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1. INTRODUCTION

This is the second in a series of papers dealing, at a ri-
gorous level, with the dynamics of the Bloch electrons in ex—
ternal electric fields. The Hamiltonian of the problem is of
the form

H = Hy + ¢ Xg , e =¢ekE,
where Hy =~A+ V... is the "unperturbed" periodic Hamiltonian,

and ¢ Xg =eEn ¥, |'f1|.—. 1, is the potential energy of the
electric field. In this paper, we shall consider the controver~-
sial problem of the existence of the Stark—-Wannier (S-W) lad~-
der. Originally, it was believed that an S-W ladder exists in
the following sense: in the Hilbert space of states K , there
exists a "one-band" subspace X such that K is invariant un-
der H* (i.e., with respect to the decomposition H =K oK* ,
H¢ takes a diagonal form) and H¢ restricted to X has a dis-
crete spectrum of the forma+Ben ,a, B -constants,n = O, 11,
+2,... In the one~dimensional case (and very probable, in the
three-dimensional case also) this possibility is ruled out by
the fact that the spectrum of H¢ is absolutely continuous
(see ref./V/ 'y, So, if the S-W ladder exists, its levels must
be in fact resonances., This situation can be viewed as follows.
The subspace X (which actually can depend on ¢ ) is not exact-
ly invariant under H€¢ , but only "asymptotically" invariant
(see ref./? for a precise definition) in the sense that the
non-diagonal part of H¢ is a bounded operator of order (P ,
P>0. 1n this case, even if the "one band" Hamiltonian P H'P ,
where P, is the orthogonal projection on K, has discrete
spectrum, the "tunneling' due to the nondiagonal part of Hf ,
P, Hf (1-P, )+ h.c. results in a finite width of the levels.
Let A , ¢ be an eigenvalue and the corresponding eigenfunc-
tion of P H'P,. If, following Avron et al./3/,we shall
take
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Clearly, in order that the level structure of P, H¢ P, be not
washed by the effect of the nondiagonal part 1t is necessary

. for y to be smaller than the level spacing. All the exist-
ing derivations use as K the subspace corresponding to an
isolated band of Hy either simple or composed by mutually
nonintersecting branches /1, 4-6/ The rigorous derivations
are for one-dimensional systems, although the results can be
carried to the three-dimensional case (see, however, the dis-
cussion below) if the localized Wannier functions correspond-
ing to the, considered band are supposed to exist (see refs. /1,87
for the problem of the existence of Wannier functions). In all
cases considered the spacing between the S-W levels is of or-
der ¢, and y 1is also of the order ¢

This fact has led Avron et al. /3/ (see also refs. /9-11/ ) to
the conclusion that the existing derivations of the S-W ladder
are inconclusive. This controversy generated a lot of epproxi-
mate and numerical computations /12=14/ all of them indicating
the existence of well separated S-W resonances. In order to
clarify this problem, one needs to prove that:

a. One can choose K such that the nondiagonal part is -eP,
p>1.

b. The spectrum of P, HE® P, has the structure of an S5-W
ladder, with spacing between 1evels of the order ¢ .

The problem a, has been solved in the previous paper/ls/
substantiating an old idea/16,17/  that one can redefine the
bands of H® such that the nondiagonal part of H® 1is of the
order &™l,n being a positive integer. More exactly, we
constructed recurrently a sequence of periodic' operators H (ﬂ
n =0,1,2,.., Hy(e) =H,, such that the nondlagonal part ,of HE
with respect to the bands of H, (e) is bounded and of the
order ¢!, Moreover, the bands of H_ (e) go smoothly to the
bands of Hg as €0 . The dlagonal part of HE is an ortho-
gonal sum of "one band Hamiltonians" (¢) ( i being the
band 1ndex) which we have called "effectlve Wannier Hamilto-
nians" of order n.

In this paper we shall consider the problem b. In contradis-
tinction to the previous papers on the S-W ladder, we shall
consider the general, multidimensional case. We shall assume
that the direction of the homogeneous electric field coinci-
des with one of the reciprocical lattive vectors. Consequen-—
ly, since the components of the crystal momentum perpendicular
to the direction of the electric field are constants of motlon,
the problem can be reduced to a one-dimensional one and, in
what -follows, we shall discuss this reduced problem. At this
point we would like to stress that the reduced one—dimensional
problem has special features as compared with the true one—di-
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mensional problem and these features complicate its study. ~
First, the Hamiltonian is not a differential operator, and
therefore one cannot use the powerful theory of ordinary dif-
ferential equations, in particular, we cannot use the deep
results of Kohn’7/. Second, wlhile for the true one-dimensional
systems the degeneracy of bands is an accidental phenomenon,
for the three-dimensional systems, and then for the corres-
pondlng reduced one-dimensional problems, the degeneracy of
bands is the generic case, and so we are forced to deal with
intersecting bands., We shall prove that H (e) is a direct
integral (over the components of the crysta momentum perpen-
dicular to the electric field) of operators, whose spectrum
consists of m interwined ladders, all with the same spacing
~¢ ,m being the degeneracy of the corresponding band. As to
the eigenfunctions, we shall prove that they are exponentially
localized along the direction of the field. This exponential
localization plays an important role in understanding the Ze-
ner and Franz-Keldysh effects.

Two remarks are in order. First, as has been anticipated
by Wannier/18/  the theory of the S-W ladder, as it is deve-
loped here, parallels, to some extent, the theory of the Stark
effect in atoms, both of them being particular cases of the
same general mathematical theory/2/, Second, as it has been
stressed by Wannier/1?/,the analysis gets into difficulty, if
the direction of the field does not coincide with that of the
reciprocical lattice vectors.Even if this does not happen,
since the spacing between levels is proportional to the in-
verse of the linear dimension of the Brillouin zone along the
field direction, we deal with an S-W pattern, varying errati-
cally for infinitely small variation in angle. This fact led
Wannier/17/'to question the '"physical reality" of the S-W ladder
in three-~dimensions. The discussion of this point is beyond
the scope of this paper and will be discussed in a subsequent
paper of this series,

Durlng the proofs, we shall heavily use the results ob-
tained in/ 19/ (from now, quoted as I) about some analyticity
and periodicity properties of the Bloch functions. Moreover,
we shall use all the notations in I without further explana-
tions.

2. THE SPECTRAL PROPERTIES
OF THE EFFECTIVE WANNIER HAMILTONIAN OF ARBITRARY ORDER

Starting from the description ofH, and X, in I we consider
now Hf =Hg+eXg .. It is known that H¢ 1is self-adjoint on
D(Hy ) "D (Xy) (see ref,/20/),
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Denoting
Ho» = [ Ha2 (k) dk
0, '
5o MR o
from Theorem I1I*and Proposition 3 it follows that
®
€ 1 ~ »
UHS U™'e [ B k) dk, (2) '
B f‘}‘
where * 5
ﬁt’ E =~ L X
(B ) =Fo po oK, . 3) f‘k

Lr} what follows, we shall discuss the spectral properties of
H. (k,), For notational convenience, we shall omit the va- s
riable K . The first order theory developed in ref./!%/ ap-
plied to_H® gives the following. Leto® (k;) be an isolated
band of H, , Py (kj)be the spectral projection of Hy (kq) cor-
responding to o°Xki) and

. ®
B = P, (k,)dk, .
2 [o’fz”] o (kp)dk, (4)
Define (for the rigorous justification see ref./ls/)

By =[i(1-2F) ) [, By 11, )

where [...] means the extension by continuity, ﬁo is a bo-
unded self-~adjoint periodic operator, i.e.,

- ®
B, = [ By(ky)dk
o~ [0, 27] 1 1 (6)
and || By || < const,
Define ‘
X =X, + B, . (7)

Note that by construction

~e - - - - . -
H" = H, +eXg =Hg +¢Xy -eBg =Hp +¢X; , (8)

[i:io +53(1 ,iso ]:: 0 .

T ih

*TI indicates the corresponding formula in I, For example
theorem 1T and (I.2.12) means Theorem | and formula (2.12),
respectively, in ref, / 19/,
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For ¢ sufficiently small, H; has an isolated band ol (kp) »-
which in the limit ¢ » 0 coincides wit}La-"(kl). Repeating the
above construction, starting from ﬂ‘=H1+cX1,one can define

By , Hy, Xyand in general, recurrently, P, B, ;

X such that

n+l > “n+l

HS =f{n +£5(.n+1 —e—én = H, -¢B, ,
(9)

~

w . . . .
We have called H, /161:I}<73/effect1ve Wannier Hamiltonlian of
order 1 (see refs, i for heuristic discussions). The

main result in"ref./! is that

1B, Il <b,e™. (10)
It follows that up to terms of the order ¢ ™!
€ jod jod Jed ot I3 € g
A . P, H P, o (1-P, )H® (1-P_ ). (11)

Note also that since P, ByPp, = 0,

R, - ey

P,H*P, =P H, P, .
The gairw aim of this paper is to study the spectral properties
of PhH, P, The reason is the following. Suppose that
B, f{xvf’n has an eigenvalue A with the.corresponding eigen-
vector ¥ ). It follows from what has been said above that A,
¢ ) are quasieigenvalue and quasieigenvector, respectively,
of the order (n+1) for Hf ,in the sense that

- . 4
IHS gy =agy 1 b, (12)

Let (L2 ([0,2)™ be the Hilbert space
m 2m

(L2 0,200 ™= 1 { ¢, (01" ke[0,24] | z 0f|¢i(k)|2dk<m b,

X, (k) be anmxm hermitian matrix valued function on [0,2r]

and i( )per. the usual first order differential operator in
(LQ([O,z,,i))m with periodic boundary conditions,

Theorem I. There exist: a positive constant d,> 0, an inte-
ger m, and a unitary operator

(L2 qo.2e1)™

-

Ww: Pn}{




such thét
o
WP, HY P, w! ~ic (-3

dk per.*'xn (k;f)

(13)
where the matrix elements of X, (k;e) are restriction to ke[0,27]
of analytic functions in the strip J4, satisfying

¥
Xogplkie ) = X p(ka2m5e). &

C(14)
Remarks 1. The main point of this Theorem is the anélytici—
ty and periodicity properties of X, (kie ). At the nonrigoro-
us level, the result in the case of nondegenerated bands is
familiar, (see, e.g., ref.”5 ), At the rigorous level, for

one~dimensional systems and nondegenerated bands, see refs/ L4/,

In the three-dimensional case, and intersecting bands, even
the fact that X, (k;¢) 1is bounded at the degeneracy points
seems not to be known.

Proof. We shall start with the proof for n=0.

Let {V—I(k)x?(li) I{ be the basis in B (k) K*
sition 2. If y€Py H then

given by Propo-

[o13

. - -1 R

where

[}

-1
cp (k) = (V (k) X, (), p®)y, =

(16)

i

2 (Vv v (). + ().
p’€Z3( ()xz())pt,bp()
We shall define

W By K ———s (L% ((0,201))"

by

EWy),® ) =te ()}, a7

Obviously, W
to compute

= oW ] =~ - |

W B Hy W =W P, (HO+eX0 )PO W,

A simple calculation shows that

is unitary, and the only thing we have to do is

~ e e

-1 m o y ~1 o
(R Hy B W oo (=% () ), V9 H (0 V (93 (Wyc; (). (18)

L
s |

—

)

Now (xP(k) , V (k) Hy (k) V‘l(k)xf () 1~ is the restriction to
k€ [0,2z] of the function

(x5 &)\ VO HW V™ (0 X9 (- = -

=2 X0 ® (VWH, 0V ® X w)
pcz3 P
which is analytic in Jdy and by (I.2.12), (I.2.13) and Pro-
position 2I it is periodic with the period 27.

Using Proposition 41 and the fact that X? (k) _are diffe-~

rentiable, one can see that the domain of w ?0 X, B w1l
is

o

Y
cp® 17'e (L* (0,201 ¢, () = cy(2m 1,

e, (®) !T] {

and

d
dk

5% 5wl o a
(W X Py W e) (10~ —

c]. (k) +
(19)

# o2 L0 0 MG W)y +1(x% (0, 2= xg (] ey .

d
dk
Note that the hermiticity of the matrix with elements i(x? (k),

d
5 X% (k)) follows from the fact that (x‘; ), X?} (k))zajB and
VX% (&) = 0.
the r.h.s. of (19) are the restriction of (x¢ (R).Mx;(k))}{rand

4

e~ d
(x]? (x), K xg () 3(~»
ves Theorem | with

then -a—l—(-(x? (k) Again, the functions appearing in

analytic in Jdo . Then (18) and (19) pro-

Bt (ki) = (O (9, V(O Hy (9 V() X () o+

(20)
d
el 3 Q Or
re LOXG 00, Mx My +1 (X 09 —ox " )
Consider now By. Using the fact that
P m
(VR VT)3 09 = 3 (x5 M, 4 (s ),
and Proposition 4I, 2 straightforward calculation gives for

peD (VX VY

TR 3 [(xo ° 3 {8 o) -
(VIXy,Py 1V ‘/,);).(k)=j§1[(xj (k)»l/l(k))H,(MYj );(k)+(1 RS

7



(M-y‘f Yw, rﬁ(k))}(,x°.+ X) + i(x°. x), ‘/’(“”;("ad? x‘;; ®1, @1

whence it follows that V(k) By (k) V'l(k)ls the restriction to
[0,27] of a bounded operator valued function, analytic, and
periodic in Jdo Then

i = f [Hy®)-c B, (®)] dk = | 9k,

H1 = HO —-eB
[o 27 0,27

and
K; () = V ®H® VI

is analytic and perlodlc in Jy4q »

Then, startlng fron Hl , instead of Ho » the whole theory
developed for H goes through. The obtained formula for X1
is (20) where HO (k) has been replaced by H; (k) and X{(k)
by the corresponding basis in V(k) P (k)V' (k), namely Xl(k)

The procedure can be repeated 1ndef1n1te1y and the proof
of Theorem 1 is finished.

Using the arguments in Y one can prove that the spectrum

of e ( ‘dd?-)per.-rxn(k;e )

all with the same spacing ¢. In fact, the use of the theory
of differential equations with periodic coefficients (see,
e.g., ref./2l/) allows a rather detailed description of the
eigenvalues and eigenvectors of .je ( K )per + X, (kie) .

Let N (k;¢ ) be the unitary mxm matrix given by the equa-
tion

consists of m interwined ladders,

ic %di N (kie) =X (e )N (kie);
(22)

N(0;€)= 17
and
exp (2716, ), 0,€(0,11; ¢, q=1..m

be the elgenvalues and corresponding set of orthonormed eigen-
vectors, respectively, of the unitary matrix N (2r;¢).

d
Theorem 2. The spectrum of l‘('?iT)per-+X(k;‘ ) in (L ([0,2”]))m

where X(k;e ) has the properties stated in Theorem 1, is dis-
crete.lts eigenvalues are given by
o € ('S+¢9q ) s=0,%1,42,..., (23)

q = 1,2,..,m.

A complete set of eigenvectors is given by

CE K‘:’q (i A, KNGy, (24)

»

where K4 is the normalization factor.

Remarks 2%, Concern1n§ the spectrum, Theorem 2 generalizes
the results in refs. to the case of three-dimensional
systems, intersecting bands and n -th order one-band approxi-
mation. But the main point of this Theorem is that the compo—
nents of ¥4 q(k)  are restriction to k€[0,2r] of functions
analytic and periodic in a strip J4.

. d
Proof. Since i( _d‘r("‘)per. has compact resolvent and X (ki¢)

is bounded, it follows that ie ((—i%)perfx(k:e) has compact re-

solvent, and then its spectrum is discrete. The eigenvalue

+ X(kie )

- is equivalent to the problem

. d
roblem for ie (——
problem e(dk)

of finding the values A, for which the evolution equation with

periodic coefficients
i-L 5w = - LX) -A1I® (25)
dk €
admits periodic solutions. The number of independent periodic

solutions of (25) equals the multiplicity of the eigenvalue A.
Let N(ki¢;X) be the fundamental matrix of (25), i.e.,

d

4N e = - é-[x (kie) =M1 N (Kse: A) ,

(26)
N 0;e;0)=1.

The fundamental result in the theory of differential equa-
tions with periodic coefficients (/2Y says that the number of
independent periodic solutioms of (25) equals the mult1p11c1ty
r of the eigenvalue | of N (2me; A ), and if ¥ gy -,l/lqr is

a basis in the corresponding subspace (N(Zm;e; A ) is here
understood as a unitary operator in €™ ), then a system ofr
independent periodic solutions of (25) is given by

Yg, () = N(e M) yq, (27)

Taking into account that

d S 1 oy ..
i Nkie:d) = [ X(&e) -AIN(Kkie;2), (28)
N@;e; A) =
the verification of Theorem 2 is immediate.
9




Translated in the " X representatlon , the analyticity and

per10d1c1ty propertles of ¢qq(k) glves the exponential decay
along a]' As 1t 1s well known, the direct 1ntegral decomposi-
tion of L? (R3 dX) in the "X representation" is

12 (R%ap) = fK(k)dk ,
where ?

K@ = fy o (X = exp (ikx) up X uf()(?()-— periodic |

.~

e @I =/ oy B ax}.

Q

It is not hard to verify that

-

K= ? X

[0,27]}

1’ L) dk

Y X g 1 ' > -1 ~ 2. > -, : ‘ .
=1 l/,.l.( (x -_-exp}zm[[Kz[_ KoXo+ |Kg| =~ kgXol }ui{»-l(-x), uK-L(x) periodic in
i

400
x, and x, | ||./,Icl @112 =(v01%)"10f dx, dx, [ dxllﬁﬁl(})IQ} .

L

Theorem 3. For all a<dg,
ew (a %) (U W ¢Sq)k(X)C K@,

Proof. Using the definitions (I.2.7) ofU and (17) of W,

we have

(UrwTge g @ -

Y

L4

= exp [201(| Ky kyxy+ IR, [ kox)] (207 S expl 2ri(my xp4mg xp)1x
2 !
x (2m)"" f dp,exp (ip; %, )hm2,m3(p1),
where
mymg 1) = By gy 20) = z A ECHICAICRICECR I

From the periodiCLty of x5 (kl) and :psqe (kl) and the de-
finition of V(ky), it follows that hm m(pl) is analytic
in the strip Jdo and

10
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pane

~ -

+aa+1a

2

mo, m3—w+la

which via the Paley-Wiener theorem applied to the vectorial
function h ®y) implies that if
m g g 1

(p)‘ dp1.<oo, |a|<d0. *

MgsMMg

: L o
= (2m)" S dpexp (ip Xl)hmz,m3(pl),

-

cm2 ,ma(xl)
then

+o00 2al x

= 2l
mo,ag ”

together with the Plancherel theorem, completes the

2
lcm&ms(xgl dx) <o,

which,
proof.

Remarks 3. The result in Theorem 3 extends to arbitrary n
(replacing, of course, dp by dn ).

4, In general, a1 and K1 are not parallel, and moreover,
for a glven 1, there is a freedom in the choice of g,. How~
ever, since KlKl =2 they are not orthogonal, and then ex-
ponentlal decay along a1 is equivalent with the exponenti-
al decay along Kl. .

5. Although for &11 n =0,1,... the spectrum of P H¢ B,
consists of m interwined S-W ladders of elgenvalues, all of
them having the same spacing between eigenvalues, it is not
allowed to take the limit n + « ,because the iterative const-
ruction of P, seems not to be convergent as n- «, but only
asymptotic.

In fact, although a direet proof of the divergence of the
iterative construction of P, as N -» o« does not exist, there
exists an indirect one (at least,
if the iterative constriuction of P, converges (in noérm) as
n + e, then our results, imply, for sufficiently small ¢, the
existence of a S-W ladder of eigenvalues for Hf, and this
contradicts the fact that thé spectrum of H¢ is absolutely
continuous. Our results imply that as ¢ » 0, the width of S-W
resonances decreases faster than any power of ¢ . This fits the
heuristic arguments of Zener /2%,as well as recent numerical
calculations of Bentosela et al./2%, giving an exponential de-
crease of the width of the S5-W resonances.

6. Our next remark concerns the existence of closed
bands/2425/.  In spite of the strong criticism of Zak/26/and
the recognition by Wannier/18/ that the problem might be more
complicated, it seems that there exists a w1derspread opini-
on/5/ that without relying on power expansions in the field
strength, one can prove rigorously that Bloch bands closed in
time exist. We shall point out below that, ‘due to a tacitly as~
sumed hypothesis which turns out to be wrong, the existence of

11

for the one-dimensional case):



bona fide Bloch bands (i.e., indexed by a discrete index)
closed in time does not follow from the Wannier and Fredkin
arguments. Although in a different form, our argument is the
same with the argument of Zak/2%/, For simplicity, we shall
consider the one-dimensional case and assume that the perio-
dic potential V(x)=V(x+a) is twice differentiable. The ba-
sic idea of Wannier and Fredkin is to consider the operator '

® = exp (~i27 (ea)~1HE).

It is easy to see that ® commutes with the translation ope- !
rator ((T,f)(x)=f(x+2a)),so that ® can be written as a direct
integral over the Brillouin zone

®

] =}! d (k) dk.

Wannier and Fredkin (see also refs. ) tac&tly assumed
that the spectrum of ® (k) 1is discrete, wherefrom the exis-
tence of the closed bands as well as of the S-W ladder fol-
lows. Unfortunately, the fact that the spectrum of H¢ is
absolutely continuous’'" implies that the spectrum of ® (k) is
continuous (i.e., ® (k) has no eigenvalues) for all k ¢B.In-
deed, suppose ® (ko) has the eigenvalue Ay, for some ky& B.
Then, an argument of Wannier /18 shows that Ag 1is an (in-
finitely degenerated) eigenvalue of ®. On the other hand, the
fact that the spectrum of H¢ 1is absoclutely continuous, im-—
plies, via the spectral theorem, that ¢ has only continuous
spectrum.

10. Finally, let us mention some other mathematical ap-
proaches. For a complex field (Ime+0) Avron’ ¥ proves the
existence of S-W ladder eigenvalues. For real ¢ and periodic
potentials with some analytic properties Herbst and Howland/27/
proved that certain matrix elements of (H¢-z)~! have mero-
morphic continuation from Imz > 0 to Imz < 0. One can hope
that this continuation has ladder poles in order to describe
the S-W resonances. However, besides the restriction to one-
dimensional systems, one expects the proofs to be rather comp-
licated.

/18,25/
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Henuy A., Henuy . E17-82-208
AvHamnka GNOXOBCKUX INEKTPOHOB BO BHEWHEM 3NEKTPUUECKOM fofe.
CywecTBoBaHME NECTHUUHBIX PE30HAHCOB

UsyuaeTca npobnema CyuweCTBOBAHMA MNECTHUUHBLIX PE3OHAHCOB npyu Hanuuuu
BHEWHEro 3NeKTPUYeCKoro nons ANA OOWero TpexMepHOro KpUCTanna u BbipPOKAEHHBIX
30H. lamunbTOHMaH NpobneMy ONUCHBAETCR B BugE MPAMOro MHTEerpana KsBa3uoaHo-
MEpHLIX raMuNbTOHWMAHOB. [INA KBa3MOAHOMEPHOrO raMuNbTOHMaHA AOKA3LIBAETCA Cy-
UeCTBOBAHNE NECTHUYHLIX PE30HaHCOB, OTAENEHHbX APYr OT Apyra. BonHOBbie GyHK-
unn, COOTBETCTBYOWME ITUM PE30OHAHCaM, yOGLBAT IKCMOHEHUMANbHO B HanpasneHWu
3neKTpuyeckoro nona. [lokasaTenbcTBO OCHOBAHO HA AHANUTUUYHOCTU W NepUoanMUHO-
CTU KBa3uONOXOBCKUX OYHKUMIA.

Paborta swnonHena 8 JlaBopaTopun TeopeTuueckoi du3ankn OUAKU.

CoobueHune 06beaMHEHHOrO MHCTUTYTa AAEPHHX uccnepoeawuit. flybHa 1982

Nenciu A., Nenciu G. E17-82-208
Dynamics of Bloch Electrons in External Electric Fields.
The Existence of Ladder Resonances

The problem of the existence of the Stark-Wannier ladder for the Bloch
electrons in homogeneous electric fields is considered. If the direction of
the electric field coincides with one of the reciprocal lattice vectors, as
it is well known, the Hamiltonian of the problem can be written as a direct
integral of one-dimensional like Hamiltonians. For these Hamiltonians, the
existence of Stark-Wannier ladders of well separated resonances is proved.
The wave functions corresponding to these resonances, are shown to decay
exponentially along the field direction.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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