
COOfilllBHMR 
OfibBAMHBHHOrO 

.MHCTMTYT8 
RABPHbiX 

MCCJ8AOB8HMI 

Cf\E \ .\UIABLE .\N:\LlTICITY 

.\NB PEHIOBit:t'l''\ 

AYIH8 

E I 7-82-207 

OF TilE f)l' ASI-BLCH:tl Fl'Nf~TIONS 

1982 



I. INTRODUCTION 

In a classic paper 111 , Kohn proved that for one-dimensio­
nal crystals, the Bloch functions (i.e., the eigenstates of 
an electron in a periodic potential) are analytic and 
periodic funct·ions of the crystal momentum k in a strip of 
the complex k plane. The generalization of this result to 
three-dimensional crystals seems to be quite difficult. Des 
Cloizeaux 121 succeded in the proof of analycity and periodi­
city properties of Blqph functions of k(k = (k l,k2 ,k3)) in a 
strip of the complex k plane, under the following circum­
stances: i. The band is nondegenerated and the crystal has 
a center of inversion. ii. The tight-binding limit is as­
sumed. 

The main interest in proving that the Bloch functions are 
analytic and periodic functions of ~ consists in the fact 
that this implies, via the Paley-Wiener theorem, the exis­
tence of exponentially localized Wannier functions. However, 
it is also interesting to prove the analyticity and periodi­
city of the Bloch functions with respect to only one (two) 
components of the quasi-impuls, the others being fixed. The 
reason is that when an external homogeneous electric (mag­
netic) field is appLied, two (one) components of k still 
remain constants of motion. 

The main result of this paper is the proof of the exis­
tence of quasi-Bloch functions/2,3/, analytic and periodic 
in k 1 at k2,k 3 fixed, for general crystals (with or with­
out a center of inversion) and degenerated bands. This result 
. f h . . d. . f 141 . 1s one o t e ma1n 1ngre 1ants 1n our proo . concern1ng 
the existence of Stark-Wannier resonances 151 of the Bloch 
electrons in homogeneous electric field. A useful represen­
tation for the position operator is also given. 

2. THE CONSTRUCTION OF QUASI-BLOCH FUNCTIONS 

The Hamiltonian to be discussed is 

Ho =-.6. + V per.· 0 ·.,f (i~1rWI;; t·' .. r ~ (2. I) 

>-. ~-~.:~ 'j ! : .' :' . 
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As for the periodic potential, we shall assume that it is lo­
cal and square integrable over the unit cell. 

-+ 3 . . 3 d 1-+ 13 Let!a
1 

};1= 1 be a bas~s ~n R an K 1 i= 1 be the dual 

basis, i.e., 

-+ -+ 

a 1 Kj = 2rr8 ij 

Without loss of generality, we shall take the length of K1 
to be 2rr • Let Q be the basic period ... cell for the basis I a tl 
and ·B be the ba ... sic period cell for IK't I (the Brillouin zone). 
The fact that l.!h I = 2rr means that the length of the Brillouin 
zone along the K 1 direction is 2rr . 

Theorem I 161 

Let V be a real function on R3 with 

vcx+a 1)=v(i): i=1,2,a. c2.2) 

Let 

J{- = e2(z3 )= lltfrml,m2,m311 
+oo 
~ (2.3) 

2 ltfr I < oo I , 
~ ,m2,m 3 · m

1
,m

2
,m

3 
=-oo 

and 

$ 

J{= JJ{'dk. (2. 4) 

B 

2 " -+ • Suppose V ~L (Q) and 'V .... (m = (m 1, !12, m?)) be the Founer coef-
ficients of Vas a fu~ction on Q, Le., for n;c;z 3 

" -1 3 -+ -+ -+ -+ v ... = (vol.Q) Jexp(-i ~ m.K
1
x)V(x)dx. 

m Q j= 1 l 
(2. 5) 

... 3 ... 
For k (; C , define the operator H0(k) in J{' by 

... ... 3 ... 2 " . 
(H

0
(k)lfr) ... = (k + !. m. K. ) lj! ... + ... ~ 3V ... t/i ... ... , 

m j= 1 JJ m nGZ n.m-n 
(2.6) 

2 

with the domain 

-+ . -+ 2 2 
D (H0 (k)) = D0 = ltfr G H' I !. I m I ltfr... I < oo l . 

; c;·z3 m 

Then:· 
~. 

ii. 
iii. 
iv. 

For...i~ (; R 3 
, Hock) is self-adjoint. 

H 0(k) ... is p.n entj.re analytic family of type A. 
For k GCg , H0 (k) has· compact resolvent. 
Let U:L2 (Rg,di) ... J{ be.givenby 

-+ 3 
" -+ -+ -+ 

(Uf) ... (k) 
m 

f (k + . !. m1 K J); (2. 7) kG B. 
J= 1 

Then U is unitary, and 

$ ~ ...... -+ 

UH 0U-1
= J H0 (k)dk. (2.8) 

B 

Proof. Fo~ the proof of this theorem, see 161 • 
-+ Inwhat follows, k 1 , k 2 , kg denote the coordinat~s of 
k with respect to th~ basis ~~ /IK 1 1 . We are inte~ested in 
the properties of H

0
(k) as a function of k 1 at k.L =(k 2 ,kg) 

fixed. In order to emphasize this fact, we shall write 

H o (k1 • k.L ) = H o, k.L (k1 ) 

and, moreover, in the 'cases wqen no confusion is possible, 
.... ' 1 ., • 

we shall k .L omit. 
Let a(k1 ) be the (discrete) spectrum of H0 (k 1 ). 

Definition. A nonvoid part a 0 (k 1) of a (k 1 ) , k1 G [ 0, 2rr) 
is said to be an isolated bdnd of H0 (k1) if there exist 
continuous functions on [ 0, 2rr) , r1 (k1 ) , f 2 (k 1 ) and a 
positive constant c > 0 , such that 

-oo < !1 (k 1 )< f2,(k 1 ) < oo, 

a 0 (k 1) C [f1 (k 1), f2 (kl)), 

[ f 1 ( k1 ) - c, t' 1 (k 1 ) + 'c] n a (k 1 ) = tS , i = 1,2 

k 1 G [0, 2rr] . 
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From the physical textbooks, one can learn that, at 
least for nondegenerated bands, a 0 (k 1 ) is the restriction 
of a periodic function. The precise statement (which is -pro­
bably a folk-lore, but we do not know a proper reference) is 
the following. 

Let J d be the strip !Imk1J < d , Rek l ~R. 
Proposition 1. Let a~ (k 1) be an 1solated band of 

H 0 k (k 1 ) • Then: k .L 

L.L There exist positive integers m, p ; p <,;_m; functions 
.\ j (k 1) , j = 1,2, ••• , p analytic in the strip J d and real 
for k 1 ~ R ; positive integers r 1 , ••. , rp satisfying 

I r i = m , , such that 
i = 1 

a~ (k 1) = { .\ i (k1 ) l :=1 ' 
.1:. 

k 
1 
~ [ 0, 2rr] 

each .\ 1 (k 1 ) having the-multiplicity r 1 • 

ii. The set l.\ 1 (k 1 )l~=.1 is periodic, with period 2rr, 
and each .\ 1 (k 1) is per1odic with a period at most 2rrp. 

Remarks. I. Note that the existence of some points for 
which two or more of the functions .\ 1 (k 1) have the same 
value (intersection or degeneracy points) is allowed. The 
number of degeneracy points in [ 0, 2rr] is finite due to the 
analyticity pro~erties. 

Proof. Let V: J{ '-. J{' be the unitary operator given by 

(Vrp)ml'm2,m3 =r/lmc1,m2, rna' 

Since V is unitary and I is not an eigenvalue 
exists a unique 'self-adjoint operator M, such 

V = exp (2rriM) • 

The bounded operator valued function 

V(k 1 ) = exp(ik1 M), k 1 ~c. 

is obviously an entire function. 
Consider the following family of operators 

K O,k.L (k 1) = V(k 1 )H O,k.L (k 1)V--1 (k 1 )' • 

(2.9) 

of V , there 
thatJJMJ~l and 

(2. IO) 

(2. II) 

(2. I2) 

A simple, but a little bit tedious calculation shows that 

K -+ 
O,k.L 

(k )=K ... 
1 O,k .L 

(k +2rr). 
1 

(2. I3) 

Since Ko k-> (k 1 ) and H 0 ->k (k 1 ) are unitary equivaleift, 
' ..1. ' :.i . 

they have the same spectrum and then a-(k 1 ) =a(Ho,k (k 1 )) as 
a set, is periodic, i.e., l. 

u (k 1 ) = a (k 1 + 2rr ) . (2. 14) 

Defining a 0 (k 1 ) forallk 1 ~R byperiodicity, it follows 
that a 0 (k 1) is isolated for all k 1 ~ R .and 
dis-t.(a0 (k

1
),a(k1)a 0 (k1))2:c>O,all k1~R. Now, the existence 

of.\ i (k 1), as well as their analyticity properties, follows 
from the theory of perturbation for analytic families of type 
A 161 • In particular, the analyticity of .\ 1(k 1) at degeneracy 

points, follows from the famous Rellich theorem 16 • 7/ • ·The 
only thing, we have to verify, is the periodicity properties. 

As an isolated part of a(k 1) , a 0 ~1 ) is a periodic set. 
Since, because of the analyticity, the number of intersection 
points in every compact is finite, without loss of generality, 
we can assume that 0 is ,not an intersection point. Clearly, 
if ti is a smallest integer such that .\ 1 (2rrt 1) = ,\f ( 0), , 
then the period of ,\ i (k 1 ) is 2rrt 1 • Since for all integers 
t the set a 0 (2rrt) of possible values of .\ 1 (2rrt) does not 

depend on t and contains p points, it follows that tiS p, 
and the proof is completed. 

Lemma I. Let K be a separable Hilbert space and J d = 

= {z~CJ!Imzl <d, d>Ol. Let II(z) be a projection-valued 
analytic function in J d satisfying: 

i. ll(z) =Il*(z), z~R. 
ii. Il(z) = Il(z + 2rr), z ~ J d. 

Then, there exists an analytic family A.(z) of :i,nvertible 
operators with the properties: 

a. A(z)Il(O) A- 1 (z) = II(z), A(O) = 1. 

b. A *(z) =A -l (z) , z r;; R. 

c. A(z + 2rr) = A(z) , z ~ J d • 

Remarks. 2. Without the periodicity conditions, the above 
result goes back to Sz.-Nagy IS! (see also refs. /B,7/ ). For, 
finite-dimensional Hilbert spaces, related results concerning 
h . d. . . E 191 • L 1 '1 d. f . t e per1o 1c case are g1ven 1n re . Wlt•l comp ete y 1 -

ferent proofs. 

Proof. We shall construct A(z) 
--- 161 
The I st step ( ) . Let L(z) 

Ln two steps. 
, B(~ be given by 
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· ~· , . dll(z) 
L,z) = i (1 -2II(z)) -· --, (2. 15) 

·' dZ' 

i'dB(z) =L(z)B(z); B(O) =1. (2.16) 
dz 

q ' . /6/ . 
We refer to Reed and S1mon for the proof of the fact 

that B(z)' · is analytic and ·invertible in J d and satisfies 
the conditions ·a. and·b. of the Lemma I. 

The 2nd step. Gonsider 8(277)'. • Since 

B(z)H(O) B-1
(z);=II(z), (2.17.) 

.it follows from H(O) =II(277) that 

B(277) = B 1 e B 2 , (2. 18) 

whete the orthogonal sum is according to 'the decomposition 

]\ = II(O)' K e (1- II(O)) K. (2. 19) 

Since 8 1 and' B 2 are unitary operators, one can take the 
logarithm, i.e., there exist bounded self-adjoint operators 
C 1 , C 2 in II(O)K and (1-II(O)) K , . respectively, such that 
II c 1 II ~ 1 , i = 1, 2. and 

8(277) = exp(277iC), C = cie C
2

• 

Obviously [C,II(O)]= 0, and consequently, 

[11(0) , exp (izC)] = 0. 

We claim now that the family 

A(z) = B(z) exp(-izC) 

'(2.20) 

(2. 21) 

(2.22) 

satisfies all the conditions a-c Lemma I. Combining (2. 17) 
and (2. 22) one obtains the property a. for. A.(z) • Since B(z) 

is unitary for z G R 161 and C is self-adjoint, it follows 
that A(z) is unitary for z G R . Since B(z) is analytic 
and invertible ,in J d, A(z) has the same properties. Finally, 
using (2. 16), the fact th.ai: II(z) and K(z) ,are periodic and 
(2. 21) for z = 277 , qne can easily verify recurrently that 

dn 
-A(z)lz=O 
dzn 

dn I 
- -----A(z) z=277 ' - dz n 

which completes the proof, 

6 

,,\ 
)) 

)\ 
I I 

We are now prepared to prove the following basic Propo-

sition. P 

Proposition 2. Let a 0 (k1.) = {.\ 1 (k 1 )1~=1 , 1~1 r1 = m be an 

isolated band of Ho(k 1) , and P0 (k1 ) its corresponding 
spectral projection .• Then,. there exist a positive constant 

do>O a~d m valued ve~tor functions x1 (k 1)GJ<' , i=1,2, ••• ,m 
analytic in the 'strip Jd , x~ (k 1 ) =xj (k

1
+277) such that 

IV-1 (k1)XY (k1 )l'f is aR orthonormed basis in P0 (k 1)J{' • 

Proof. From the fact 'that Ho(k 1) is an entire function 
and the fact a 0 (k1) is isolated, using the formula 

1 1 
Po (k 1 ) '7 277i J ~-;:, 

where C is a contour enclosing a 0 (k 
0
) , it follows 'that 

there exists do> 0 (see, e. g., ref. /1 I) such that P0 (k 
1

) is· 
analytic in Jd • From (2. 12) and (2. 13) it follows that 

0 . 

II 0 (k 
1

) = v (k
1 

) P
0 

(k
1

) v-1 (k 
1
) 

is periodic and then satisfies all the conditions of Lemma 1. 

Let A (k 1} ~e given by Lemma I applied to II 0 (k1) and lx 1' ~ T 
be a bas1s 1n P0 (0)J< '. Then, from (2. 12) and Lemma I one 
can easily see that 

xi(k1) =A(kt)xf • i = 1,2, ... ,m, (2.23) 

have all the 'required properties. 
We• shall E¥ld. by writing the position operator (X 0f)(x) .. i1H(~ 

for ii = (277)-1 K1 in a convenient form. Obviously, 

... ... 
(X.(Jf)(x) = x 1 f(x) , 

... 3 ... 
x = ~ x

1 
a

1
• 

i = 1 

Consld~r the Hilbert space J{ 

- $ 

J( = r J<, dk1 • 
[ 0,277] 

with a self-explanatory notation· 

(2.24) 

(2.25) 
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J{ 
Ell - -+ 

J J Hdk.l., 
B.l. 

I ~ -t 4 -+ -1 -+ -+ -+ 

(2.26) 

J being 
We shall 
Consider 

the Jacobian J = (iK1 IIK2 UK 3 I) (K 
1 

· (K; xK 3 )) 
denote the ele,!!lent~ of J{ ·by It/! iJt (k 1 )I n; ~ Z3; k 1 ·~ [ 0,2rr] 
'the operator Xo g1.ven by 

- d ! (X 0' t/1 ) ... (k 1 ) I = {i -- t/1-+ (k 
1

) l 
m dk 1 m 

(2. 27) 

- d -
D(X 0)={!t/f ... (k 1 )ll !--t/f ... (k

1
)1 .;}{; t/1 (2rr)=t/l 

1 
(0)}. 

m dk 1 m . m1,m2,m3 m1+ • m2,m 3 

Proposition 3. Let X0 be the self-adjoint operator in 

L,
2

(R 3
, ctX') 

(Xof)(X) =X1f(ih;' 
-+ 3 ... 
X= }; x.a. 

i= 1 I I 

on its natural domain. Then 

... Ell 
-1 ux 0 u = J xo d k .l. 

B.l. 

,,. 

(2.28) 

The simple proof of this Proposition is left to the reader. 

The operator X0 is a self-adjoint extension of i--d-­

described by so~what unusual boundary conditions. Th:kJext 
remark is that Xo is related to a more familiar self-adjoint 

extension of i-d-- . Let 
dkl 

~ e 
v = r v (k 1)ctk1 ; 

[0,2rr] 

~ e 
M = J Mdk 1 [ 0,2rr] 

(remember that V(k 1 ) = exp(ik 1 M)) ~ and 
self-adjoint operator, be given by 

I (i ( -~-) t/1 ) ... (k 
1 

) l = I i _dkct .p_. (k 
1 

) l , 
dk 1 per. m 1 m 

i (_:!-) 
dk 1 per 

, the 

d d 
D(i(--) )=!!t/l-+(k

1
)Jil--t/l·->(k

1
)l .;}{'; .p .. (O) =t/1 ... (2rr)} dk 

1 
per. m dk m m m 

8 

(2.29) 

(2.30) 

/
I 

\· 

(j, 
I' 

( ' 
'I 

I: 
l 

Proposition 4. 

-v- .;- v--1 . c d ) .ll.o =I --
dk 1 per 

+ M • (2. 3 I) 

Proof. This is an immediate consequence of -the differen­
tiability of V(k 1) and of the fact that 

(V(2rr)I/J )m
1

, m
2 

• m3 

Remarks 3. 

=t/1 m - 1, m2 'm 3 1 

Proposition 2 asserts the existence of quasi-Bloch func-
tions )(~ (k1 ) ( 12•31 ) which are analytic and periodic in 
k 1 at k.1 fixed. This Proposition implies the existence of 

Wannier functions decreasing exponentially in the a1 direc­
tion. We would like to stress that Proposition 2 does not 
imply the exponential degrease of Wannier functions in all 
directions. I~ order to prove this, one needs the generaliza­
tion of Proposition 2, asserting the analyt.icity and periodi­
city in all variables k 1, k 2 , k~. This is not a trivial 
problem, due to some topological d1.fficulties; this problem 
is beyong the scope of this paper, and will be considered 
elsewhere . 

I. 
2. 
3. 
4. 
5. 

6. 

7. 

8. 
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HeH4Y A., HeH4Y r. 
AHanHTH4HOCTb H nepHOAH4HOCTb KBa3H6noxoscKHX $YHK~HH 
OTHOCHTeflbHO 0AHOH nepeMeHHOH 

El]-82-207 

H3y4aCTCR HeKOTOp~e CBOHCTBa KBa3H6flOXOBCKHX $yHK~HH,KOTOp~e npeACTaBnR­
CT HHTepec npH H3y4eHHH nOBeAeHHR 6nOXOBCKHX 3fleKTpOHOB BO BHeWHeM 3fleKTpH-
4eCKOM none. AoKa3~saeTcR aHaflHTH4HOCTb H nepHOAH4HOCTb KBa3H6noxoscKHX 
$YHK~HH OTHOCHTeflbHO OAHOH KOMnOHeHT~ KBa3HHMnynbca, AflR 06~ero TpexMepHOro 
KpHCTanna H B~pO~AeHH~X 30H. MeTOA AOKa3aTeflbCTBa OCHOBaH Ha 0AHOM a6cT­
paKTHOM pe3yflbTaTe, KOTOp~H o6o6~aeT MeTOA TpaHC$0pMHpyO~HX $YHK~HH B nepH-
0AH4eCKOM Cfly4ae. 

Pa6oTa s~nonHeHa s fla6opaTOpHH TeopeTH4eCKOH $H3HKH OHRH. 

C~eHHe 06~eAHHeHHoro HHCTHTyTa RAePH~X HccneAOBaHHH. Ay6Ha 1982 

Nenclu A., Nenciu G. E17-82-207 
One Variable Analyticity and Periodicity of the Quasi-Bloch Functions 

For general three-dimensional crystals and intersecting bands, the exis­
tence of quasi-Bloch functions, analytic and periodic as functions of one 
of the components of the crystal momentum (the others being fixed) is 
proved. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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