


The representation of a superconductor as the equilibrium
mixture of two electron liquids is the basis of the phenome-
nological theories developed by Gorter and Casimir, F.London
and H.London, Ginsburg and Landau (see ref. /17y, It is sup-

posed in these theories that the total free energy of a system

in the superconducting phase has a form

F(w,0)=f(1-w)F, @) +¢(w)F, (@),
where F;(B)is the free energy for normal or superconducting

electrons and f(-),#(.) are some functions of the superconduc-

ting electron concentration W. The form of these fungtions

is determined from the comparison with the experimental data.
In a microscopic theory superconductor is described by

an effective four-fermion Hamiltonian’#'® which is gauge

invariant /4 with the symmetry group U(l)However, the super-

conducting state is not gauge invariant. So, in compliance

with the quasi-means method of Bogolubov’/#5 it can be des-

cribed as follows. Due to the transformation

+ + - + t x .y
a(k,*)a(—k,¢)=a (k)- a(—k,&)a(k.? )=0 (k)' o (k)={0 (k)ila (k)!/zv

the quasi-spin representation can be constructed’®. Here o¢

is a component of Pauli spin vector and a*(.),a(-) are the
fermi-operators for electrons. Let ¢ be the polar angle in
the XY -plane of quasi-spin space. The Bogalubov-BCS Hamilto-
nian is inv_zg:/iant with respect to the gauge transformation
ak) »ak e! g /6/ which describes the rotation of k-th
quasi-spin. The k-th 9uasi—spin state l/lk¢,with the angle ¢
obeys the condition 1 :
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where E ; is the three-dimensional vector with the polar angle

for the projection on the XY -plane. . The vacuum state -
pro}

of the whole system, characterised by the angle ¢, is
=1e cH, .
Yo = Wo¥ar ¥4
Here }(¢ is the incomplete Neumann product of two-dimensional
"one-particle" Hilbert spaces’?’.One can easily see that two
states ¢ ,, ¢ ;.(d#£¢’, —¢’) are orthogonal to each other in

the thermodynamic limit. Let us fix the angle ¢=0. The states
¥, }(0 are noninvariant with respect to U(l) group. So, they

can desgribe the "superconducting electrons” (Hg=X (s) ).

Alternatively, the space H®
ve H® LK,

contains the invariant states with respect to U(1). In the
framework of the quasi-means method each phase state of the
system is defined on the corresponding space of states.

It is natural to define the two-liquid mixture on the
space /8/

K-X®oy®,

In this case the total Hamiltonian of the systemH,which is
constructed from the operators t,a, should be defined as a
direct sum of the suitable nonequivalent representations

H=H,e H,.

Now we shall use the approach of the papers‘/mluﬂ which
was developed for the description of the heterophase states.
At first it should be noted that the existence of equilibrium
states in statistical mechanics is stipulated by the limit of
t ++ », Where t is the time of observation. In a uniform system
the heterophase fluctuations can freely move in the whole
volume of the system and their sizes and number can change.
The complete uniform mixing should be performed in the macro-
scopic system at t-+oa Then, any point of the volume can con-
tain the electron corresponding to the definite phase (with
the state on H; ) with the suitable probability. For such
a phase mixture the existence of an electron with momentum
k and spin § and its phase quality are the independent events.
So, it is matural to renorm the operators by the following
manner /8’

8,0 VW, (),

where the phase concentration W, is defined by the condition

N
v =_ﬁL’NE§N1' Ny=2 <3, @8)s,ks)>, G=ns). ()

»
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The same method was used for the construction of the micro-
scopic model of a ferromagnet with paramagnetic nuclei /11+12/,
Let us consider for generality the Hamiltonian containing an
effective attraction and Coulomb repulsion of electrons as
well

. - 2

H=H eH_, Hi=w T -w’(A -Q,). 2)
Here
; +

2 * ~
T = e @0, @, fi(k)_=‘:; —#yy 0y = X8, (k8)aks);
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A‘E'z—v_li’:l(kvk )ai(kv $)a‘ (—k-‘)ai(—ky‘)ai(k 9?)
1 o2 sy
Q=55 U(q)p, (q)p @), U(Q= — q|2 » (@ = 2 ai(l!=+q.5):=l,(k,8)

(a7 0)
Here y, is the chemical potential of i —-th phase, J(.) is the

parameter of the effective interaction and p(q) is the Fourier-

components of the space density of electrons. Then in compli-
ance with expressions
N =— x, /8
i
(@ is the temperature) the normalization condition (1) can be
presented in a form of
w. 2 <n,(k)>
5 )
L k —W =lew
8 2 [w <n (k) >=(1-w Xn (k)>] e s (3)

, 0, =-@lnSpe 't

Besides that we have the phase equilibrium condition Hp=Hg
which has the form

?F =-|aF—' F=0Q. + w, N
% aw,, (I R A A
Thus we obtain
2w E<Q =B >=<T o Ts >+2<Q -A,>. (4)

Here gx’> denotes the mean value of the operator X,;.One can
define Wg,W and p from the equations (3), (4) as functions
of 8 and of interaction parameters.

The two-liquid model of a superconductor is completely
_ described by the expressions (2)-(4). It should be emphasized
that for the special case of w,=1, which 'is a possible so-
lution of eq. (3), and when Q=0 the Hamiltonian (2) coinci-
des with the standard Bogolubov-BCS model.

Let us consider some general properties of the model prob-
lem (2)-(4). One can easily see from (3) that w,=0 is one
of the possible solutions. It is known that such solution is
not stable below the critical p01nte In this point the macro-
scopic distinction between the phase components disappears.
So, from (3), (4) we have

v, 8 ,)=w (0, =172,
It should be noted that in the phenomenological theories &y
w (Gc)a w,(0,) =1. Below the critical point the concen-
tration we 1ncreases with decreasing temperature and reaches
the value wg =1 at the nucleation point whlch obeys the con-
dition .
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2<Q (By) - A, By)> =<T, @) =T, @y)>. (5)

Below the nucleation point g there is the pure superconduc-
ting state in the system (Wg=1, ®<@®y). In the nucleation
point there exists a dlscontmulty for the derivative of the

1)a (k’, +)>

and apparently there 1s a jump of the specific heat. It should
be outlined that ®y4=0 in the phenomenological theories. In
the model under consideration the case of @y>0 can obey the
equation (5) for some definite values of the parametrs of the
effective and Coulomb interactions. Moreover, for the large
<Qg> the equation (5) has apparently no solution®y>0, i.e.,
the ground state of the system is not purely superconductmg
and it contains the microscopic quota of normal electrons.

The deflection of Wg at ®=0 from unity should change the
character of the electron-density fine distribution that could
be observed by the experimental way’/13/ Besides this, such
system has to obtain some residual resistance and residual
heat conductivity.

Let us now consider the simple case of @+ 0 (the exclusion
of the Coulomb interaction). When@=0 a rigorous calculation
of <T;>and <A;> can, be done in the framework of the Trial
Hamiltonian Method’1%. Ve suppose now that’ /18/

order parameter A=—-— 2 J(k,k’ )<ai(k

J=const, |e(k)|< hog

Jk.k*) =
00 3 Ie(k)l>hwo.

It can be easily seen that in this case the phase transition
into the stable state with we=ls(at 8< ®,) occurs in the
point
-1
8,=1,134e7/Pol,
which conforms with the Bogolubov-BCS critical point. Here
pois the density of states per unit volume and per unit ener-—

gy on the Fermi surface. Besides the stable state a metastab-
le one can arise at @<® ,where

-1/pg 3
='2"®ce Po

. 1. Lz =
The concentration ws=72-1n the point® and below ® the value

~ ~2/p ol
©,=0.567¢ '°

of w, increases with the decrease of temperature up to the
valuew—l at 8=0.

o the stable two-liquid state is impossible when the
Coulomb interaction is absent in the system. Thus, we arrive
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at eonclusion that the existence of the normal component below
the critical point in the superconductor is due to the com—
petition between the effective attraction and the Coulomb
repulsion of electrons.

The detailed quantitative examination of the microscopic
two—llqu1d model for the superconductor which is constructed
in the present paper can be produced by the known me-
thods/3: 14,18/ The consideration of the external magnetic
field is also interesting because it plays the role of the
suplement disordering factor. It has a special importance
for the case of hard superconductors. We intend to perform
this program in the other papers.
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