r)r/J 1 (r)> .. , 

-s -8 -h --8 --8 -h 
2 2 2 2 

+ .. .. -1 + .. . + .. .. 
< (J r/J 1 ( r) r/1 1 ( r) (J > .. = < r/1 1 ( r) r/J 1 ( r) > ~ = <r/1 1 ( r) r/1 1 ( r)> ..... 

- 8 - 8 -h ........ 8 - 8 h - 8 - 8 h 
2 2 2 2' 2 2 

Therefore the above formulas imply that 
+ .. .. + .. .. 

< r/1 1 (r) r/1 1 (r) >:. ... < r/1 1 (r) r/1 ..l. (r) > ... 
-8 _... s h - ...A..s - s -h 

2 . • 2 • 2 2. • 
a van1sh1ng external f1eld we obta1n the obv1ous relation For 

<r/l"'i 8(;) r/J..l.s (;)>' = <r/1_+..1.8(;) "'-~8(;)> · 
2 2 2 2 

Less trivial relations can be derived for the time dependent 
correlation functions or for Green functions. 

It is a pleasure to thank Professor D.N.Zubarev for his 
interest in the present work. 
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