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I. INTRODUCTION 

The structural phase transitions have been studied within 
the framework of the fluctuation theory of critical phenomena 
by means of the parquet approximation 111 as well as by the 
Wilson renormalization group approach 12·~ to first order 
of both theE- and Vn -expansions 141.The relevance of the Mat
subara frequency for the quantum-to-classical crossover pheno
mena is clarified in the paper!&, where a variety of genera
lized Ginzburg-Landau models are considered to first order 
in£ =dc-d.Here d denotes the space dimensionality, whereas 
de is the borderline dimensionality. 

In this paper we present the results, obtained for the 
exact recursion relations and the critical exponents to se
cond order in £ for a model of a structural phase transition, 
considered in refs. 11•41 . We use the method, described in 
ref . 161 as "the large b limit". We have investigated the ge
neral recursion relations in two extreme cases: (i) The fi
nite temperature case (Tc fO),which turns out to be the clas
sical one 161 .Here we have no deviation from universality.The 
borderline dimension is d = 4 + O(E ). (ii) The limit of utmost 
interest is T c-> 0, which is in fact the quantum mechanical 
case. In this case the quantum fluctuations modify the dyna
mic behaviour so that we obtain a new E -dependent fixed 
point (f.p.) and its corresponding critical exponents. Uni
versality still holds place to first order in E =3-d (here 
d c = 3 + O(E) in accordance with ref. 161 ) • In second order in 
E, however, it breaks down. What we mean by this is that the 
£ -dependent critical exponents to first order in E are the 
same as for a Wilson f.p. (with £=3-d instead of£=4-d ), 
but the analysis up to second order in l proves that the 
dynamic exponent differs from those, predicted for a Wilson 
f.p. 

II. MODEL 

We consider the following generalized Ginzburg-Landau mo
del11•41 : H = Ho +HI , 

Ho =-I. O~l(q) ¢;(q) cpa (q)' (I) 
a,q 
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HI=- (uVT) {3·'£ ¢~(q1)¢$'(q2)¢a(qa)¢{3(q1+q2-q3). ( 2 ) 
a ,q1,q2,q3 

where H0 and HI are the free and the interaction parts of the 
Hamiltonian, respectively. In (1-2): c/>(c:V =1¢a(q),a=l, ... , n/2l 
is an/2 -dimensional complex vector function, depending on 
q= (!i, we),where ~ is the wave vector and we = 2nf T (e =0,±1,±2, ... ) 
is the Matsubara frequency. The Fourier transform ~(~ r) of 
¢ (q) is also (n/2) -dimensional complex vector funct:lon, de-

pending on the space vector x and the imaginary time r !1,4'. 
Thus formulated, the model is equivalent to the corresponding 
one with n -component classical real order parameter r/J(x, r). 
We consider a d -dimensional system with a volume V =Ld;""'T stands 
for the temperature. The unperturbed correlation function (see 
(I)) is: 

-1 2 a 
G0 (q) =lwe +C~ +rl, (3) 

where a is a number; c,. r and the interaction constant u in 
H are parameters of the theory. The grand canonical parti
tion function, corresponding to H, is Z= Tr(exp(H)),where the 
trace symbol denotes integration over the degrees of freedom 
¢a(q).·The Feynman diagrams/B/ for the Hamiltonian (1)-(2) 
are standard. The diagrammatic representation of HI is shown 
on fig.!. Note that the model (1-2) is used for the investi
gation of the singlet-singlet model in the theory of itinerant 
magnetism 151 • · 
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III. RECURSION RELATIONS TO ORDER £2 

2 

The general exact recursion relations up to £
2 are: 

,2 
wf 

c' 

es(2-7J) I wl - 2(n + 2)(uT) 2 t\Kw l , 

s(2-7]-a,) 2 t1Kk 
e lc - 2(n+2) (uT) [ --H, 

(ke-s)a 

(4) 

(5) 

.. 
l;, 

I! 

j 

8(2-7]) 2 2 
r'= e lr+(n+2)(uT)I 1(r) -(n+2) I 1 (r)I2 (r)(uT) -

(6) 

- 2{n + 2) K (r, o;O)(uT) 
2 I , 

(uT) '= es(4-d- 27J}l(uT) - (n + 8) I 
2

(r)(uT) 2 + (7) 

a 2 2 1 + (uT) [(n +6n + OO)I 2 (r) + 2{n+2)(n+8) I 1 (r) I 3 (r) +4(5n+22)J(r)1 ·, 

where es is the rescaling factor, 7J is the anomalous dimen
sionality /0-B/ of the field ¢a (q). The following expressions 
appear in (4-7): 

1 m 
I (r) = l ( dkG

0 
(q), 

m Wf -
(m = 1,2,3) , (8) 

1 
l ( <lt1c:k2Go(q1)Go(q~, 

Wf1Wf2 --
1 

l ( d~1 d~2 Go(q1)Go(q2)Go(q' + q1-q~ ' 

J (r) 

K(~e- 8 ,wt, r) 
wf 1 i 2 

(9) 

(10) 

[ q, "' (~ e- s • we ) 1 ' 

and 

t\Kw=K(r.~e-s ,we)- K(r,ke- 8 ,0), (II) 

A 
t1Kk = K(r, ke-s, O) -K(r,O,O) •· (12) 

The last two expressions (with f'dk "' ( dk; A is the ba-
. - e-lt\ -

sic cutoff of the model) are construcred from (10) and they 
will be evaluated to order £

0 (t1Kw for r = 0 and d = dcand t1Kk 
for we=O, r=O and d=dc).Everywhere we have already replaced 
the summation in ~ with integration. The diagrams, corres
ponding to the various analytic contributions, are presented 
on figs.2-S (for the rest of the diagrams related to (7), re
fer to 7107 ) • 

The summation in equations (8)-(10) yields the following 

integrals: ~) 
cth[-1 

1 , 2T 
I (r) =- ( dk---, 

1 2T - a(k) 
a(k) =v'cka + r, 

(13) 

d 
I
2 

(r) = - dr I 1 (r) , 
1 d 2 

I (r) = - -- I (r) , · 
3 2 dr2 1 

(14) 

-s ' -s K~e ,we,r)= fd~ 1 d~2 SK~e ,we,r), (IS) 
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where 

1 - X s r)- ----SK(~e- • wf, - 16T2ala2a3 

a 3 a2 . a 3- a 2 al as - a 2 - a 1 
x ([ ooth(---)- coth(--)][ ooth(----)-ooth(-)] ·----------- + 

2T 2T 2T 2T w[+Cas-a 2-aJ2 
(I b) 

a2 as a1 as-a~ as-a 2 +a 1 
x [ ooth(-) - ooth (--)][ coth (-) + ooth ( ---J] · ------------- + 

2T 2T 2T 2T wf+<as-a2+a1)2 

a2 as al a2 +as as+ a2+ a1 
+[ ooth(-) + coth(-)][ ooth(--)- coth(-----)1 · ~-------------+ 

2T 2T 2T 2T w 2 + (a + a -a ) 2 
f s 2 1 

a 2 as a :t as a1 a 1 +a 2 + as 
+[coth(-) + coth(--}][.ooth(---) +<X>th(--)] ·-----------1, 

2T 2T 2T 2T w1+ (a 
1
+a

2
+a3) 2 

with 

a.= vck.~ + r, 
I I 

(i = 1,2), a
3

= [(ke- 6 +k 
1
-k )a+ r]Va 

~ - ::.2 
(17) 

and 

T 1.\ 
1 , 1 a 

r..11 .. A1.. r Q fq ... Q \1 ( 1 Q\ 
2 I -.:: 1 -.:: ll a 1 L a a 1-K ,- 1' - 2' 3'. 

The treatment of the general recursion relations (4)-(7) 
with the integrals, taken in the form (11)-(12) and (14)-(18), 
is highly complicated. Note that in these recursion relations 
both the critical dynamics and the critical statics are incor
porated. The dynamics follows from the recursion relation (4) 
for we. We shall consider separately the two cases of physical 
interest: (I) Tc~O(classical case) and (2) the quantum limit 
Tc~o (for a structural transition it is called the displacive 
limit 141 ) • 

IV. FINITE TEMPERATURE CRITICAL BEHAVIOUR 

In this case we consider Tc ~O.This means that (at T-Tc,k-0) 
T 

:(k) « T c and consequently ooth(~)= _c .Such approximation 
Tc a 

leads to an immediate coincidence with the recursion relations 
of ref.161 to order £

2 with a=2 (see ref. 161 with 4u 0=(uT)) • 
The borderline dimension is de= 4 + O(d. But here we have an ad-
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ditional recursion-recursion relation for the additional pa
rameter we. From this relation one can obtain the dynamic cri
tical exponent z to second order in f = 4-d.· 

V. ZERO-TEMPERATURE LIMIT 

This section contains the main results of the present com
munication. The limit "Tc ... o is achieved through the approxi-

mation ooth[-aik)],.,1in the general expressions (4)-(18). Then 

we obtain for the recursion relations: 

w' 2 = es(2-7f) lw 2 -(~~)u2 ~K 0 I 
f f 2 (U ' 

Mo 
c' = es(2-J"l-CT) I c- -~+2) u 2 [-~1 I, 

2 (~ 6-s)a 

r' s(2-7f) 1 r + ~u I l (r) 
e 2 

__ {E_t_~ u2 K o (r, 0, 0) I , 
2 

2 
(n+2) u2I~(r)I~(r) 

8 

(uT) '= e s(
4
-d- 27f) Tlu - -~~- u 2 1° (r) + 

4 2 

(19) 

(20) 

(21) 

(??) 
2 . . 

+U3[~(n.,:-2)jn+8)l0 (r)Io (r)+~!l~~I 02("+J5n+E}Jo(r), 
18 1 3 18 2 2 

with the integrals: 

6 

11 (r) = (' d~ a- 1 (!_:) , 

I~ (r) = f'd~ ~~,-s/~~), 

1 
K 0 (r, o; 0) "' (' dk 1 dk 2 ------------, 

~ ~ a1a2as(a.1+&2+ D.a) 

I8(r) = f'dka-
61 1tr), - ~ 

JO(k) 
2a 1 + a 8+ a 2 

('-d. It dk. -~----------·----·· 
- 1 -2 ( ) 2 8 a1+ 3 2+as 3 1a2as 

(23) 

(24) 

(25) 

(26) 

(27) 

:J 

) 

o at+a2+a3 1 
~K = (dk 1dk 2 1-------------- ------1,(28) 

w -- ala2a3[wf+(al+a2+a3)2]. ala2a3(al-ra2+a3) 

~K = ( dk dk I __ __;_ ______ - [ ------~---------1 I. 
q _l _2 ala2a3(al +a2 + as) a1a2a3(al +a2+a3Jk=O 

- (29) 
The equation ( 19) is related 171 to the temperature T. Using 

(19) and (22), one can see that the borderline dimensionality 
is d~= 3+0(£}. The evaluation of the integrals to the necessary 
order in f;;f'=3-d yields: 

0 K d I 2 -2s £ 2 ( -s 2 -s r I (r) =--rr-1\. (1-e )(1+ -)-fA lnA+£ Ae ) ln(Ae )--sl, 
1 2- Y% 2 c 

cK (30) 

1° (r) =-~Is+ .!..s 2 -EslnA+~ _r---(1- e 28 )1, (31) 
2 c 312 2 4 cA 2 

K 
Io3 (r) = __ ::__ (e 2s- 1) 

2c6/2A 2 
w2 

~Ko 
(U c3 

K2K3 
---- s, 

1617 

(32) 

(33) 

q2 6 -2s 
~K =- s q 641T4C 2 ' (34) 

TPOI'_ n ""' 1"\ 
U.\&tVtVJ-Vt (11)) 

K2K 3 
J 0 (r) = --

3
- (s 2 + s ), (36) 

41TC 

where Kd= 2l-d"-d/2/f(d/2),f'(x)is the gamma function. Note that 
to order £ 1 : 

1 2-.j;-
K 3-d=---- 11 + £ ln[ ---11, (37) 

l?n 2 6a 

where: 

B = ~ - i (-1LJ(p~ 
2 p=2 2p 

(38) 

((~ is the Riemann dzeta function, cE is the Euler constant. 
Note that K 0 (r,O;O) "'0 to order £

0 in the large limit161 , but 

(~K 0 ) is not. The last integral appears in the analysis of ar r=O 

the recursion relations. Performing the standard procedure 16 ~ 
one finds two different f.p. The Gaussian f.p. (T*=r*=u*=O)is 
stable with respect to u -pertutbations for d > d~ = 3; it is 
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unstable for d<d~. The critical exponents for d> d'c are clas
sical (without <-corrections). For d<dc we have obtained 
a new f .p.: 

T* = 0 <= from Eq. ( 19), (39) 

2 
r * = - ~-~t0_ c 11 + c [ .!... + 9n + 42 ) I , 

(n + 8) 2 (n + 8)2 (40) 

8rr 2 312 9n+42 AeB 
u*= -- c d 1 + d ---- + ln(--)]1 

n + 8 (n+8) 2 2y1r-
( 41) 

One can see that to order c 1 , r* and u * have exactly the 
Wilson f.p. values with c = 4-d-> <1= 3-d, but they have es
sentially different values in order c2 (see ref. 161 ). 

The critical exponents, corresponding to the new f.p., are: 

(n + 2) 2 -----f ' 
2(n +8) 2 

., = 

z = 1 + O(c), 

1 
v =- + ~ E + n + 2 (n 2 + 22n + 52) E 2 ' 

2(n+8)2 4(n+8) 3 2 

1'\_ AO 

J = - f + ~-:..:.::_f ;::; . 
u n + 8 

( 
. sJ 

The last exponent def1ned by u'= e · u 
tions to the scaling laws (see ref. 191 

) • Any 
nent which might be of some interest could be 
well-known scaling relations 1 2· 3•91 . 

VI. FINAL REMARKS 

(42) 

(43) 

(44) 

'""t....l J 

gives correc
critical expo
found using the 

We have presented the general exact recursion relations 
up to order c2 for a model describing second order structural 
phase transitions. This analysis can be used for further dis
cussion on the scaling properties near such transition points. 

Our analysis of the finite temperature case leads to uni
versality, namely, for d> 4+ O(E) the Gaussian critical beha
viour (with classical values of the critical exponents) is 
stable and for dimensionality d< 4 the stable f.p. is the 
one, discovered by Wilson and Fisher 12,9/. The critical expo
nents, corresponding to this f.p., are well-known functions 
of the dimensionality d = 4- E and the synnnetry index n of 
the order parameter. 

8 

The influence of the quantum correlations in the zero
temperature limit T c _, 0 is inevitable. In this limit the 
decrease of the borderline dimensionality from de to another 
value d~ (depending on the structure of the unperturbed 
correlation function) is a well-known classical-to-quantum 
crossover phenomenon. So far in the literature it has been ge
nerally acknowledged 14•51 that up to first order in c'=d'c-d 
universality preserves its validity; i.e., for d> d' one 
finds again a Gaussian stable behaviour, whereas for c d < d'c 
a Wilson-type f.p. is the stable one. The values of the f.p. 
coordinates and the corresponding critical exponents are the 
same as in the case Tc~O. but nowwithc'=d'c-d (and not 
c = 4- d).). Our results confirm that all this is true up toe' 

1. 
However we prove that this classical-to-quantum crossover 

is not the only effect of the quantum correlations when second 
order (in E'=3-d ) contributions are taken into considerati
on. For the model under discussion we find nonuniversality 
(in the above-mentioned sense). It is exhibited in the new 
values of the stable f. p. (for d < 3 ) and of the dynamic 
exponent. This conclusion is a new point in the under
standing of the competition between the interacting classi
cal fluctuations and the quantum correlations. Having in mind 
the results in ref •171 one can see that the quantum effects 
account for a critical behaviour which is rnore nonuniversal 
l_~la.U. ..a..;_ wa.~ .:..Ap.:...::.~~~. ~Aa.!.~!-.. .:.·..:e;!: !:_!"-'.:::: :::.~: :.~::~:.~ ~;;~~~: i_~ ~o-
COnd order in c'; it is in our opinion interesting from theore
tical point of view. Further steps in the discussed field 
would be investigations of other models to second order in E'. 

The direct calculation of the critical exponents for the mo
del, considered here, to higher than the second order is ano
ther problem to be solved.Investigations in this direction 
could be useful for the profound explanation of the classical
to-quantum crossover phenomena in various systems. 
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