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I. INTRODUCTION 

In the last years considerable interest has been roused 
for the theoretical and experimental study of surface polari
tons 
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-
61

. The linear surface polaritons (LSP) are polaritons 
which propagate along the interface between two adjacent me
dia, i.e., solutions of Maxwell's equations for which the am
plitude of the electric and magnetic fields tends to zero in 
an exponential manner as one moves away from the interface 
into either medium. 

As is well known the LSP are the admixture of the optical 
phonons and photons, and like the bulk polaritons show strong 
dispersion in the long-wavelength limit 17~ The LSP associated 
with optical phonons have been observed experimentally in lay
ered structures by various methods, including surface reflec-
tion Raman scattering method 1 ~ 101 and attenuated total ref-
lection method 161 . 

In recent years another class of normal modes of thin crys
Lals, which are usually called linear guided wave polaritons 
(LGWP), has also been intensively investigated 111·141. The ob
servation of LG\VP by Raman scattering experiments has been 
first reported in re£.115~ The LGWP modes propagate with a re
al wave vector k parallel to the surface, and the normal com
ponent k~ of the wave vector is imaginary outside the slab 
and real inside. Thus, the electromagnetic fields decay expo
nentially outside the slab but have the character of standing 
waves within the film. 

Recently, much attention has been given to the theoreti
cal investigation of nonlinear surface waves. In two seminal 
notesTomlinson 1161 and Agranovich et al./17/ have obtained an 
exact solution of Maxwell's equations which describe the pro
pagation of s and p-polarized nonlinear surface waves, res
pectively, in the case when one of the two dielectric media 
in contact across a planar interface is optically unaxial and 
characterized by the diagonal dielectric tensor: 
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M d . 1181 h d. d . d '1 h d. . 1 . ara ud~n as stu ~e ~n eta~ t e ~spers~on re at~on 
of these s-polarized nonlinear surface polaritons (NSP) and 
has found that in the case a(w)< 0 the electric field in the 
nonlinear medium is singular. Later on 1r9rtev 1191has genera
lized the results of Agranovich et al. to the case of two 
optically unaxial nonlinear media characterized by dielectric 
tensors of the form (1). 

It turned out also that the Maxwell equations, which desc
ribe the nonlinear surface waves in the system with the same 
geometry as in117/but with a stronger nonlinearity of the form 
<11=<22=f.L+a(IE11

2
+1E21

2
)+f3(1E 1 14 +IE2 14 ), are also exactly 

solvable/20/.In ref!21/ we discussed shortly the propagation 
characteristics of p -polarized NSP in thin dielectric films 
of thickness d characterized by the diagonal dielectric ten
sor (I). 

It is the purpose of this paper to study in detail the 
propagation characteristics of p -polarized NSP and of p -po
larized nonlinear guided wave polaritons (NGWP) in the follow
ing three-layer structures: i) dielectric medium (vacuum, for 
example) - optically linear medium (of thickness d ) - opti
cally uniaxial nonlinear crystal and ii) dielectric medium 
(vacuum, for example) - optically uniaxial nonlinear crystal 
(of thickness d ) - optically linear medium. In this work we 
shall find the exact solutions of Maxwell#s equations that 
describe the nonlinear surface waves in these layered systems. 

The paper is organized as follows: In the next section we 
obtain the electromagnetic NSP and NGWP modes in the three
layer structure i) and calculate the power carried in the non
linear surface waves. In Sect.3 we study the propagation cha
racteristics of NSP and NGWP in the layered system ii) and we 
calculate the power carried by the NSP modes. Finally, in 
Sect.4 the results are briefly discussed. 

2. NSP AND NGWP IN THE THREE-LAYER STRUCTURE: 
DIELECTRIC MEDIUM - DIELECTRIC FILM-OPTICALLY 
UNIAXIAL NONLINEAR CRYSTAL 

We start by obtaining the electromagnetic modes of the three
layer structure consisting of a dielectric medium with isotro
pic dielectric constant c 1(w) (vacuum, for example) in the re
gion I (-oo< z :S 0), a dielectric film with isotropic, frequen
cy - dependent dielectric constant c2(w) in the region II 
(0 < z <d) and an anisotropic substrate (optically uniaxial non
li;;ea"i- crystal) described by the diagonal dielectric tensor 
(I), in the region III (z 2: d). We restrict ourselves to p -pola-
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rized NSP which are characterized by E2=0, H1 =H 3 =0,i.e., the 
waves propagate in the x direction, with electric vector in 
the xz plane (TM waves). 

a) The Case of NSP 
-> -> 

The cartezian components of E and H are: 

E 1,3 =& 1, 3 (z) exp(-iwt +ikx), 

H 2 = H2 (z) exp(-iwt + ikx), 

Maxwell#s equations are 

d& 1 'k c- = i~ }{ 2 ' --- -1 \93 c 
dz 

dJ<2 
dz 

= i~D1 
c 

k J<2 =- ~Da c 

From (3) it follows that 

2 c- I I 
d \91 k2& =0, ---- - 1 1 
dz 2 

2c-II 2 II 

2 k 1 = k 2 - w2 -;;2 ( 1 

w2 
d \9 ~ - k & 1 = 0, -2. 2 
dz 

k~ = k 2 - ~(2' 

d2 &/II k ~ 
--- --[( 

dz 2 .L 
(II 

( c- III )2 ] c- III _ O 
+ a \91 \9 1 -· • 

2 2 
k3 =k 

w2 
---( 

c2 11 

(2) 

(3) 

(4) 

We look for solutions localized near the surfaces of the 
thin film with fields that fall to zero as IZI->+oo. The solu
tions of eqs. (4) in the case of a< 0, k~> 0 , k~ > 0, k~> 0 
are given by 

!:" I k1 z 
\9

1 
(z) =A e -oo<z<O, 

!:"II k2 z -lt2 z 
\9 1 (z)=B

1
e +B

2
e , O~z~d, 

(5) 

III 2£ iA EJ. ';4 -1 
& 1 (z)=(-J.) lcosh[k

3
(-) (z-z

0
)]l 

lal <11 

z > d. 
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where A, B 1 , 8 2 and z 0 are to be determined from the boun
dary conditions imposed upon the system. Thus, the interface 
between the dielectric medium II and the nonlinear uniaxial 
crystal III can support an optical surface wave that propa
gates along the interface with a constant shape and amplitude. 

For TM waves the boundary conditions are reduced to four 
equations, i.e., & 1 and D 3 are continuous across the inter
faces Z=O and Z=d. Then, we have the following set of equa
tions for the coefficients A, B 1 , 8 2 and the point z0 , where 
~III . ~III &.L \6 
1.9 1 (z) has a max~mum 1.9 1 max = ( --) 

' [a [ 
E 1 f2 

A = 8 1 + 8 2 , -A = --(81- B 2 ) , 

k1 k2 
k1 d - k2d 

8 1 e +8 2e =U, 
( 2 k2d 
--(8 1e 

k2 

- 82e -k2d ) E (6) = uv-.!.1_ 
k ' 3 

where 

U=(2f.L \6 !:1) 
( \6 -1 

(cosh[kl-.!_) (z 0 -d)]l 
f II (7) 

(.L \6 (.L \6 
v = ( -) tanh[k3 (-) (z0 -d)] 

f II f II 

The system (6) has a nontrivial solution if and only if 

E 1 •2 E 2 •11 - 2k2d E 1 E 2 < 2 E 3 
(-- + -)(- --- v) + e (--- -)(-+-V)=O. (8) 

k 1 k 2 k 2 k3 k 1 k 2 k 2 k 3 

We remark that if <2 <0 and a .... 0, then 

Then (8) is reduced to the dispersion 
ned by Mills and Maradudin/7/: 

( .L \6 
z0 .... -oo and v .... -(--) 

f II 
relation for LSP obtai-

. \6 \6 
(!-l. + _2L )[ ~ + ~~ f.L) ) + e -2k2\:l_ - _:?__)( ~- (E II~ ~]=0 • 

k 1 k2 k 2 k 3 k 1 k 2 k 2 k 3 
(9) 

For d->oo eq. (9~ gives two independent equations ..:L + _:g_ =0 
f (E ( ) 2 k 1 k2 

and - 2- + _I!_:!:_ = 0, from which we determine the two sur-
k2 k3 111 

face modes (i.J 1 =(i.J1(k) and (i.J 2 =(i.J 2 (k). It has been shown in ref. 
that for finite d there are also only two surface modes which 
are related to the interfaces I-II and II-III, respectively. 
If we take & i (0)=&, 0 as an independent amplitude, then: 

~ 1 k2 f 1 f 2 1 k2 ( 1 E 2 
A = 19 o' 8 1=--&o-(-+ -), 8 2=-- &o-(-- -). 

2 ( 2 k 1 k 2 2 ( 2 k1 k2 
(I 0) 
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From (6) and (7) we have: 

(2 2f.L \6 f.L \6 -1 
2-(-) !cosh[k 3(-) (z 0 -d)]l 

k2 [a[ f II 

(II) 

k2d (1 (2 -k2d f1 (2 
=& 0 [e (-+-)-e (---)1. 

k1 k2 k1 k2 

The coupled equations (8) and (ll) give the point z 0 and 
the dispersion relation of the·. two surface modes (i.J 1 = (i.J 1 (k,&o) 
and (i.J 2= (i.J 2 (k, &o) which are related to the interfaces I-II 
and II-III, respectively. When £ 1 =£ 2 and d ... 0, we have from· 
(8) an~17~11) the following equations obtained by Agranovich 
et al. : 

E2 f II f.L lf2 f .L . Vz 
-- =- (-) tanh[k 3 (--} z 0 ], 
k 2 k 3 <11 £ 11 ( 12) 

2E.L \6 f.L \6 -1 
& 0 = (--) !cosh[k 3 (-) z 0 ]l 

[a[ E II 

It is also of interest to calculate the time averaged power 
carried in the nonlinear surface wave in the x direction per 
unit distance in the y direction: 

P = - ~ f E 
3 

H2* dz • 
4rr _

00 

( 13) 

' We find that P=P1+P2 +P3 , where 

1 2 -4 
p 1 = --- {f, 0 k k 1 k 3 (iJ ( II 

Srr 

p2 
1 4 2 2k2d 2 -2k2d 

-g-;kk 2 k; (i.J£
11 

[B 1(e -1)-4B1B2 k 2d+B 2 (1-e J], (14) 

1 -3 1/2 3/2 -1 3 [ l J. 112 l P
3

=-k(i.Jk 3 £ 11 'e.L ([a[) ll+tanh k 3(--) (z 0 -d)]. 
6rr f II 

Here P1 , P 2 and P 3 represent the powers carried in the me
dia I, II and III, respectively. 

In the case a(w) > 0 the solu.tion of Maxwell's equation& 
in the region III is given by 

III 2£.L 1;% e.L Vz -1 
&, (z) = (---) I sinh[k 3(-) (z -z0)1l . (15) 

1 a f II 

The boundary conditions that &1 and Ds must be continuous 
at Z=O and Z=d give four rela.tions: 
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A= B1 + 82 , q <2 B ) -A= -(8 C 2 ' 
k1 k2 

( 16) 
k2d -k2d , < 2 k2 d -k2 d , , <11 

e B 1 +e B 2 =u,-(e 8 1 -e 82 )=uv--, 
k2 k3 

where 

2<J. 'h EJ. '!:: -1 
u' = (--) I sinh[k 3(--) (z o-d)]! 

a f II 

(17) 

fJ. Yz fJ. 'h -1 
v'=-(-) {tanh[k 3 (-) (zo- d)]! 

f II f II 

The system (16) has a nontrivial solution if and only if 

<1 <2 <2 <11 - 2 kzl<1 f2 <2 •11 
(-+ -)(- --v')+e (- ---)(--+--v')= 0. (17') 

k 1 k 2 k 2 k 3 k 1 k 2 k2 k 3 
f Yz 

If <2 <0 and a .... O then Zo->+oo and v'_,-(-.:!:...) .Then (17) is 
reduced to the dispersion relation for LSP 1 7~11 

In the case a(w)>O, we see that the electric field in the 
nonlinear crystal has a sin;ularity at z = z

0
• As has been 

pointed out by Maradudin118 , the fact that the electric field 
is signular is as artifact of our use of a real, local dielect
ric tensor. 

The singularity would be removed if we had a nonlinear crys
tal with intrinsic damping. 

b) The Case of NGWP 

The geometry of the system is the same as in the case a). 
We consider only the modes which have exponentially decreas
ing fields outside the slab and oscillatory solutions inside 
the film. If k2 is imaginary the solutions inside the ~lab 
are periodic. Thu~ we take k2 =ikJ. and have k2 +k~=~~< 2 (w), 

2 2 w2 c . 
k 1 = k - -<1(w), where k 1 and k J. must be real. If reg~on I 

c2 
is the vacuum < 1(w) =1 and if region II is a crystal with 
< 2 (w) = < 00(w 2 -w~ )/ (w2-w ~ ), NGWP exist only in the regions, 

where ck/V< (w) <w <wt and we<w ·< ck. Thu·s, we see that the 
frequencies ~f NSJ and NGWP fall into nonoverlapping regions 
of the (w, k) -plane. 

6 

The solutions of Maxwell's equation that describe the p
polarized NGWP in the three-layer system are: 

I k1 z 
& 1 (z) = & o e -oo<z:::;o, 

c-II 
1.9 1 (z) = B 1 sin(kJ.z) + B 2cos(k.lz), 0 < z < d ( 18) 

III 2eJ. 'h < J. 'h --1 
& 1 (z) = (-) {cosh[k3 (-) (z- z om ' z 2. d, 

JaJ f II 

where B 1 , B 2 and z 0 are to be determined from the boundary 
conditions. 

The requirement that & 1 and D 3 be continuous at z,.O and 
z = d yields the equations 

2fJ. 'f2 EJ. 'f2 -1 
B1 sin(k.l..d) + 8 cos(kJ.d) =(-) {cosh[k 3 (-) (d -z

0
)]! , (19) 

2 JaJ !II 

'h 
(( II ~ ·) f J. 'f2 

--tanh[k 3(-) (d-z 0)], 
k3 <11 

(2 [8 1- B 2tan(k J. d)] 
(20) 

kJ. l B 1 tan(k J. d) + B2 ] 

where 
( 1 kJ. 

8 1=- -- -&o, 8 2=&o 
( 2 k1 

Eqs. ( 19) and (20) determine the point z
0

, where the electric 
field in the nonlinear medium has a maximum and the dispersion 
of NGWP, wm = w m (k,&0), labelled by mode number m. 
If a->0 then z0 _,-oo and eq. (20) becomes 

< 2 ( B 1- B2 tan (k J. d)] (< 11 < ) 'h 

kJ. [ B 1 tan(k J. d) +Hz] = k 3 
(21) 

Eq. (21) describes the dispersion of p -polarized LGWP 111"141 . 
If £11 =£.1 =< 3 (an isotropic substrate) eq.(21) can be 

transformed into the form 1 141 : 

klka•~ kl ka 
(-kJ.+ ---)tan(kJ.d) =-E 2 (-+-)kJ.. (22) 

(1(3 (1 (3 

A graphic study of eq. (22) shows that the allowed values 
of k J. are given by kJ. d = (m +8)rr/2, where m is odd integer and 
8 is a small positive number less than unity. Thus the pro

pagation modes described by (22) are LGWP whose amplitude 
along the z-direction normal to the surface is oscillatory 
inside the film. The electromagnetic fields associated with 
the LGWP have standing wave character in the z-direction, but 
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they propagate parallel to the surface and transport energy ' 
along the film as they proceed. Thus eqs. (19) and (20) desc
ribe the corresponding p -polarized NGWP modes in the three 
layer ~tructure i). 

The guided wave polaritons in the far infrared do not seem 
to be very familiar waves, but the waveguide modes in the vi
sible have been studied in detail in the last years 122,23(It 
was found that a thin layer of dielectric film which ha~ a re.f
ractive index larger than that of the surroundings is a per
fect optical waveguide. The waveguid modes (zigzag waves) are 
waves bounded in a film with refractive in~ex n 2 ( n3 is the 
refractive index of the air, n 3<n 1<n 2 ). Thus eq. (22) be
comes 1221 : 

tan(kJ.d) = k J. [(n2/n1 )2 k1 +(n2/n3)2 k3] 
[ 2 2 -
kJ.- (n2/n1n )2 k k ] 

3 1 3 

(23) 

Different waveguide modes are indexed by the mode number m 
(m = 0,1, 2, ••• )and the eigenvalues of the waveguide modes range 

f ru w (w w ) rom-n 1 to -n2 -n1 <k< -n 2 • 
c c c c 

3. NSL AND NGWP IN THE THREE-LAYER STRUCTURE: 
DIELECTRIC MEDIUM-OPTICALLY UNIAXIAL NONLINEAR 
FILM-LINEAR ISOTROPIC CRYSTAL 

a) The Case of NSP 

The geometry of our three-layer system is the following. 
Region I (-oo< z < 0) is a dielectric medium with isotropic di
electric consta;_t c 

1 
(w) (vacuum, for example), region II 

(0 S z S d) is a thin dielectric film (uniaxial crystal) desc
ribed by the diagonal dielectric tensor (I) and region III 
(z ~ d) is an isotropic substrate with iiielectric constant 

From (3) it follows that: 

8 

2 I 
d/i;l k2,<;;I={) 
--- 1 ~1 

dz 2 
k2=k2 "'2 1 - ---( 

c2 1 • 

2 d2 c-II k2 II)2 ]·e-li_ O ~ __ 2_[cJ. + a(0 1 4.91 - • 
dz 2 

£11 

2 2 w 
k2=k --2(11, 

c 

d2('1; ~II k 2('1; III ··= 0, 
---- - 3 1 

dz 2 
k2=k2 "'2 3 - --( 

c2 3 

(24) 

(25) 

(26) 

t 

It? 
~· 

We seek solutions of Maxwell's equations which exponential
ly decrease outside the slab. Eqs. (24) and (26) can be easily 
integrated to obtain &f(z)=&0 ek1z, z<O and &ln(z)=Ae-k3z 
z>{}. II 

In the following we put & 1 (z) = y(z). Then we integrate (25) 
to obtain: 

2 
•2 k2 ( 2 a 4 

y - -- (J. y + -y ) = c 0 • (27) 
fll 2 

The constant c 0 is obtained from the continuity conditions 
of &1 (z) and D3 (z) at z = 0: 

c-2 (1 k~ 2 2 
co= 4.9o[(- -) -b&o-a], 

f II k2 

k2 1 
a 2 fJ. 2 

where b = -- -- and a = --k • 
2 f II f II 2 

(28) 

We remark that the NSP exist only in the regions of the 
(w, k) -plane, where kT > 0, k~ > 0 and k~> 0. 

On further integrating (27), we have: 

2 4 -'tl f ( c 0 + ay + by ) dy = z - z 0 • (29) 

There are now four cases to consider: 

a 1) The case a >0, b =-lbi<O, c 0 >0 (a< 0). 
Let y=1/v,then eq.(28) can be reduced to the form 

u 4 2 -'tl I < c 0 v +a v - I b I ) dv = z - z 0 • (30) 

The solution of (30) can be expressed in terms of Jacobi 
elliptic functions /24/. Next we have: 

u -'tl -~ 
J(c0 v

4+ av 2-lbl) dv = (a 2+41bl c0 ) ne-ll[-~~~\ -% 
a+(a2 +4\b"~J72] u/ml, 

2 Y2 [a +(a +4lblc0 ) ] 

-2(a2 +4lb\ c 
0

) liz -·· 
where m 

Here 

11 = 
<P -'tl 
[ (1 -msin28) dO, en (u/m) = cos¢, 

0 

sn(u/m) =sin¢, 
2 Y2 dn (u/.m) = (1 - m sin ¢) 

nc(u/m) = (cnu)-1 , nd(u/m) =(dnu)-1 

h b . 11" . f . 1241 are t e Jaco 1 e 1pt1c unct1ons ~ 

(31) 
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Finally the solution of (25) is given by 

II &1 (z) =acn[y(z-z 0)/rn], 

a=[ a+(a
2

+4\bjc 0 )'h 

2\b\ 

lh 
Y =(a 2 +4\bjc 0 )~. 

(32) 

/
The functio:q.. cn(u/rn)has the period 4K(rn),where K(rn) = 

rr 2 - 112 
= £ (1-rnsin2 e) d8is the complete elliptic integral of the first 
kind. From (32) we see that [&i1(z)] 2 has the maxima at the 
points Zn = Zo + ne1, n = 0,1,2, ••• ,where the distance between two 
maxima is e 1 =2K(m)/y and & l1,max =a .. 

Thus, the electric field in the nonlinear slab is an os
cillatory function of the variable z. The finite size of the 
nonlinear uniaxial crystal gives rise to standing rather than 
to travelling waves in·the z direction. _

1 
We remark that if c 0 =0, then m= 1, cn(u/1) =(coshu) .. In this 

particular case we have a nonperiodic solution of the form: 

II a 'h -1 &
1 

(z) = (-) lcosh[a(z -z
0
)]l . (32a) 

I b\ 
From the boundary conditions at z =0 and z=d, we get the 

following equat~ons for z 0 and the dispersion of p-pol~ri
zed NSP modes wm=wm(k, &0 ), labelled by a positive integer m: 

&
0 

=acn(yz
0

). 
k3d 

A= ae en [ y ( d - z 
0
)] , 

E 1 

E II 

i 
• Ell 

k2 
- 2 = y sn(yz 

0
) dn (yz 

0
) nc (yz 0 ) , 

k 1 

k2 -!- = y sn [ y (d- z
0 

)1 dn [ y(d- z 
0 

)] nc [ y(d- z 
0 

)1 • 
3 

(33) 

The time averaged power carried in the nonlinear surface 
wave is P =P 1 +P2 +P3 , where 

1 c-2 -4 1 -4 2 
p1 =- 1.90 kk

1
k2 WEll , P2 =-WE II kk 2 a y(q+I+ S), 

8rr 4rr 

1 2 -4 -2k3d (34) 
P 

3 
= - A kk 

3
k2 wE 11 (1 - e ) , 

4rr 

q = <1-m)yd, r = (2m-1) IE[y(d -z 0 )/m] + E(yz
0
/m)Jl, 

3m 3m 
s = - ; lsn [ y (d- z0 )1 en [ y (d- z0 )1 dn [ y(d-z0)) + sn (yz0)cn(yz0) dn(yz ~I 
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u 2-'h 2'12 
and E(u/m) = f (1-t) (1-mt) dt is the elliptic integral 
of the seconl kind 

Here P1 , P2 , P 3 are the powers in the media I, II and 
III, respectively . 

In obtaining this expression for the average power we used 
the following integrals: 

u 1 
f sri'(t/m)dt =-[u- E(u/m)], 
o m 

u 4 2(m+1) 1 1 
{ sn (t/m)dt = [u-E(u/m)1+-snucnudnu---u. 
o 3m2 3m 3m 

a2) The case a>O, b=-\b\<0, c 0 <0 (a<O). 
Taking into account 

u 4 2 -'h 2 . 'h -1 
JHc jv +av -\b\) dv = [ --- ".1. nd x 

0 2 /2 
o a+(a -4\b\\c

0
j) 

a+(a2-4\b\\co\)th 'h (35) 
x ![---- ] u/pl, 

2\ b\ 
2(a 2-4\b\lc0 !)'h 

where p = ___ __:_ _____ we finally have 
II [a+(a2-4\bl\c01)'h] 

& 1 (z)= pdn[,B(z-z
0
)/p], (36) 

where 

P = [ _a+(a 2-4\bl\co\) 'h 'h 
2\bl ---] 

J3=[_:+(a2-4\bl\c l)'h 'h _i ______ o __ ] 

As is well known
1241 

the Jacobi elliptic function dn(u/p) 
has the period 2K(p) • 

Thus, [t'1;~1 (z)] 2 
is periodic in the variable z and has ma

xima at the points z = Zo + ne2. n=0,1,2 .... ~ where e =2KP>)I,B 
is the distance betw:en two consecutive maxima ana Q;Lmax =p. 

The boundary conditions reduce to four equations, i.e., 
& 1 and D3 are continuous across the interfaces z =0 and z~d: 

c- k3d [ 1 1.90 __ =pdn(,Bz
0
), A =oe dn ,B(d-z

0
) , 

2 '·' ~1 k2 . 
- - =p,B sn (,Bz0 ) en (,Bz0)nd (,Bz (} 
Ell k1 c3J) 

~ k~ =Pf3'sn[,B(d'-z )lcn[tJ(d-z )}nd[,B(d-z )l. 
E k 0 0 0 

II 3 
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From (37) we obtain z 0 and the dispersion relation of the 
surfacemodes (i)m=(i)m(k,& 0).If co=l thenp=l anddn(u/t)= 
= (coshu)-1 • Thus, we get the nonperiodic solution (32a). 

a3) The case a>O, b>O, c0 >0 (a>O). 
The solution of eq. (25) is: 

II 
& 1 (z) =o'cs[y'(z -z 0)/m'] 

cs(u/m') = cn(u/m')/sn(u/m'), 
where 

m'= 2(a2-4bco)Vz 

[a+(a2 -4bco) -Vz] 
o'- [ 2co ~ ' ---- ]2 

a-(a2 -4bc o) Vz 

y' = [ ~_Q_~4bco) Vz ] Vz 
2 

(38) 

In this case we see that the electric field in the nonli
near film has a singularity at Z= z 0 which would be removed 
if, e.g., dampi~g were introduced into the diagonal dielect
ric tensor. 

The equations for z 0 and for the normal modes (i)m=(i)m(k,&
0

) 
are: 

&0 =o'cs(y'z
0

). 
k 3 d 

A=o'e cs[y'(d-z
0
)], 

( k2 
-

1
- --

2
- = y'ns(y'z

0
)ds(y'z

0
)sc(y'z

0
) , 

fll k 1 

(3 

f II 

k2 
-

2
- = y' ns [y '( d - z

0 
)] ds [ y '( d - z

0
)] sc [ y '( d - z

0 
)1 

ka 

a 4) The case a>O, b> 0, c
0

=-lc
0

1< 0 (a>O). 
In this case we get: 

&:
1
(z) =p'ds..[,B'(z-z0 )/p'] 

ds(u/p') = dn(u/p')/sn(u/p'), 

where. 

[a +(a 2 +4blc 0 [)Vz] 
p' = 

2(a 2 +4blc
0 

J)'lz 

f3'=(a 2+4blc 1)'12 . .' 
0 

12 j ( 

, (a 2 +4blc \)\4 
P = ----· _.o bVz --- • 

,. 

(39) 

(40) 

The point z0 , where the electric field has a singulaFity, and 
the branches c.1 m .. (U mCk.& 0 ) of the dispersion relation are de
termined by: 

~0 =p'ds(,B'z 0), 
k d . 

A= p'e 3 ds[,B'(d -z 0 )], 

( k2 
_!_ -1L = (J'cs(,B'z )ns(,B'z )sd(f3'z ) 
(II k l 0 0 0 (41) 

•a k2 
- 2 =.B'cs[,B'(d-z )1ns[,B'(d-z )lsd[,B'(d-z )].. 
k 0 0 0 

3 <II 

b) The Case of NGWP 

The NGWP modes propagate with a real wave vector k parallel 
to the surface and k2 is imaginary, k2=ik.L,where k.L is the com
ponent of the wave vector perpendicular to the surface. There-

< 
fore a =- _:!:_k.L <0, and in the following there are two cases 

<II 
to consider. 

b 1) The case a=-lai<O, b=-lbi<O, c
0
>0. 

The solution of eq.(25) is 
II - - -

&, 
1 

( z) = o en [ y ( z - z 
0 

)/ m ] , 

where 
2 Vz 

[(lal + 4lbl c 0 ) -lal] 
In=-------. 2 ly) 

2(1al +4lbl c
0

) 
2 

2 1h 
(42) 

- (Ia I +4lbl c 0) -Ia I Vz - 2 \4 
o=[-------1 , y=(lal +4lblo

0
) • 

21 b I 
The equations for z 0 and the dispersion of NGWP modes 

(Um=(U m(k, &0) labeled by a positive integer rn nre: 

_ - - tt3 d -
& 0 = 8 en (yz 0). A • 8 o on (y (d- z J1 

I! 
(1 kJ. - - - • 
-- -- - y an (y z 0)dn (yz0 )no (y z 0 ) 
(II k 1 

(43) 

(3 

€ II 

k~ - [ - 1 (- l (- 1 ·- •yen y(d-E0) dn y(d-z 0)noy(d-z 0). 
ks 
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- - co Y2 
If a=O, then b=O and m=O , o =(-) , y= Ia[. Because cn(u/0) =Cosu, 

lal 
the solution (42) becomes: 

II - l.1. Y2 - f.J. Y2 
G; 1 (z) = B1 sin[(--) k.~.z] + B 2cos[(--) k.t_z] 

l II l II 
(44) 

Thus, eq. (44) described the LGl<JP, i.e., the guided wave 
polaritons in linear theory. Eq. (42) describes the nonlinear 
analogue of what are usually called guided wave polaritons111"15( 

The power carried by the NGWP modes is P =P1 +P2 +P
3 

, 

where 
1 2 -4 

P1 =-G;0 kk1 k.J. uH 11 , 
877 

1 -4 -2- - - -
P2 =-;r;;wt 11 kk.J.o y(q+r+s), 

p - 1 2 • -4 -2k 3 d 
3 -4;;"AKk3 k.l.wt

11
(1-e ), 

are the powers in the media I,II and III, respectively. Here 

- c1 m) - - c2iii-1) - - - -q = ---yd, r = IE[y(d -z
0

)/m] + E(yz
0

/m)l , 
3m 3m 

- 1 - - -s =- 3-!sn[y(d-z0)]cn[y(d-z 0)]dn[y(d- z 0)] + 

+ sn(yz0)cn(yz 0)dn(yz 0)l. 

b2) The case a=-lai<O, b>O , c 0 =-ic 0 [<0. 
We find that: 

ll - - -G; 1 (z) =p'ds[{.l'(z-z
0
)/p'], 

where 

il'= 
2 Vz 

[(ial +4blc 0 1) -lal] 
-------

2(lal2+4blcoi)Y2 
(45) 

2 I)~ 2 i)Y2 (Ia I +4blco fi' =qat +4blc
0 

, ' p = Vz 
b 

The boundary conditions give the following equations for 
z o and the normal modes w m = w m (k, Q; 0.) 

14 

&o "P'da(p'zo), -· k d A·p'o 8 ds[,§'(d- z
0

)] 

2 
f lt.l. - - - -

_1 - .. f.l'cs({.l'z 0)ns({.l'z 0)sd(f.l'zo) 
f II k l 

(46) 

2 
(3 k.l. - - - -
- -k- = W cs [ W ( d - z 0)] ns [ f.l' ( d - z 

0
)] sd [ f.l' ( d - z 

0
) ] . 

(II 3 

4. CONCLUSIONS 

We conclude with a few comments about the results we have 
obtained in this paper. In Sect.2 we have studied the propa
gation characteristics of the nonlinear analogue of what are 
usually called surface polaritons 1 7- 101 and guided wave pola
ritons 111-15/ in linear theory in the case of an isotropic li
near slab placed on an anisotropic nonlinear substrate. 

In Sect.3 we have written down the exact oscillatory solu
tions of Maxwell~s equations that describe the propagation of 
NSP and of NGWP in a nonlinear film placed on a linear sub
strate. These solutions are expressed in terms of Jacobi ellip
tic functions and are periodic in the space variable z normal 
to the surfaces. 

The surprising result we have obtained is the oscillatory 
behaviour of the solutions within the slab even in the case 
of NSP. This is closely related to the fact that the finite 
size of the nonlinear crystal gives rise to standing waves in 
the z direction perpendicular to the surfaces. The physical 
distinction between NSP and NG\<JP oscillatory solutions is that 
the frequencies of propagations of NSP and NGWP fall into non
overlapping domains of the (w,~ -apnea. 

In some regions of the (w, It) -p tuna wo hnva ob tn i nod a in
gular electric fields in tho nontinonr modin. Such n behaviour 
of the electromagnetic fialda io on artifact o¥ the use of 
a real dielectric tanaor. Tho fnct that tho nonlinear surface 
modes Wm•uJm(lt,a;o)nro functiono of tho amplituda lii 0 of the 
electric field \A n common rhnrnctoriotico of nonlinear phe
nomena. 

Tho coso o~ 11 -potnrlr.od Nl:ll' anti NGWl' in tho soma three
layer structuron wllt ho nnclyaod Ln n futuro work. 

We would liko to thank Ptofaaaor V.M.Agranovich and Drs. 
N.Angeleacu cnu V.n.Pr{ozzhav !or many uaoful diocussions. 
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MHxanaKe L{. , ci>egHHHH B. K. El7-82-137. 
p -rrOJ1HpH30BaHHbie HeJIHHeHHbJe IIOBepXHOCTHbJe H CBH3aHHble BOJ!Hbl 
B CJ!OHCTbiX CTPYKTypax 

Ha:HgeHbi TO"l!HbJe pemeHHH ypaBHeHHH MaKcBeJlJla, KOTOPbie OTBe
ttaioT p -rronHpH30BaHHbiM HeJ!HHeHHbiM IIOBepXHOCTHbiM ITOJ!HpHTOHaM 
H p -IIOJ1HPH30BaHHblM HeJ!HHeHHbiM CBH3aHHblM BOJ!HaM IIOJIHpHTOHOB 
B CJtOHCTbiX CTPYI<Typax ,I:IJIH .z:IBYX cny"l!aeB: 1 I rrneHKa rroBepxHOCTHo 
a!(THDIIOC'O Dell\eCTBa, llOMell\eHHaf! Ha IIO,[IJ!OlKKY, ,[IH3JieKTPH"l!eCKHe 
CBOt\CTll8 IWTOPOH OIIHCbiBaiOTCH TeH30pOM <u =< 22 =<.l. +a(!E

1
!2+!E

2
!2), 

( 33 '"1 11 ; 21 nnerma, ,D;H3Jiei<TPH"l!eCKHe CBOHCTBa KOTOpOH OIIHCbiBa-
IOTCil 'l'OII!OpoM Taxwro )ICe DH,o;a I orrTH'IecKH o,o;uooCHbiH HenHHefiHaitl 
KpJ.tCTM.nl 1 f10MCII\e111!81I llD. OIITH"l!ElCICH O,[IHOPO.z:IHYIO IIO,[IJ!OJKKY C ,[IH
:;meKTplttiUCKO!~ rtpOIIIti.\OElMOCTbiO ( 3 IloJiy'-IeHbi TaKlKe aHMHTHl.!e
CKHC cliOpMyJihi ,O,.rifl llOTOl<ll 3llepC'HH rrepeHOCHMOC'O flOBepxHOCTHbiMH 
BOJIIIIlMJI, 

I'aCio•rn llt.InOJliiOJIO n naCiopaTOj)Hii TeopeTH"l!eCKOH rlm:num OH5Uf. 

nponpHHT OCJloGAHtlO~tllOrO HHCTHTYTB nAOPHbiX HCCileAOBBHHH, .lly5Ha 1982 

Mihalocho 11,, li'odyanin V.K. EI7-82-I37 
~-Polorlzn~ Nonllnoar Surface und Guided Waves 
in Laynrod Atructuron 

Wo tountl an oxoct nolution of Moxwcll-s equations, which 
descrihan lhc propngntion oE p-polarizcd nonlinear surface 
polaritonu and or P -po lcrlzad nonlinear guidad wave polari
tons Ln Lwo nnuoar 1) ln a fllm of o aurEnco nctivc material 
placed on n auhntrncu d~ocribad by a diaRonnl dioloctric tensor 
whoso a ltmr:snt:a depend on thu nmpt~ tudo of tho cloctric field 
accordlna co 'l\ .. ,1111 w '.1. ~ n(IEII '!E 14 !2 l,•oo"''u•and ii) in 
a film, tlutlc'rl wd hy t'ha nnmn d uloctric tcnaor (optically 
uniaxiu1 non!Jnunr t•ryntnl), plncod nn A llubaLruto with di
electric r.nnnt:nn~ 'u (npt.ll'llLiy llnonr rnCldlum), Tho power 
carriod in t:ht~ l!lurrn''" wnvc11 ltnn nlao hoan uxtu:tly calculated. 

Tho invouel~nrlnn han boCll\ rnrPilrmod Itt. t.ho Laboratory 
of Theoreticnl Ilhynl~n, ,JjNIL 
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