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I • INTRODUCTION 

This is the second in a series of papers dealing, at a ri
gorous level, with the dynamics of the Bloch electrons in ex
ternal electric fields. The Hamiltonian of the problem is of 
the form 

If = Ho + £ Xo , £ = eE, 

where Ho = -- ~ + v per. is the "unperturbed II periodic Hami 1 toni an' 

and ( Xo = eE ii X. In I= 1' is the potential energy of the 
electric field. In this paper, we shall consider the controver
sial problem of the existence of the Stark-Wannier (S-W) lad
der. Originally, it was believed that an S-1-J' ladder exists in 
the following sense: in the Hilbert space of states~ ,there 
exists a "one-band" subspace K such that K is invariant un
der H' (i.e., with respect to the decomposition ~ =K ~DKJ. , 
Hf takes a diagonal form) and H£ restricted to K has a dis-

crete spectrum of the forma+{3£ n , a, {3 -constants,n = 0, +I, 
+2, .•• In the one-dimensional case (and very probable, in the 
three-dimensional case also) this possibility is ruled out by 
the fact that the spectrum of H£ is absolutely continuous 
(see ref. /1/ ), So, if the S-W ladder exists, its levels must 
be in fact resonances. This situation can be viewed as follows. 
The subspace K (which actually can depend on £ ) is not exact
ly invariant under H£ , but only "asymptotically" invariant 
(see ref,/ 2/ for a precise definition) in the sense that the 
non-diagonal part of H£ is a bounded operator of order c P , 

p> 0. ln this case, even if the "one band" Hamiltonian P H£ p 
where Pc is the orthogonal projection on K, has discre~e c 
spectrum, the "tunneling" due to the nondiagonal part of H£ , 
Pt H' (1-P£ )+ h.c. results in a finite width of the levels. 
Let ,\ , rp A be an eigenvalue and the corresponding eigenfunc-
tion of P( Ht P£. If, following Avron et al,/3/,we shall 
take 

y2 - ((H£ ->..) t/J,x (Hf->..)t/J>._)- (~A) ---.... - ~ 

as a mensure of the width, then 

y 
2 

- ( t/J >.. , ( r: H£ (1-Pc ) + h.c.) 2 t/1 >..) 

~J ,:J:.: . ./.~ :. t<t·< J·-! 

t 1' ·~ " .. 1 4·<.. •• i1.'1 I. 

. ~ . . ; 
'J ... 
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Clearly, in order that the level structure of PE He P£ be not 
washed by the effect of the nondiagonal part it is necessary 
for y to be smaller than the level spacing. All the exist-
ing derivations use asK the subspace corresponding to an 
isolated band of Ho either simple or composed by mutually 
nonintersecting branches /1, 4-6 /. The rigorous derivations 
are for one-dimensional systems, although the results can be 
carried to the three-dimensional case (see, however, the dis
cussion below) if the localized Wannier functions correspond
ing to th~ considered band ar~ supposed to exist (see refs,/7,8/) 
for the problem of the existence of Wannier functions). In all 
cases considered the spacing between the S-W levels is of or-
der l, and y is also of the order l 131. 

This fact has led Avron et al,/3/ (see also refs,/9-11/) to 
the conclusion that the existing derivations of the S-W ladder 
are inconclusive. This controversy generated a lot of approxi
mate and numerical computations/12-14( all of them indicating 
the existence of well separated S-W resonances. In order to 
clarify this problem, one needs to prove that: 

a. One can choose K such that the nondiagonal part is - eP, 
p > 1 • 

b. The spectrum of Pe HePe has the structure of an S-W 
ladder, with spacing between levels of the order e . 

The problem a. has been solved in the previous paper/ 151 

substantiating an old idea /16, 17/ that one can redefine the 
bands of HE such that the nondiagonal part of H1 is of the 
order en+l,n being a positive integer. More exactly, we 
constructed recurrently a sequence of periodic· operators Hn(e) 
n =0,1,2, ..• , H0 (e) =Ho, such that the nondiagonal part tof HE 
with respect to the bands of Hn (e) is bounded and of the 
order e n+l. Moreover, the bands of H n (e) go smoothly to the 
bands of Ho as e ... 0 . The diagonal part of He is an ortho
gonal sum of "one band Hamiltonians" Hiwn (e) ( i being the 
band index) which we have called "effec'tive Wannier Hamilto
nians" of order n. 

In this paper we shall consider the problem b. In contradis
tinction to the previous papers on the S-W ladder, we shall 
consider the general, multidimensional case. We shall assume 
that the direction of the homogeneous electric field coinci
des with one of the reciprocical lattive vectors. Consequen
ly, since the components of the crystal momentum perpendicular 
to the direction of the electric field are constants of motion, tt'l ~ 
the problem can be reduced to a one-dimensional one and, in ' 
what -follows, we shall discuss this reduced problem. At this 1 
point we would like to stress that the reduced one-dimensional / 
problem has specia1 features as compared with the true one-di-

2 

mensional problem and these features complicate its study. ' 
First, the Hamiltonian is not a diffetential operator, and 
therefore one cannot use the powerful theory of ordinary dif
ferential equations, in particular, we cannot use the deep 
Tesults of Kohn/ 7/. Second, w~ile for the true one-dimensional 
systems the degeneracy of bands is an accidental phenomenon, 
for the three-dimensional systems, and then for the corres
ponding reduced one-dimensional problems, the degeneracy of 
bands is the generic case, and so we are forced to deal with 
intersecting bands, We shall prove that H ~ (e) is a direct 
integral (over the components of the crysta\ momentum perpen
dicular to the electric field) of operators, whose spectrum 
consists of m interwined ladders, all with the same spacing 
- e , m being the degeneracy of. the corresponding band. As to 
the eigenfunctions, we shall prove that they are exponentially 
localized along the direction of the field. This exponential 
localization plays an important role in understanding the Ze
ner and Franz-Keldysh effects. 

Two remarks are in order. First, as has been anticipated 
by Wannier/18~ the theory of the S-W ladder, as it is deve
loped here, parallels, to some extent, the theory of the Stark 
effect in atoms, both of them being particular cases of the 
same general mathematical the~ry/2/. Second, as it has been 
stressed by Wannier/17/,the analysis gets into difficulty, if 
the direction of the field does not coincide with that of the 
reciprocical lattice vectors.Even if this does not happen, 
since the spacing between levels is proportional to the in
verse of the linear dimension of the Brillouin zone along the 
field direction, we deal with an S-W pattern, ~varying errat~
cally for infinitely small variation in angle. This fact led 
Wannier/17/'to question the "physical reality" of the S-W ladder 
in three-dimensions. The discussion of this point is beyond 
the scope of this paper and will be discussed in a subsequent 
paper of this series, 

During the proofs, we shall heavily use the results ob
tained in/ 19/ (from now, quoted as I) about some analyticity 
and periodicity properties of the .Bloch functions. Moreover, 
we shall use all the notations in I without further explana
tions. 

2. THE SPECTRAL PROPERTIES 
OF THE EFFECTIVE WANNIER HAMILTONIAN OF ARBITRARY ORDER 

Starting from tne description ofHo and x0 in I we consider 
now HE =HoHXo .. It is known that HE is self-adjoint on 
D(Ho ) n D (X 0 ) (see ref. /20/), 
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Denoting 
- ~ I 

HOk = f Hot (k~) 
, l [0, 217] '':1. 

dkl , 

from Theorem II*and Proposition 3 it follows that 
$ 

U He tr1 
= ( If (k.l ) dk.t , 

where 
B 
.l 

-c ... - x-
H (k ) = lio k" + c o 

.l '.t 

(I) 

(2) 

(3) 

In what follows, we shall discuss the spectral properties of -c - . 
H (k.l)~ For nota~ional convenience, we shall omit the va-
riable· ~ . The first order theory developed in ref /IS/ ap
plied to ifc gives the following. Let a 0 (k 1 ) be an isolated 
band of H0. , Po (ki) be the ·spectral projection of H

0 
(kr) cor

responding to a 0 (k 1) and 

- <!) 

PQ = f P0 (k1)dk 1 • 
[o, 211] 

Define (for the rigorous justification see ref,/ 15/) 

B0 =[i (1-2P0 )[X0 ,F0 ] J, 

(4) 

(5) 

where[ ... ] means the extension by continuity, Bo is abo-
unded s~lf-adjoint periodic operator, i.e;, 

- E!) 

B0 = f B0 (k1)dk 1 (6) 
_ [o, 217] 

and II 8 0 II :$ corrst. 
Define 

XI = Xo + Bo . (7) 

Note that by construction 

-( - - - - - . - -
H = Ho +c Xo =H 0 +<X 1 -c B0 = H1 +<X 1 , 

(8) 

[flo +<X 1 , P0 J = o 

*I indicates the corresponding formula in I. For example 
theorem II and (I.2.12) means Theorem I and formula (2.12), 
respectively, in ref. ;19/. 
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For c 
which 
above 

sufficiently small, HI has an isolated band a 1 (k1) ,· 
in the limit c-.0 coincides wit~a 9 (kl). Repeating the 
construction, starting from ffc =H 1 +c X 1,one can define - - -

PI ' 
Hn+l 

B1, H2, X2and in general, recurrently, P , Bn; 
- n 

' xn+l• such that 

-c - - - - W 
H = H n + c Xn+l - c Bn = H n - c Bn ' 

-W -[ Hn , P 0 ]. = 0 , 

We have called Hnw 
1 

the
1

effective Wannier Hamiltonian of 
order n (see refs, 16

•
17 for heuristic discussions). The 

main result in'' ref/ 15/ is that 

(9) 

II Bn II$.. b 0 c0
• (10) 

It follows that up to terms of the order c n+l 

W:::. Pn If P0 e (1-F\ )Hf (1-P
0

). (I I) 

Note also that since Pn ~nPn = 0, 
- - ( - - -w-
p n H p n = Pn Hn P n • 

The ~a~~ajm of this paper is to study the spectral properties 
of Pn Hn Pn . The reason is the following. Suppose that 
Pn H: Pn has an eigenvalue A with the, corresponding eigen
vector t/J A. It follows from what has been said above that A , 

t/JA are quasieigenvalue and quasieigenvector, respectively, 
of the order (n+ 1) for He , in the sense that 

IIHc t/JA -At/JA II < b /+1 
- n 

(lz) 

Let (i:} ([0,21T))m be the Hilbert space 

2 m m m 217 2 
( L ([ 0,211])) = l l ¢i (k) li=l' kd o ,211] I .I. f I <t>i (k) I dk < oo I , 

1=1 0 

~ (k) be anmx m hermitian matrix valued function on [0,217]' 

and i (a}-) Per. the usual first order differential operqtor in 
(L 2 ([0,21T]))m with periodic boundary conditions. 

Theorem I. There exist: a positive 
germ, and a unitary operator 

constant d
0 

> 0, an inte-

- - - 2 m 
W: Pn J{ ----+ (L ([0,277])) , 

5 



such that .. 
- - w- -1 . d 

WPn Hn Pn W, =l!(~dk) +Xn (k;() 
per. (13) 

where the matrix elements of Xn (k;€) are restriction to kd 0,2rr] 
of analytic functions in the strip J dn satisfying 

X n,fp{k;( ) = Xn,fp(k+ 2rr; t). "' ~t . ( 14) r. 

Remarks I. The main point of this Theorem is the an~lytici
ty and periodicity properties of X n (k; f ) • At the nonrigoro
us level, the result in the case of nondegenerated bands is 
familiar, (see, e.g., ref~ /S/ ). At the rigorous level, for 
one-dimensional systems and nondegenerated bands, see refs{l,4/ 
In the three-dimensional case, and intersecting bands, even 
the fact that Xn (k;€) is bounded at the degeneracy points 
seems not to be known. 

Proof. We shall start with the proof for n = 0. 
--

1 
-1 rn 

Let V (k)x'i(l_9ll. be the basis 
si tion 2. If tfr.;, P0 J{ then 

in P0 (k) H ~ given by Propo-

I rfr.-. Ck) l 
p· 

where 

m -1 
I k ce (k) ( V (k) x~ 

f=l t 

ce (k) 
-1 

c v (k) x£ (k) • 1/1 (k)) w 

(k))-+ l ' 
p 

k ( v-1 
(k) xo (k))-. r/1-. (k) • 

p.;,z3 e P P 
We shall define 

- - 2 m 
W: P0 J{ -------+ ( L ([0,_2rr])) 

by 

! ( w r/1 ) f (k) l = ! ce (k) l . 

OF 

··( 15) 

(16) 

(17) 

Obviously, W is unitary, and the only thing we have to do is 
to compute 

- -w - -I - - - - -1 w P0 H0 P0 w = w P0 (H 0 +! x0 ) P0 w . 
A simple calculation shows that 

-I m • -I 
(WE0 H0 P0 W c). (k)=,k (x? (k), V(k) H (k)V (k)x~(k))J{,c.(k). (18) 

1 J=I 1 0 J J 

6 ... 

.4 

Now ( xf (k) , V (k) Ho (k) V" I (k) Xj (k)) J{' 
k.;, [0,2rr] of the function 

(x'? (k), V(k) H0 (k) li-I (k) v? (k))J{' = 
I •· "'J 

is the restriction to 

= I X~-. (k) ( V (k) H0 (k) v-I (k) X~ (k)) -+ 
.. z3 I, P J P 
p~ 

which is analytic in Jd0 and by (1.2.12), (1.2.13) and Pro
position 2I it is periodic with the period 2rr. 

Using Proposition 4I and the fact that X~ (k.) _aEe diffe
rentiable, one can see that the domain of W P

0 
X

0
P
0 

w-1 

is • • llc£(k)l~il d~ ce(k)l~G (L
2

([0,2rr]))m; ce(0)=ce(2rr) l, 
and 

- - "' -1 . d ( w.p0 X0 P0 W c)p)=I dk ci (k) + 

(19) 
m 

+ I [ { X~ (k) , M X0e (k))J{, + i( X~ (k) , _d_ Xoo (k))J{ ,] c 
0 

(k) . 
£=1 J J d k t t 

Note that the hermiticity of the matrix with elements i(x'? (k), 
d J 

-d- X~ (k)) follows from the fact that (X~ (k), X~ (k)) = o. n and 
k [d 1 t J t 

then dk ( xj (k) , X0£ (k)) = 0. Again, the functions appearing in 

the r.h.s. of (19) are the restriction of (x~ (K), Mx0 (k))J{' and 
l £ - d ( x~ (k) • <fk xf' (k)) J{,. 

ved Theorem I with 
analytic inJdo. Then (18) and (19) pro-

-I 
Xo.ep (k;( ) = c xr (k), vck) HaCk) v ~}k) x~ (k)) w+ 

(20) 

+ ( [ ( x~ (k), M X0 (k))J{-+i Cx~ (k), ~xo' (k))J{,. 
t , p t d.k p -

Consider now B0 • Using the fact that 
- - --I m 

cv P0 V r/1)-p (k) = .k Cxj (k), r/J(k))J{,.x~ .. (k) •. 

and Proposition 41, 1ai straightforward h~lculation gives for 
rjJ .;, D ( v x0 v -I) 

. - - "-l m o • d 
(V [ X0 ,P0 ] V r/1)-+(k)= k [(x:' (k),tfr(k)L,(MX, ) ... (k)+(i-x~(k)-

P j=l I 'Jt 1 p dk I 
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( M X~ )(k) , t/; (k))J{' X~ ... (k) + i (X~ (k), t/;(k))J{ 'ddk X~ ... (k)] , (21) 
l hP J J•P 

whence it follows that V(k) B0 (k) v- 1(k) is the restriction to 
[ 0,2"] of a bounded operator valued function~ analytic, and 
periodic in Jdo· Then 

- - - (!) 

H 1 = H0 -fB0 = f [ H0 (k)-cB0 (k)] dk 
and [0•2"] 

K1 (k) = V (k) H1 (k) v-l (k) 

6) 

"' f H 1(k) dk, 
[0,2rr] 

is analytic and per'iodi~ in Jdo . _ 
Then, starting from H 1 , instead of Ho , the whole theory 

developed for Ho goes through. The obtained formula for xl 
is (20) where Ho (k) has been replaced by: H1 (k) and xt(k) 
by the corresponding basis in V(k) P 1 (k) V" 1 (k), namely xJ(k). 

The procedure can be repeated indefinitely and the proof 
of Theorem I is finished. 

. Using the arguments in/l/ one can prove that the spectrum 

of if ( ddk ) +X (k; f) consists of m interwined ladders, per. n 

all with the same spacing f. In fact, the use of the theory 
of differential equations with periodic coefficients (see, 
e.g., ref,/21/) allows a rather detailed description of the 
eigenvalues and eigenvectors of .if ( _d_) +X (k; f) . dk per, n 

Let N (k;f) be the unitary mxm matrix given by the equa
tion 

and 

if 'd~ N (k;f) =·-X (k;f)N (k;f); 

N (O:d = 1. 

exp(2rri0q), OqG-[0,1]; t/Jq, q=1, •.. ,m 

(22) 

be the eigenvalues and corresponding set of orthonormed eigen
vectors, respectively, of the unitary matrix N(2";f). 

d 
Theorem 2. The spectrum of if( -dk) +X(k;f) in(L 2 ([0,2rr]))m. per. 

where X (k; f ) has the properties stated in Theorem I, is dis
crete.Its eigenvalues are given by 

A = £ (s + 0 ) ; 
s, q q ·s = 0, ±1, ±2, .•. , (23) 

q = 1,2, ... ,m. 

8 
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A complete set of eigenvectors is given by 

t/; (k) = K-Y. 
s,q s,q 

-1 
.exp(if A ·k) N(k;f) t/; , s,q q (24) 

where K s,q is the normalization factor. 

Remarks 2~ Concerninf the spectrum, Theorem 2 generalizes 
the results in refs. /1, I to the case of three-dimensional 
systems, intersecting bands and n-th order one-band approxi
mation. But the main point of this Theorem is that the compo-· 
nents of t/Js,q (k) are restriction to kE[0,2rr] of functions 
analytic and periodic in a strip Jd. 

. . ( d ) Proof. S1nce 1 '"i:1K per. has compact resolvent and X (k;f) 

is bounded, it follows that if (d~ )per.+X(k;f) has compact re

solvent, and then its spectrum is discrete. The eigenvalue 

problem for i£ (-d-) + X(k;£ ) is equivalent to the problem dk per . 
of finding the values A, for which the evolution equation with 
period~c coefficients 

i _!_ J (k) = - __!_ [X (k;E) -A] J(k) 
dk f 

(25) 

admits periodic solutions. The number of independent periodic 
solutions of (25) equals the multiplicity of the eigenvalue A. 
Let N (k; f; A ) be the fundamental matrix of (25), i.e., 

id! N(k;e:A)=- €~ [X(k;E)-A]N(k;f;A), 

N (O;e; A)= 1 • 

(26) 

The fundamental result in the theory of differential equa
tions with periodi~ coefficients (/21/ says that the number of 
independent periodic solutions of (25) equals the multiplicity 
r of the eigenvalue I of N (2"; £; A ) , and if t/; q 

1
, ... , t/; q r is 

a basis in the corresponding subspace (N(2rr;f; A) is here 
understood as a unitary operator in em ), then a system ofr 
independent periodic solutions of (25) is given by 

t/; q i (k) = N (k; f ; A) t/; q i . (27) 

Taking into account that 

i -A- N (k;£ ; A) = - -!- [ X (k;E) -A] N ( k:E; A) , (28) 

N (0; < ; A) = 1 , 

the verification of Theorem 2 is immediate. 
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Translated in the " ~ representation", the analyticity and 
periodicity properties of~~ q(~ gives the exponential decay 
along 11 • As it is well kno~, the direct integral decomposi
tion of L 2 

( R 3 , dx) in the " >t representation" is 
2 3 (j) -+ -+ 

L ( R ,dx) = [ K (k) dk 
B 

where 

K(k) = l~k (-;) = exp (ik-;) uk(-;); 

ll~r (i)ll =I I u-. Ci) I 
Q k 

d"i l . 

-+ 
u k(x)- periodic 1 

It is not hard to verify that 

- -+ ffi -+ 

K (~) = J K (k1 , k.L) dk1 = 
[0,2rr] 

--. ... rl -+ -1 - .... _ .... 
=1~1 (X)=expl2rri[IK21 ~x2+1K 3 1 k 3x 3]luk(x);uk(x) periodic in 

.L l. .l.. 

+oo 
x2 and x3 I ll~~t ciJ 11

2 
=(VolQ)-I .r dx2dx3[ dx11'iik (x) 1

2 1 
.L ft Q -oo .L 

.L 

Theorem 3. For all a< d0 , 
-1 --1 -+ - -+ 

exp (a I x1 1) (U W rf;~q )"k (x) G K(k.L ). 
.L 

Proof. Using the definitions (I.2.7) ofU and (17) of W, 
we have 

< u-1 w-1 ,,.o ) ... (x) 
I' sq ~ 

-+ -1 -+ -1 -1 
=exp[2rri(IK 21 k2 x2 +1K

3
1 k

3
x

3
)](2rr) l exp[2rri(m2 x 2+m3 x 3)]x 

y,+oo 
x (2rr )-

2 
{ dp I exp (i P1 X 1) h (p 

1
) • 

m2' m3 
-oo 

m 2'm3 

where 

m -1 . 
hm m (pl) = hm m (kl+ml 2rr) = l rf;~q· e (kl) (V (kl )X·eo (kl)) 

2' 3 2' 3 1'.=1 ' rnlmt'3• 
From the periodicity of X 0 (k 1 ) and rf; ~q· e ( k 1) and the de-
finition of V(k 1 ), it follows that ·hm m (p 1 ) is analytic 
in the strip J do and 2' 3 

10 
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I~ 
(; 

I 

1 
c~ 

\' 

+ao+ia 
2 

l [ ! h rn ,m (pl) I dp 1 <"" ' \ a\ < d 0 , 
rn2,m3-oo+i a 2 3 

which via the Paley-Wiener theorem applied to the vectorjal 
function h (p1· ) implies that if 

m2,m3 +oo 

em m (xl)= (2rr)-Y, f dplexp(in.xl)hrn rn (pl) 
2 • 3 "l 2' 3 , 

-oo 
then 

+oo 2 n I x1 \ 2 l f e \em m (x 1)\ dx1 <oo , 
m 2•rn 3 -oo _2• 3 

which, together with the Plancherel theorem, completes the 
proof. 

Remarks 3. The result in Theorem 3 extends to arbi.trary n 
(replacing, of cou~se, do -+by dn ) • 

4. In general, a1 and K1 are not parallel, and moreover, 
for a given K L. there is a freedom in the choice of a l. How
ever, since a1 K1 = 2rr they are not orthogonal, and· then ex-
ponential decay· along a 1 is equivalent with the exponenti-
al decay along K1 • _ _ _ 

5. Although for all n = 0,1, ... the spectrum of Pn HE Pn 
consists of m interwined S-W ladders of eigenvalues, all of 
them having the same spacing between eigenvalues, it is not 
allowed• to take the limit n ..... "" , because the iterative const-
ruction of i'Sn seems not to be convergent as n-+ ""• but only 
asymptotic. 

In fact, although a direct proof of the divergence of the 
iterative construction of Pn · as n-+ "" does not exist, there 
exists an indirect one (at least, for the one-dimensional case): 
if' th~· .iterative· construction of Pn converges (in norm) as 
n -+ oo, then our results, imply, for sufficiently smal1 € , the 
existence of a S-W ladder of eigenvalues for HE , and this 
contradicts the fact that the spectrum of HE is absolutely 
continuous. Our results imply that as c -+ 0, the width of S-W 
resonances decreases faster than any power of € • This fits the 
heuristic arguments of Zener 1 221,as well as recent numerical 
calculations of Bentosela et al./23/, giving an exponential de
crease of the width of the S-W resonances. 

6. Our next remark concerns the existence of closed 
bands/ 24•25/. In spite of thr;; strong criticism of Zak/ 26/ and 
the recognition by Wannier/lB/ that the problem might be more 
complicated, it seems that there exists a widerspread opini
on/51 that without relying on power expansions in the field 
strength, one can prove .rigorously that Bloch bands closed in 
time exist. We shall point out below that, •due to a tacitly as
sumed hypothesis which turns out to be wrong, the existence of 
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bona fide Bloch bands (i.e., indexed by a discrete index) 
closed in time does not follow from the Wannier and Fredkin 
arguments. Although in a different form, our argument is the 
same with the argument of Zakl 'lf11. For simplicity, we shaH 
consider the one-dimensional case and assume that the perio
dic potential V(x) = V(x+ a) is twice differentiable. The ba
sic idea of Wannier and Fredkin is to consider the operator 

¢l = exp (-i277(Ea)-1 Hf ). 

It is easy to see' that ¢l commutes with the tr-anslation ope
rator (( T 11 f) (x) = f(X+ a)) ,so that ¢l can be written as a direct 
integral over the Brillouin' zone 

Ell 

¢l == J ¢l (k) d k • 

W . d F dk . ( 1 f I 18 • 25 I ) '· d ann1er an re 1n see a so re s. tac1tly assume 
that the spectrum of ¢l ( k) is discrete, wherefrom the exis
tence of the closed bands as well as of the S-W ladder fol
lows. Unfortunately, the fact that the spectrum of Hf is 
absolutely continuous 111 implies that the spectrum of <ll(k) is 
continuous (i.e., ¢l (k) has no eigenvalues) for all k c,:.B.In
deed, suppose ¢l ( ko) . has the ei~envalue .\0 , for some k0 c,:. B . 
Then, an argument of Wannier /18 shows that Ao is an (in-
finitely degenerated) eigenvalue of ¢1. On the other hand, the 
fact that the spectrum of H f is absolutely continuous, im
plies, via the spectral theorem, that ¢l has only continuous 
spectrum. 

10. Finally, let us mention some other mathematical ap
proaches. For a complex field (lmE =I 0) Avron I 41 proves the 
existence of S-W ladder eigenvalues. For real f and periodic 
potentials with some analytic properties Herbst and Howlandl27/ 
proved that certain matrix elements of (HE- z) -1 have mero
morphic continuation from Im z > 0 to Im z < 0. One can hope 
that this continuation has ladder poles in order to describe 
the S-W resonances. However, besides the restriction to one
dimensional systems, one expects the proofs to be rather comp
licated. 
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HeH4y A., HeH4y r. El]-82-208 
A~HaM~Ka 6noxoecK~x 3neKrpoHoe eo eHewHeM 3neKTp~4eCKOM none. 
Cy~ecreoeaH~e necTH~4H~x peaoHaHcoe 

Hay4aercR npo6neMa cy~ecreoeaH~R necrH~4H~x peaoHaHcoe np~ Han~4~~ 
BHeWHero 3neKTp~4eCKOrO nonR AnR Ofi~ero TpexMepHoro Kp~CTanna ~ B~PO*AeHH~X 
30H. raM~RbTOH~aH npofineM~ On~C~BaeTCR B B~Ae npRMOrO ~HTerpana KBa3~0AHO
MepH~X raM~RbTOH~aHOB. AfiR KBa3~0AHOMepHOro raM~nbTOH~aHa AOKa3~BaeTCR cy
~eCTBOBaH~e necTH~4H~x peaoHaHcoe, OTAeneHH~x APYr or Apyra. BonHoe~e ~YHK-
4~~. COOTBeTCTBY~~e 3T~M pe30HaHCaM, yfi~Ba~T 3KCnOHeH~~anbHO B HanpaeneH~H 
3neKTp~4eCKoro nonR. AoKaaarenbcreo ocHoBaHo Ha aHan~T~4HOCT~ ~ nep~OA~4HO
CTH KBa3~6noXOBCK~X ~YHK~~H. 

Pa6ora e~nonHeHa B fla6oparop~~ reopeT~4eCKOH ~~3~K~ OHHH. 

C~eHHe 06beAHHeHHOro HHCTHTyra RAePH~x ~ccneAOBaHHH. AY6Ha 1982 

Nenciu A., Nenciu G. 
Dynamics of Bloch Electrons in External Electric Fields. 
The Existence of Ladder Resonances 

E17-82-208 

The problem of the existence of the Stark-Wannier ladder for the Bloch 
electrons in homogeneous electric fields is considered. If the direction of 
the electric field coincides with one of the reciprocal lattice vectors, as 
It Is well known, the Hamiltonian of the problem can be written as a direct 
Integral of one-dimensional like Hamiltonians. For these Hamiltonians, the 
existence of Stark-Wannier ladders of well separated resonances is proved. 
The wave functions corresponding to these resonances, are shown to decay 
exponentially along the field direction. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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