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1. INTRODUCTION

In the last years considerable interest has been roused
for the theoretical and experimental study of surface polari-
tons ‘1'%, The linear surface polaritons (LSP) are polaritons
which propagate along the interface between two adjacent me-
dia, i.e., solutions of Maxwell”s equations for which the am-
plitude of the electric and magnetic fields tends to zero in
an exponential manner as one moves away from the interface
into either medium.

As is well known the LSP are the admixture of the optical
phonons and photons, and like the bulk polaritons show strong
dispersion in the long-wavelength limit /7. The LSP associated
with optical phonons have been observed experimentally in lay-
ered structures by various methods, including surface reflec-
tion Raman scattering method /810 and attenuated total ref-
lection method 8

In recent years another class of normal modes of thin crys-
tals, which are usually called linear guided wave polaritons
(LGWP), has also been intensively investigated /11-14/_ The ob-
servation of LGWP by Raman scattering experiments has been
first reported in ref. - The LGWP modes propagate with a re-
al wave vector k parallel to the surface, and the normal com-
ponent k, of the wave vector is imaginary outside the slab
and real inside. Thus, the electromagnetic fields decay expo-
nentially outside the slab but have the character of standing
waves within the film.

Recently, much attention has been given to the theoreti-
cal investigation of nonlinear surface waves. In two seminal
notes Tomlinson ’ '8’ and Agranovich et al./17/ have obtained an
exact solution of Maxwell”s equations which describe the pro-
pagation of s and p-polarized nonlinear surface waves, res—
pectively, in the case when one of the two dielectric media
in contact across a planar interface is optically unaxial and
characterized by the diagonal dielectric tensor:
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Maradudin’'® has studied in detail the dispersion relation

of these s-polarized nonlinear surface polaritons (NSP) and
has found that in the case a{w)< 0 the electric field in the
nonlinear medium is singular. Later on/%thev‘qg/has genera-
lized the results of Agranovich et al. to the case of two
optically unaxial nonlinear media characterized by dielectric
tensors of the form (1).

It turned out also that the Maxwell equations, which desc-
ribe the nonlinear surface waves in the system with the same
geometry as in/1?7/ but with a stronger nonlinearity of the form
€11= €99 = €. +a(‘E1|2+ E, |2)+;3(\E1\4 +1Eg|* ), are also exactly
solvable’®%/.In ref/21/ we discussed shortly the propagation
characteristics of p-—polarized NSP in thin dielectric films
of thickness d characterized by the diagonal dielectric ten-—
sor (1).

It is the purpose of this paper to study in detail the
propagation characteristics of p -polarized NSP and of p-po-
larized nonlinear guided wave polaritons (NGWP) in the follow-
ing three-layer structures: i) dielectric medium (vacuum, for
example) =— optically linear medium (of thickness d ) - opti-
cally uniaxial nonlinear crystal and ii) dielectric medium
(vacuum, for example) — optically uniaxial nonlinear crystal
(of thickness d ) - optically linear medium. In this work we
shall find the exact solutions of Maxwell”s equations that
describe the nonlinear surface waves in these layered systems.

The paper is organized as follows: In the next section we
obtain the electromagnetic NSP and NGWP modes in the three-
layer structure i) and calculate the power carried in the non-
linear surface waves. In Sect.3 we study the propagation cha-
racteristics of NSP and NGWP in the layered system 1i) and we
calculate the power carried by the NSP modes. Finally, in
Sect.4 the results are briefly discussed.

2. NSP AND NGWP IN THE THREE-LAYER STRUCTURE:
DIELECTRIC MEDIUM -~ DIELECTRIC FILM-OPTICALLY
UNIAXIAL NONLINEAR CRYSTAL

We start by obtaining the electromagnetic modes of the three-
layer structure consisting of a dielectric medium with isotro-
pic dielectric constant e¢,{w) (vacuum, for example) in the re-
gion T (~«<3z < 0), a dielectric film with isotropic, frequen-
cy — dependent dielectric constant ¢,(w) in the region II
(0<z<d) and an anisotropic substrate (optically uniaxial non-
linear crystal) described by the diagonal dielectric tensor
(1), in the region III (z> d).We restrict ourselves to p-pola-

rized NSP which are characterized by Eg=0, Hy=Hg=0,i.e., the
waves propagate in the x direction, with electric vector in
the xz plane (TM waves).

a) The Case of NSP

- -
The cartezian components of E and H are:

Eyg =644 (2)exp(-iot +ikx) ,

(2)
H, = K, (z)exp (-iwt +ikx),
Maxwell” s equations are
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We look for solutions localized near the surfaces of the
thin film with fields that fall to zero as |z|++e~. The solu-
tions of eqs. (4) in the case of a< 0, kf>0 , k§:>0, k§>0
are given by

k
gll(z)=Ae L —=<2<0,
P o kzz —kzz (5)
ol(Z)=B1e +Bze , 0<z<d,

(z) = (TT )/z lcosh[ks(i*—)l/z(z—zo)]!_l, z>d,
a €"




where A, By, B, and z, are to be determined from the boun-
dary conditions imposed upon the system. Thus, the interface
between the dielectric medium IT and the nonlinear uniaxial
crystal III can support an optical surface wave that propa-

gates along the interface with a constant shape and amplitude.

For TM waves the boundary conditions are reduced to four
equations, i.e., & and D4 are continuous across the inter-
faces 2=0 and z=d. Then, we have the following set of equa-
tions for the coefficients A, B,, B, and the point zg, where

2€ L
61111(z) has a maximum L“)luxlnax = (I_..I_)/
a
A =B +B, , 1A~-—-(B—B ),
kq ko (6)
kyd ~kod € kod ~kod .
B,e + Bye =u, (B,e - Bye )= uve——o
k2 k3
where
2€J.. Y € Y -1
u = ) {coshlk 3(—J'—) (zy-N
al €4 (7)
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The system (6) has a nontrivial solution if and only if
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We remark that if €y <0 and a-» 0, then Zy :

€y
Then (8) is reduced to the dispersion relation for LSP obtal—

ned by Mills and Maradudin /7.
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For d-»« eq. (9)/ gives two independent equations St

€2 (e ‘J.) ki ke
and —=- 4 =" _0, from which we determine the two sur-
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face modes w,=ay(k) and wg=wgy (k). It has been shown in ref.7

that for finite d there are also only two surface modes which
are related to the interfaces I-II and II-III, respectively.
If we take «91(0)—@0 as an independent amplitude, then: ’

A=8,, B -Ll§ 2 L.2) p o
62 k1 k2 2 2 62 kl k2

From (6) and (7) we have:

1 1 -1
92 (4 ) /z{cosh[ks( b )/2(z0-d)]¥ = (11)
k2 a €y .
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The coupled equations (8) and (11) give the point z, and
the dispersion relation of the ". two surface modes w1=a,1(k,go)
and wp= @ (k,@o) which are related to the interfaces I-II
and II-IIT, respectively. When ¢ =¢, and d - 0, we have from

(8) an;l1 (ll) the following equations obtained by Agranovich
et al

-2 —L(—‘—*—)l/2 tanh[k (“2* zol,

ko kg e €y (12)
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It is also of interest to calculate the time averaged power
carried in the nonlinear surface wave in the x direction per
unit distance in the y direction:

P=__.c_fE3H2*dz. (13)

4
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We find that P = P1+P2+P!, where

1 .2 -4
P1=—8--—l‘50kk1k3 we,
74
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P, = ~81_kk2k34 we, (B ° -1)-4B;Bykyd+Bi(l-e )l (14)
It

P, =—6_1--k k53¢ 23 2 (jal) ™t 11 + tanh [k (-——) % (2o -0 .

Here P;, P, and P; represent the powers carried in the me-
dia I, II and III, respectively.

In the case aflw)>0 the solution of Maxwell’s equations
in the region III is given by

I
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The boundary conditions that & and D3 must be continuous
at 2=0 and z=d give four relations:



A=B,+B 1a - l2
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The system (16) has a nontrivial solution if and only if

T = NV N PR
T k2 kg ki kp kg kg .
If €2<0 and a>0 then zj5++~ and v —»—-(—6—-) i
reduced to the dispersion relation for LSP/7/€u
In the case af{w)>0, we see that the electric field in the
nonlinear crystal has a si ﬁularity at z=2, As has been
pointed out by Maradudin/!8/ the fact that the electric field
is signular is as artifact of our use of a real, local dielect-
ric tensor.
The singularity would be removed if we had a nonlinear crys—
tal with intrinsic damping.

.Then (17) is

b) The Case of NGWP

The geometry of the system is the same as in the case a).
We consider only the modes which have exponentially decreas-
ing fields outside the slab and oscillatory solutions inside
the film., If k, is imaginary the solutions inside the slab
are perlodlc Thus we take kp=1ik, and have k2 +kf= @ (o),

o2

c

k1 -k%- .._2_51((,,) where k; and k, must be real. If region I
is the vacuum ¢,(w)=1 and if region II is a crystal with
€pw) =€ (@? _w?! )/ (@®-w?2), NGWP exist only in the regionms,
where ck/Ve (@) <w <w, and wp<w < ck. Thus, we see that the

frequencies 0f NSP and NGWP fall into nonoverlapping regions
of the (w, k)-plane.

6
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The solutions of Maxwell”s equation that describe the p -
polarized NGWP in the three-layer system are:

kiz

§i(x) - Bge |,

o0 < ZSO,

I
& () =Bysin(k,2) + Bycos(k,z), 0<z <4, (18)

{'5111I (2) =(|2€J1-)1/2 icosll[ks(l)%(z—Zo)]rl’ z2 d,
a

€

where B, B, and z; are to be determined from the boundary
conditions.
The requirement that 5 and D3 be continuous at 2z=0 and
=d yields the equatlons

2 ! -
B, sin(k,d) + B, cos(k, ) = ( :*)/2 {cosh [k (ft)/z(d -~z a9
i

[Bi-Bgtan(k, d)] (e ¢
@ 1— Bgtan(k d) _ e tanh[kg(———) @d-zgl, (20)
k, {B;tan(k d) + B, 1] kg ML

where
€ .43

Bl—— —-1— —k—" 0 "g

Egs. (19) and (20) determlne the point Zgs where the electric
field in the nonlinear medium has a maximum and the dispersion
of NGWP, w_ = (k.&,),labelled by mode number m.
If a+0then 235~ and eq. (20) becomes

€g [B 1~Bgtan(k, )] (e, ¢ ) Y2

k, [Bltan(kid) +B] kg
Eq. (21) describes the dispersion of p-polarized Lowp /11°14/,

If €, =¢, =¢3 (an isotropic substrate) eq.(21) can be
transformed into the form 714/ :

(21)

k1k3 s k
-k, + ——) tan(k, d) ..—-52(———+—)k4_ . (22)
‘1¢3 €4 €3
A graphic study of eq. (22) shows that the allowed values
of k,  are given by k,d = (m+8/2, where mis odd integer and
b 1s a small p051t1ve number less than unity. Thus the pro-
pagation modes described by (22) are LGWP whose amplitude
along the z-direction normal to the surface is oscillatory
inside the film. The electromagnetic fields associated with
the LGWP have standing wave character in the z-direction, but



they propagate parallel to the surface and transport energy
along the film as they proceed. Thus eqs. (19) and (20) desc-
ribe the corresponding p -polarized NGWP modes in the three
layer structure 1).

The guided wave polaritons in the far infrared do not seem
to be very familiar waves, but the waveguide modes in the vi-
sible have been studied in detail in the last years/22:23/1¢

was found that a thin layer of dielectric film which has a ref-

ractive index larger than that of the surroundings is a per-

fect optical waveguide The waveguid modes (zigzag waves) are

waves bounded in a film with refractive 1ndex ng ( ng is the
refractive index of the air, ng<n,;<n, ). Thus eq. (22) be-
comes

(@, /n )? k, +(,/n ¥k,
tank,d) =k, 2/ 1 2/ Mg/ B3

(23)

2 2 2
kS - (n2/n1n3) k, k3]

Different waveguide modes are indexed by the mode number m

(m=0,1,2,..J)and the eigenvalues of the waveguide modes range

from Zn, to 2n, (%n <k< 2 .
c 1 cnz(c 1<k cng)

3. NSL AND NGWP IN THE THREE-LAYER STRUCTURE:
DIELECTRIC MEDIUM-OPTICALLY UNTIAXIAL NONLINEAR
FILM-LINEAR ISOTROPIC CRYSTAL

a) The Case of NSP

The geometry of our three-layer system is the following.
Region I (-»<z<0) is a dielectric medium with isotropic di-
electric constant ¢, {(w) (vacuum, for example), region II
(0< z< d) is a thin dielectric film (uniaxial crystal) desc-
ribed by the diagonal dielectric tensor (1) and region III
(z>d) is an isotropic substrate with dielectric constant
From (3) it follows that:

2.1
d61 ,2c1 2 .2 w?
—2 k&l -0, kZP-k*- € > (24)
a2 191 1 o2 1

2cll 2

d" ey 1l 2 2 ©

dzz [6 +a(gl ) ]l91 = k2=k - 026“ ’ (25)
2. 111

4“6 2

SO _yrgmog 2o ef (26)
dz ? 81 3 c® 3

N

i

b

We seek solutions of Maxwell”’s equations which exponential-
ly decrease outside the slab. Eqs. (24) and (26) can be_keasily
integrated to obtain 61 (2) —{'503 12 7 <0 and éin(z)—Ae 8z |
z>d ,

In the following we put (g1 (z) =y(z) . Then we integrate (25)
to obtain:

k5 0
y'® -

+.‘.1_y4)=co. 27)

The constant ¢ is obtained from the continuity conditions
of & ,(z) and D (z) at z= 0:

2 2 2
cy= & [(e 2) -b&,~al, (28)
a k% 1 fL 2
where b = — —= and a = ——kS |
2 €y €y *°

We remark that the NSP exist only in the regions of the
(o, k) -plane, where k% >0, k§>0 and k%>0.
On further integrating (27), we have:

-V
fleg+ay®+ by?) Tdy =z -z4 . (29)

There are now four cases to consider:

a;) The case a>0, b==[bl<0, c4>0 (< 0).
Let y=1/v,then eq.(28) can be reduced to the form
u
[ (eqv tav? !b]) V=2z-2. (30)
The solution of (30) can be expressed in terms of Jacobi
elliptic functions/24/, Next we have:

-4 -1 2“)1 2
f(c viiavoip) " dv—(a 2 44| cg)  nc | ;—:(—a—z—;;l—gl-go—]—yl uw/mi,
2
where m = fa +(a® +4lb100‘) ]., (31)
2a® +4iblc )%
Here
¢ %
u= [ (1 -msin®6)""dd, cn(u/m) = cosde,
0
sn(u/m) =sing, dn(u/m) = -msinecﬁ)v2 .
nc(uw/m) = (enw)™? , nd(w/m) =(dnu) -t
are the Jacobi elliptic functions /287
9



Finally the solution of (25) is given by

& 111 (z) =8cenly(z—2z 0)/m],

%o %
1, y-@Paapleg .

2
a+(a®+4lbleg (32)

o=l 2[b|

/The functiol?‘ cn(u/m)has the period 4K(m),where K(m) =
—~72

w/e
= (1-mSin29) d0is the complete elliptic integral of the first
kind. From (32) we see that [SIII(Z)]2 has the maxima at the
points zZ,=2zg+ nly,n=0,1,2..,where the distance between two
maxima 1is Zl =2K(m)/y and {';Ill'max =0.

Thus, the electric field in the nonlinear slab is an os-—
cillatory function of the variable z. The finite size of the
nonlinear uniaxial crystal gives rise to standing rather than
to travelling waves in-the z direction. 1

We remark that if ¢¢=0, then m=1, cn(w/1) =(coshu) .In this
particular case we have a nonperiodic solution of the form:

1
2y &
|b]

From the boundary conditions at z=0 and z=d, we get the
following equations for 2z, and the dispersion of p-polari-
zed NSP modes wp=w_(k, &), labelled by a positive integer m:

&1 (@) =( {eosh (a(z -z )1} 74 (32a)

H

@0=Bcn(yz0). A:Bek3d enly(@-z1,
ey k5 '
—— —— =ysn(yz ) dn(yz ) nc(yz,) , (33)
6“ kl
5 X Jdn I nel ]
T k_a..=ysn[y(d—z0) dn{y(d-z ) nc y@-z ) .

The time averaged power carried in the nonlinear surface

wave is P=P,+P, +P;, where
P, = — &2kk Kk P 1 Kkt 6%
1='5'U)0 1 %2 (Dt’" ’ 2 =-er_w€ " 2 y(q+l’+ S),
1,2 -4 —2kgd (34)
P3= z-r-r-A kk3k2 we, (1~e ),

q= ...(_1_‘—.l_n2yd' r = -S-z—m—-.—l—)—{E[y(d ~Z0)/m]+E(yZ0/m)]!,
3m 3m

8 =~ él— {sn{y(@-zg)lenly (@ -zl dnly(d-zy)] +sn(yzg)enlyzg) dnlyz o
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and E(@/m) = g (I-t) "(I-mt?) "dt is the elliptic integral
of the second kind

Here Pl,_ Py, , Pg are the powers in the media I,II and
III, respectively. ’

In obtaining this expression for the average power we used
the following integrals:

[ sif(t/m)dt =i[u - E(w/m],
0 m

u
4 2
Of sn(t/m)dt = —%‘l%)—-[u —E(u/m)]+§1—-SnuCnudnu_ 1 ..

m m 3m

ap) The case a>0 , b=-|bl<0, € <0 (@< 0),
Taking into account

u Y
f(—[co|v4+av2—|b|) zdv:[ 2 l./znd—lx
0 a+(ag—4|b|]col) #
. ar(a®-4lbllc,N* % | (35)
X
2“)1 ll/p ’
. 2(a2—4[bl |col)l/2
where p = L 1
. [a+(32—4|b|{col)l/2] we finally have
&, (2) = Pdﬂ[B(Z—ZO)/P]: (36)

by %oy
iAo B @y jeg® %

2b| - 2 1

As is well known’2%/

has the perIiIod gK(p) .
Ximzhzi,tgiléz)i]nt;sZpef:';odiczin the variable z and has ma-
is the distance betwene; gwt) nc%);lsgzg'tli'xgrnm iy 2 =%K!£P)/B

: e maxima and ©j gpax =p-
. The boundary conditions reduce to four equations, i'.e.
©, anmd D, are continuous across the interfaces z=0 and z;d;

the Jacobi elliptic function dn(u/p)

50“=pdn(3z0). A =6ekad dn[B(d——zO)].

£4 k22 . T 'ﬂf ;
-;T —;1—=D/35n(ﬁzo)0ﬂ(ﬁzo)ﬂd(ﬁz o (37
f3 % pelsd-z lonlg )
— =pAsnlfd -z )lenlB@ -z )] nd[ f(d-z )}
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From (37) we obtain zy and the dispersion relation of the
surface modes o = o,k 63.If cy=1 then p=1 and dn(/1)=
= (coshu)~!. Thus, we get the nonperiodic selution (32a).

a3) The case a>0, b>0, ¢,>0 (a>0).
The solution of eq. (25) is:

5111 (2) =8csly’(z ~z¢¥m”’]

es(w/m”) =en(u/m’)/ sn(w/m’),
where

2(a® —dbc ) i 2¢cg “
m’ = T 5= 7 1 ,

la+(a® -dbe,) 7] a-(a® -4bc o) * (38)
, a+ (a% -dbco) ® %
y =1 L

2
In this case we see that the electric field in the nonli-
near film has a singularity at z=z; which would be removed
if, e.g., damping were introduced into the diagonal dielect-
ric tensor.
The equations for Zy, and for the normal modes mm=wm(k,60)
are:

kqd
&, =8’cs(y’z,), A=58"e esly’@-z ),
2
T 08’z Yds (y” ,
. Tx— =y'ns(y’z)s(y"z )se(y’z) (39)
2
€3 Ky it . .
—— =y nsly’d-zy)ldsly (d-z,)isely (d—zo)] .
€ k
I 3
a;) The case a>0, b>0, co=—|cO|< 0 (a>0).
In this case we get:
11
61 (z) =p’ds{B(z~24)/p"]
(40)

ds(u/p’) = dn(uw/p”)/sn(u/p’),
where
, [a+(a2+4blcol)%] (a2+4b1901)%
T saianjo, R P

p

¥ . IR

B’ =(a% 4b[c0t)'/5..'
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The point z,. where the electric field has a singularity, and

the branches wp=wnk &,) of the dispersion relation are de-
termined by:

k 5
&y mp’ds (B'zy), A=pTe 3dds[/8’(d—z0)],

61 k22 4 4 4 ’

7”— —k~—1=B cs(B 'z ns(B’z Jsd(B Zy) (41)
2

_f?— —E—f—=B'cs[[3’(d—zo)]ns[B’(d—zo)]sd[B’(d—zo)]~.

b) The Case of NGWP

The NGWP modes propagate with a real wave vector k parallel
to the surface and k, is imaginary, k,=ik;,where k, is the com-
ponent of the wave vector perpendicular to the surface.There-
€

fore a =-~—%k, <0, and in the following there are two cases
€1

to consider.

bl) The case a =-|al<0, b=-|bj<0, cy> 0.
The solution of eq.(25) is

Sil(z) = 5cn[;(z—z0)/r;] ,
where
[(ai® + 4l eg) % al]

m =
2(1al® +4{p ¢ )" )

5| (2] 2+ 4/b ) - a] *
2|b]

The equations for z, and the dispersion of NGWP modes
wp=w (& &) labeled by a positive integer m are:

nd 1
. v =Ual® +ableg) X

~ ~ ~ kqd -~
6y =SenGzy), A=fo ™ amly@-z)l,

€ kf -~ o~ ~ -
~ — ~—=mysn(yzo)dn(yzg)no(yz,) ,
€y ky

k2 -
- —:-3— -f- wyenly(d-rgldn(yd-2)lnely@-zy) .
" 3

(43)

13
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If =0, then b=0 and m=0 , 3=(TJ% A, y=la|. Because cn(u/0)=cosu,
a
the solution (42) becomes:
11 ~ € Y ~ € 1
&, (») =B, sin[(—ei) ’ ky zl + Bzcos[(._J_'_) & z] . (44)
] €1t

Thus, eq. (44) described the LGWP, i.e., the guided wave
polaritons in linear theory. Eq. (42) describes the nonlinear
analogue of what are usually called guided wave polaritons’/1115/

The power carried by the NGWP modes is P =P +PF, +B ,

where
2 -4 4 =2~ s .
Py =—8—17-T-60kk1 k) wey , Py =2177—a>c"kk_l_ 8 ylg+r+s),
1,2, - —Ekgd
P3=-—7-T-A kkgk J_4fueu (1-e ) .

are the powers in the media I,II and III, respectively. Here
~ ~ ~ om—1 - ~ ~ -~
@525 T - DR - V) + EGry /i
i
-{sn[)"'(d—zo)]cn[;(d-zo)]dn[;(d—zo)] +

+ sn(yzy)en(yz Mn @z ) .

b,) The case a=-la|<0, b>0 , c, ==leyl<0.
We find that:

61 (@ =p a8 (z-2,)/B"1,
where

[(|a|2+4b|col)l/2 ~]al]

2(ja|? + 4bleg )%

Tl
[}

(45)

Y%
- (al®+ablegh” 2 "
p = b‘/z y B =(|a| +4b|CO|) .

The boundary conditions give the following equations for
zo and the normal modes o=, (k, &)

14

v S e

50u;'da(5'zo), A-;;"oksd ds[ﬁ’(d-—zo)] -

« kf
“ ky

E'CS(E’Zo)nS(E'ZO)Sd(E'ZO) - 46)
€3

611

2
k - - - -
_k.§.= BleslB’(@-z i ns[B” @~z )sd[B*(d~z)].

4. CONCLUSIONS

We conclude with a few comments about the results we have
obtained in this paper. In Sect.2 we have studied the propa-
gation characteristics of the nonlinear analogue of what are
usually called surface polaritons /719 and guided wave pola-
ritons /11°15/ in linear theory in the case of an isotropic li-
near slab placed on an anisotropic nonlinear substrate.

In Sect.3 we have written down the exact oscillatory solu-
tions of Maxwell”s equations that describe the propagation of
NSP and of NGWP in a nonlinear film placed on a linear sub-
strate. These solutions are expressed in terms of Jacobi ellip-
tic functions and are periodic in the space variable 7 normal
to the surfaces.

The surprising result we have obtained is the oscillatory
behaviour of the solutions within the slab even in the case
of NSP. This is closely related to the fact that the finite
size of the nonlinear crystal gives rise to standing waves in
the Z direction perpendicular to the surfaces. The physical
distinction between NSP and NGWP oscillatory solutions is that
the frequencies of propagations of NSP and NGWP fall into non-
overlapping domains of the (w,k)-spaca.

In some regions of the (w,k)-plane wa have obtained sin-
gular electric fields in the nonlinaar media. Such a behaviour
of the electromagnetic fialds {8 an artifact of the use of
a real dielectric tensor. Tha fact that tho nonlincar surface
modes wp=awn(k,&g)ara functions of tho amplitude &4 o0f the
electric £i{ald 1s a common charactoriatics of nonlinear phe-
nomena.

Tho casa of 8 -polarized NHP and NCWP in tho same three-
layer structuran will ba analysad In a future work.

We would llke to thank Profassor V.M.Agronovich and Drs.
N.Angelescu and V.D,Py{ezzhav for many usoful discussions.
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Muxanake 0., Oemsuun B.K. E17-82-137.
P —NONAPH3OBaHHbIE HeNIHHENHBIE MOBEDPXHOCTHHIE M CBS3AHHBIE BOJIHH
B CIOHCTHIX CTPYKTypax

Hafimensl TouHmle pemeHHsi yDaBHeHHi MakcBeja, KOTODhe OTBe—
HaweT P -NMONAPH3O0BAHHLIM HEJIHHEHHbIM ITOBEPXHOCTHBIM MOJAPHTOHAM
H P ~NONAPM30BaHHbLIM HEJMHEHHbM CBA3aHHLIM BOJIHAM MOJADHTOHOB
B CJIOHCTBIX CTPYKTYpax Onsa OBYX ciyuaeB: !/ INIeHKa MOBEPXHOCTHO-
aKTHBHOr'O0 DellecTBa, TNOMeWeHHas Ha NOMJIOKKY, OHIJIEKTPHUYeCcKue
CBOACTDA KOTOPOM OMUCHLIBAIOTCA TEH30POM €11 =€gp =€, +aUE1{?4E2FL
€33 =4, ! 2/ nnenxa, OHANEKTPHUECKHE CBOHCTBA KOTODOHM OIHCHBa~
I0TCHT TOHSOPOM TAKOrO Xe BuOa /OMTHYECKH OJHOOCHBIH HEeITHHeHRIH
KpucTann/, noMmcmenias 1na ONTHUECKH OOHOPOLHYI0 TIOLIOXKKY C IH-
SNMEeKTPHUQCKO!! nponHuaeMocThio € 3 . llomyueHnnl Taxxe aHanmuTH4Ye-
CKue QOpMynn oJif NOTOKA lEePrud NepeHOCHMOTO MOBEDPXHOC THHIMK
BOJIIAMI .

PaGorn nunosmtoita o JlaGopaTopHy TeopeTHUecKoH dusuxn OUSIU.

Npenpunt 08%OAMHGHHOIrO MHETUTYTA NACPHWX uccneposawuii, fly6xa 1982

Mihalacha D., Fodyanin V.K. E17-82-137
p-Polarizad Nonlinwar Surface and Guided Waves
in Layared Structures

Wa found an oxact solution of Maxwell®s equations, which
describan the propagation of p-polarized nonlinear surface
polaritonw and of P-polar{zed nonlinear guidad wave polari-
tons in two canans !) in a film of a surface active material
placed on s subntratu dasccribad by a diagonal dlelectric tensor
whosa aluments dapend on tho nmp1$CUda of tho electric field
according £o sy =y o, ra(B,|7 ¢ B W)gﬂ3~”"nnd il) in
a film, duuvrlhnd hy tho nama dlnluctr ¢ tensor (optically
uniaxiul nonlinear crystal), placed on a subatrato with di-
electric conntant ¢y (optically Llinear modium). The power
carriad in the surface wavea han also hean axactly calculated.

Tha invest!igarlion has been parformed al tha Laboratory
of Theoretical Phynics, JINR,
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