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1. INTRODUCTION

In a classic paper/l/, Kohn proved that for one-dimensio-
nal crystals, the Bloch functions (i.e., the eigenstates of
an electron in a periodic potential) are analytic and
periodic functions of the crystal momentum k in a strip of
the complex k plane. The generalization of this result to
three-dimensional crystals seems to be quite difficult. Des
Cloizeaux “®/ succeded in the proof of analyclty and periodi-~
city properties of Bloch functions of k(k-—(kl,kg,k3)) in a
strip of the complex 4 plane, under the following circum-
stances: i. The band is nondegenerated and the crystal has
a center of inversion. ii. The tight-binding limit is as-
sumed.

The main interest in proving that the Bloch functions are
analytic and periodic functions of K consists in the fact
that this implies, via the Paley-Wiener theorem, the exis—
tence of exponentially localized Wannier functions. However,
it is also interesting to prove the analyticity and perlodl—
city of the Bloch functions with respect to only one (two)
components of the quasi-impuls, the others being fixed. The
reason is that when an external homogeneous electrlc (mag-
netic) field is appiied, two (one) components of kK still
remain constants of motion.

The main result of this paper is the proof of the exis-
tence of quasi-Bloch functions’/2:8/ | analytic and periodic
in k, at ko, kg, fixed, for general crystals (with or with-
out a center of inversion) and degenerated bands. This result
is one of the main ingrediants in our proof. concerning
the existence of Stark-Wannier resonances’5’ of the Bloch
electrons in homogeneous electric field. A useful represen-—
tation for the position operator is also given.

2. THE CONSTRUCTION OF QUASI-BLOCH FUNCTIONS

The Hamiltonian to be discussed is

o o
Ho=-A+Vye.. O wravmrye oo (2.1)
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As for the periodic potential, we shall assume that it is lo-
cal and square integrable over the unit cell.

. . 3 > .3
Let{z—fi _};13=‘ be a basis in R~ and {K,};_; be the dual
basis, i.e.,
L5
a; Ky = 2md 1

Without loss of generality, we shall take the length of l'{’1_.
to be 2r . Let Q@ be the basic period_cell for the basis fag

and ‘B be the ba_'si.c period cell for {I-{"l } (the Brillouin zone).

means that the length of the Brillouin
direction is 27 .

The fact that |K,|=2r
zone along the K,
Theorem |
Tet V be a real function on R® with

V(£+31) =V(§); 1=1v213- (2'2)
Let
4~ 00
Kr=0?z%)-= } 3 1Bl
£5(Z*) memg-ms ‘-ml,mg.m3=—wl¢"‘1'm2'm3 (2.3)
and
® ->
X - f K-ak . (2.4)

B

Suppose Vg.Lz(Q) and ﬁfn' (‘:‘""(ml'mz'm:})) be the_’Fougier coef-
ficients of V as a function on Q, L.e., for m&Z

~ - 3 > + o
V, = (vol.Q) ! [ exp(~i 21 mjKjx) V(x) dx .
j:

(2.5)
m Q
For k €C3, define the operator Hyk) 1in W’ by
~5 - 2 ~ '
= > p - R .
Ho®¥), <k+j3_:1mj SRS IS S S £ (2.6)

[

g
g

with the domain

D@Ey®) =Dy =1 ¢ K| 2 _Jmi® Iz 1% <1

mecZ
Thenv N N -
i. For,k ¢R°, Hok) is self-adjoint.
ii. Hyk) ,is an entire analytic family of type A.
jii. For keC3 » Hg(k) has compact resolvent.’
iv. Let U:I2(R3,dx) - K be ‘given by
O s @ =T@+ 3 m k); FeB
)&:(1.;)= ( +j=1mj j), ke B. . (2.7
Then U is unitary, and
1 e . -
UH U= Bf Hy &) dk . (2.8)

Proof. For the proof of this theorem, see 8/,
, In what follows, k;, kg, _;k3 denote the coordinates of
k with respect to the basis Ki/lKi |. We are integested in
the properties of Ho(k) as a function of k, at ki=(kp,kg)
fixed. In order to emphasize this fact, we shall write

Hyk, k)= Ho'ﬁl &, )

and, moreqQver, in the ‘cases when no confusion is possible,
we shall k; omit.

Let o(ky) be the (discrete) spectrum of H,(k,). )

Definition. A nonvoid part o°(ky) ©of o(ky)  ky &[0, 2s]
is said to be an isolated band of Hy(k,) if there exist
continuous functions on [0,27], f,(k,) , fy(k,) and a
positive constant ¢ > 0 , such that

—oo <t (k)< (kK ) <o,

o°k 1) c [fl(kl)' f2(k1)] y

(f(ky) —e, f,(k,)+clNno(k) =6, i=12

k, [0, 2n].
3



From the physical textbooks, one can learn that, at
least for nondegenerated bands, 0°(k;) is the restriction
of a periodic function. The precise statement (which is pro-
bably a folk-lore, but we do not know a proper reference) is
the following.

Let J4 be the strip |Imk;i<d , Rek,GR.

Proposition 1. Let 0‘13; (kq) be an isolated band of
Hog ). Ihen: 1

1 There exist positive 1ntegers m, p ; p<m; functions
)\j(k1) » §=12,..,p analytic in the strip Jq and real
for k4G R ; positive integers r,..., r, satisfying
m

Er=

i=1

, such that

o3 &) =0 k1L K e (0, 20]

each Aj;(k;) having the mult1p11c1ty ry

ii. The set IA (k )} is periodic, with period 2,
and each A (k) 1s perlodlc with a period at most 2mp -

Remarks. 1. Note that the existence of some points for
which two or more of the functions A 1 (&) have the same
value (intersection or degeneracy p01nts) is allowed. The
number of degeneracy points in [0, 27 is finite due to the
analyticity properties.

Proof. Let V: X’+H” be the unitary operator given by

(V¢)m1'm2'm3=¢m1"1'm2' mg’ (2.9)

Since V is unitary and 1 is not an eigenvalue of VvV, there
exists a unique self-adjoint operator M, such that||M||<1 and

V = exp(2riM) . (2.10)

The bounded operator valued function
V(k,) = exp(ik, M), k, <C, : (2.11)

is obviously an entire function.
Consider the following family of operators

_1 4,
ﬁ:— (k 1) = V(kl)H O'l‘(’l(k 1)V (kl) . (2. 12)
A simple, but a little bit tedious calculation shows that
K + & )=K k +2r).
o.f (k, ) 08, (k +2m) (2.13)

Since Kj, Ky (k1) and Hg, 3} 'Y (ky) are unitary equivalent,
they have the same spectrum and then o(ky) =o(Hg 3} (kl)) as

a set, 1s periodic, i.e., .
ok ) =0k, +2nr). . (2.14)

Defining 0°(k,) for allk,GCR by periodicity, it follows

that ¢°(k,) is 1isolated for all k; & R .and

dist. (o°(k ) ok, Y o°k)) > c> 0,all Ky €R . Now, the existencé

of A;(ky), as well as their analyticity properties, follows

from the theory of perturbation for analytic families of type

A% | In particular, the analyticity of A ;(k;) at degeneracy
’ i 1

points, follows from the famous Rellich theorem 78 7 . The

only thing, we have to verify, is the periodicity properties.

As an isolated part of o(k ) , o°(;) is a periodic set.
Since, because of the analyt1c1ty, the number of intersection
points in every compact is finite, without loss of generality,
we can assume that 0 1is,not an intersection point. Clearly,
if t; 1s a smallest integer such that X;(2st;) = A ; (0),
then the period of A (ky) 1is 2rt,, Since for all integers
t the set o°(@nat) of possible values of A (2at) does not
depend on t and contains p points, it follows that t; <p,
and the proof is completed.

Lemma 1. Tet K be a separable Hilbert space and Jg=
={zcC| |mz| <d, d>0}. Let II(z) be a projection-valued
analytic function in J4 satisfying: ‘

i. I(z2) =*=), zCR.

ii. (2 =1I(z + 2a), z2eJy.

Then, there exists an analytic family A(z) of invertible
operators with the properties:

a. A@NEO) A (z) =l(z), A©) =1,

b. A%2) =A7! (@), zER.

C. A(z +2r) = A(zZ), zGly.

Remarks. 2. Without the periodicity conditions, the above
result goes back to Sz.-Nagy 78/ (see also refs. /8,77y, For,
finite-dimensional Hilbert spaces, related results concerning
the periodic case are given in ref. with completely dif-

ferent proofs.

Proof. We shall construct A(z) in two steps.
The Ist step ( /6 ). Let L(z) , B(z) be given by



¥y o

TR fhas R b

s - 10 -2n@) <&, o (2.15)
20 _L)B@; BO) -1, a8

i

We refer'to Reed and Simon/e/ for the proof of thée fact
that B(zy" is analytic and invertible in J, and satisfies
the conditions'a. and-b. of the Lemma 1.

. The 2nd step. Consider B(2#). . Since

B@I©O B~ (@ 1z) , - . (2.17)

it follows from H(0) =Ii(27) that
B(2ﬂ).= 'B16B2' (2.]8)

whete the orthogonal sum is according to ‘the decomposition

K=n@X e (1-m))KX. ' (2.19)

Since B, and By are unitary operators, one can take the
logarithm, i.e., there exist bounded self-adjoint operators
C;»Cs in HO)K and @-10)) X , respectively, such that
fICy It <1, i=1,2, and

" B(27) = exp(2riC), C=C e C, . (2.20)

Obviously [C,1I(0)]= 0, and consequently,

{IK0) , exp(izC)] = 0. \ (2.21)
We claim now that the family

A(z) = B(z) exp(~izC) (2.22)
satisfies all the conditions a-c Lemma 1. Combining (2.17)

and (2.22) one obtalns the property a. for  A(2) Since B(z)
is unitary for zc R’ and C is self-adjoint, it follows
that A(z) 1is unitary for z c¢R . Since B(2) is analytic
and invertible .in J4, A() has the same properties. Finally,
using (2.16), the fact that II(z2) and K(z) ,are periodic and
(2.21) for z2=2r , one can easily verify recurrently that

A
L I

: which completes the proof. - .

6

i\
)

———

We are now prepared to prove the following basic Propo-
sitiomn. .
Proposition 2. Let ¢°(ky ) ={A, (kl)} fed * z I =m be an

isolated band of Hg(ky;) , and Py(ky) its corresponding

spectral projection. Then,. there exist a positive constant

do>0 and m valued vector functlons x§ kel , i=12,....m

analytic in the strip Jdo' xi (k ) (k +21r) such that

V-1 (ky)xf kI is an orthonorme& basis in Po (k) X’
Proof. From the fact ‘that Hg(k;) is an entire function

and the fact ¢°(k;) is isolated, using the formula

1 1
P (k)= a
o) = 5 gy S

where C is a contour enclosing o° 2. it follows that
there exists dy>0 (see, e.g., ref. /10/) such that Fyk,) is
analytic in Jdo' From (2.12) and (2.13) it follows that

Mo (k) =V, )P )V (k)

is periodic and then satisfies all the conditions of Lemma 1.
Let A(ky) be given by Lemma | applied to Il;(k;) and {x‘i’ }m
be a basis in PO(O)}(’ Then, from (2.12) and Lemma 1 one
can easily see that

x ik =Aky)xt i=1,2,...,m, (2.23)

have all the required properties.

Weishall e_apd by writing the position operator (Xof)(x)anxf(ﬁ
for n= (" 1 in a convenient form. Obviously,

X oH)® =x () ,

(2.24)
-» 3 -»
X = iz'l X a,
Consider the Hilbert space H
R- 1w dk (2.25)
[o,e7]
with a self-explanatory notation-
1



=3[ Ha,, (2.26)

J being the Jacobian J —(IK HK LJK3|) 1 (K xK 3)) .
We shall denote the elements of f¢ & G:Z3 K < lo.en
Consider the operator Xg given by
~ ( o d
{(xogb)a (e, )} =h_dk_l-¢ﬁ;(k1)} , (2.27)
- d —~
D) llv Gl (g @1 s v, g, O

Prop031t10n 3. Let X0 be the self-adjoint operator in
LR 3 aX)

-, B 3 -5
(Xd’)({f):xlf(x); X = i§1xiai

on its natural domain. Then 0

& >
ux. ula f Xy dk, (2.28)
1

The simple proof of this Proposition is left to the reader.

The operator X, is a self-adjoint extension of i d

. dk ¢
described by somewhat unusual boundary conditions. The next

remark is that Xg¢ is related to a more familiar self- adjoint

extension of i_gn_ . Let
dk 4
- ® - @
V= [ V(k ym M= | Mdk (2.29)
Lo,27] [0,2n]
(remember that Vik, )-exp(ﬂ< M)) ) and iQ—g—-) , the
self- ad301nt operator, be glven by dky per
(2.30)

o d d .
DO(Tﬁ{l‘)per.): o R Do GDFEICS g2 (0) =y 2 @)

—~— T
A,

oy

Proposition 4.

TEV oLy 4.

&, per (2.31)

5

Proof. This is an immediate consequence of the differen-
tiability of V(k,) and of the fact that

(V(21r)l/I)m my g =‘/’m1-1.m

2’ g

Remarks 3.

Prop051t10n 2 asserts the existence of quasi-Bloch func-
tions x k) ( /2,3/ 'y yhich are analytic and periodic in
k, at kl flxed This Proposition implies the existence of
Wannier functions decreasing exponentially in the a1 direc-
tion. We would like to stress that Proposition 2 does not
imply the exponential degrease of Wannier functions in all
directions. In order to prove this, one needs the generaliza-
tion of Proposition 2, asserting the analyticity and periodi-
city in all variables k;, k,, kg. This is not a trivial
problem, due to somé topological difficulties; this problem
is beyong the scope of this paper, and will be considered
elsewhere.
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Henuy A., Henuy TI. E17-82-207

AHaNMTUUHOCTL M NEPUOAMUHOCTbL KBa3UBNOXOBCKUX dyHKUMM
OTHOCUTENbHO O[HOM NepeMeHHOM

U3yuanTcA HekoTOphle CBOMCTBA KBA3UGNOXOBCKUX ®YHKUMI ,, KOTOpLIE NpeacTasna-
0T MHTEpeC Npu u3yueHuu nosefeHUA GNOXOBCKUX 3NEKTPOHOB BO BHEWHEM 3NEKTpU-
ueckoM none. [loka3sbiBaeTCA AHANMTUUHOCTb M MEPUOAMUHOCTL KBA3UBNOXOBCKUX
OYHKUMA OTHOCUTENBHO OHOM KOMMOHEHTb KBasuuMnynsca, ana obuero TpexmepHOro
KpUCTanna u BbipOKAEHHbIX 30H. MeTop pokasartenscTea OcHOBaH Ha oaHOM abcT-
PaKTHOM pe3ynbTaTte, KOTOpbii 06obwaeT MeTOA TPaHCHOPMUPYDWMX GYyHKUMH B nepu-
OiUUECKOM cnyuyae.

Pabota sunonHena B8 JlaBopatopuu TeopeTuyeckon ousmuku OUAU.

Coobuenne 06veanHEHHOro MHCTUTYTa AREPHBX nccnegosanui. flybna 1982

Nenciu A., Nenciu G. E17-82-207
One Variable Analyticity and Periodicity of the Quasi-Bloch Functions

For general three-dimensional crystals and intersecting bands, the exis-
tence of quasi-Bloch functions, analytic and periodic as functions of one
of the components of the crystal momentum (the others being fixed) is
proved.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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