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I. INTRODUCTION 

Recently there has been much interest in the problem of 
localization of electrons in random systems, first treated by 
Anderson 111 for a strongly disordered three-dimensional system. 
Of special interest are one-dimensional (10), quasi-10 sy
stems and thin wires (and 2D systems), where large effects 
arise already from small disorder because of strong quantum 
mechanical coherence in multiple scattering. However, at pre
sent time only the assertion by Mott and Twose 121 about the 
localization of all eigen states in a 10 system for even 
arbitrarily small random potential seems to be strictly pro
ven. Berezinskii131 first attacked the lD problem by usual 
field theoretic methods based on the important concept of 
diagrams ordered along the chain It is the aim of this and 
the following papers to investigate the effects of the trans
verse motion for N weakly coupled chains. We show locali
zation in an infinitely long thin wire for arbitrarily small 
random potential, describing the wire· by a simple microscopic 
model which takes into account the quantization of the trans
verse motion. 

Already in 1977 Thouless 141 gave arguments based on a simp
le scaling method that in a disordered infinitely long thin 
wire all states are localized independently of the strength 
of the randomness. Anderson et al. 151 and Azbel 161 develo-
ped a scaling theory for the 10 case and for the case of 
N transverse channels. 

Our model for theN coupled chains (Sec. 2) represents mic
roscopically such an N channel system as discussed in the 
seal ling theories 15•61 • We need no additional hypothesis like 
that about the independence of stochastical quantities belon
ging to neighbouring pieces of the wire used in the scaling 
theories. A microscopic model withN states at each site of 
a d -dimensional random lattice was recently proposed and in-
vestigated for N-+ ooo by Wegner et al/71• Our work differs 
in two respects from Wegner's: (i) Our derivation of the model 
leads to a selection rule for the scattering between states 
(see text below (6)) not present in Wegner's formal model, 
(ii) Wegner investigates infinite systems for d>l in the limit 
N-+ O(l' whereas we consider a wire with finite N. 
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As a criterium for localization we calculate in Sec. 3,4 by means of diagram technique the average of a special densitydensity correlation function for the infinitely long system (compare Economou and Cohen 181 ), instead of calculating the conductance. Thus we do not use the generalization 15•111 of the Landauer conductance formula 191 to the N channel case. Our calculated density-density correlation function is the conditional probability density that the electron for infinitely long time remains in a given cross section z :::0 ( z coordinate along the wire). In other words, we average the normalization constant of the conditional probability P(z}6.z (that means the probability that the electron initially at z =0 is for t-+ oc between z and z + Az). ) • Therefore, in essence we average the inverse localization length 1/L
1 

, a selfave-raging quantity /5,11·14/. oc 
The introduction of N different states essentially compli--. cates the diagram analysis (already for N=2}, and it was necessary (i) to simplify Berezinskii's technique by avoiding the ordering of the lines at any z (ii) to develop an effective method (Sec.5) for the treatment of the N2 variables rnij( rnij number of pairs with lines i, j ) • This problem of N2 variables exists in principle also in the scaling theories, because there the rank of the scattering matrix is of that order. The main idea is to consider deviations of the rnij from a main variable. In this way it was possible to reduce the problem to the solution of two ordinary differential equations with the main variable as the independent one. As in the case of the 

ID problem131we made calculations for weak random potential, that means in Born approximation.For the considered model the diagram analysis is then developed and evaluated without further approximations. 
In Sec.6 we consider the resulting two ordinary differential equations in an approximated form and show that the density· density correlation function exhibits the singularity ·necessary for localization (compare 1B1 ). In the following paper we consider these differential equations in their exact form. 

2. THE MODEL 

The Hamiltonian without impurities is given by 

H <Dl I {.., -+ ( < . d _ -+ _ } = dZ "'"a v z)' 11 -Ih-)av(z) + :!: t ,a (z)a ,(z) , v dz vv' vv v v 
(v O:v ') 

v,v number of chains. We diagonai~ze with respect to the motion perpendicular to z (U unitary): 
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av(z) ~ :S Uv; a i (z), (2) 
J 

after the transformation the energy eigenvalues of the trans-
ver~e motion are 8£:. These states j may be related to the 
channels in refs. 11 5·61• The unperturbed retarded Green func

tion is then (for weakly coupled chains joi j 1 «,F) 

(0) 
Gjj(Z,<F 

. i(kF-0'. +is) lzl 
+is'):::::--1 -e J (3) 

hvr 

where 0£j = 0£j /hvF; s = s"/hvF. The Hamiltonian of the 

interaction with the impurities is 

Himp~ Jdz :S V (z)(U+). a+(z)U ,,a.-(z) (4) 
.. " V JV J V] J 

Following 1311~e consider the possible vertices for diagrams 
ordered along the z-axis, generalized to the case of N sta
tes. The correlator of the stochastic impurity potential V(z) 
is 

(5) 

We consider in more detail only the vertex shown in Fig. 1: 

l ~ i(0<;--<5,,) i(O< j-o<,+O<f-8<rJz 
r~--- f<J.;W(I,I)e e x 

(hvF) 2 -~ 
(6) 

We now simplify the model: (i) We take into account only 
terms for which the indices j ' k, e. m of the u coincide 
pairwise, because in .such cases we obtain phase-independent 
quantities like IUvj 1

2 • (ii) We neglect vertices (oscillating 
vertices), where in the exponent the factor in front of z does 
not vanish. The dependence of the diagram blocks L (or X )on 
z following from Eqs. (17,54) shows, that the mean distance 
between two vertices and thus the characteristic integration 

z + ~ k J --=-e,-.:5;.__ 

\ 
z m 

domain for z is the localiza
tion length L ~ Nf ( 1

2 
is 

mean free pat~~or tackward 
scattering, see (11)). Thus 
the necessary condition is 

Fig.l. Vertex. retarded 
line, advanced line. 
The analytical expression is 
independent direction of the 
arrows. 
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M;p 18£.-ll<k 1Nf2 » 1. 
1P k · 1 

For simple transverse lattices we get 

tJ. 
~ 4" 2--kFf2 » 1, 

'F 

k f 
2..! »1 

N 

(7) 

for 
(7a) 

(7b) 

(iii) The exponent containing ' can be neglected because of the small range of W.Because the sum over v contains a large 
number of terms, we substitute this sum by its average with 
respect to j. i: 

-
1
- l: IU . 1

2 
IU 1

2 ~!... · (B) N jf VJ vf N 
v 

To this vertex corresponds the mean free path 
1 2 ~ 
--~-fW(Od(. 
f1 hvF o (9) 

Thus finally 

for 
i~k 

f ~m 
for (10) 

For the vertices with backward scattering we need the mean 
free path 

~ 

-
1
- ~ --

2
- J W(()cos(2k <::Jd(. 

12 (hvF) 2 o F 
(I I) 

All vertices and the corresponding analytic expressions 
are shown in Fig.2. 

3. DIAGRAM ANALYSIS, SUMMATION OF THE DIAGRAMS FOR 
THE LEFT PART 

Our aim is the calculation of the conditional probability 
that the electron for an infinitely long time remains at a 
given 11cross section". Instead of using a state strictly loca
lized at a point z it is convenient to use normalizable states .P+ (z) centered at z =0 with a width Az; for example 
1/J~ (z) ~ ( "'! ) li _si~t_kz)- e ± i~z dk « kF , AkAz ~" • The 
conditional probability P~z. that the electron initially in th€ state if4_(z) remains for t-+ oc in these states is then (compa-re 181 )-



x~}; <Oij (( 1 ,('1 ; <+is')Oji ((~ ,(2 ; <-is')>. 
UJ 

For narrow <j;(z) (~z « L 100 ~ N£2 ) we can put ( 1 ~,;-; ~ 

~ 2 = t;'~ = 0 in the Green functions; only the neighbourhood of 

~F contributes to the £-integral. Finally we obtain 

P ~ li,m 2s'livFK, 
s ~o 

(13) 

a, 
. . 
I I 

I 
J -

Oz 

J 

I 
J b (cl d 

J J 

(i) 
j ( i ) 

J 

J 

(j) 

j ( i) 

! 
Oz 

I 
b (c) 

J 

(j)i 

( i ) j 

J 

(j) 
J ( i) 

a 1 a1 ( 1 1 ) y ~y - - +-
2£2 2£1 

(mass operator, imaginary parts are ommitted because 

their contributions from retarded and advanced lines 

Fig,2. The vertices of the model: 

cance 1) ; y a2 ~ y ;;: 2 ~- y •a - -1/N £ 1; y b- y jj - y c ~ y c --1/N£ 1 

(b intrapair scatter~ng, c interpair scattering); yd= l/Nf1; 

y• ~ e<az(N£2; yr-yr --1/N£2 ; Y g_ .-4sz/N£2. 
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K = ..!_ ~ <G .. (0,0; < + is')G .. (0,0; < -is')>. N ij lJ F Jl F (14) 

We now develop the diagram analysis forK.and introduce the 
following definitions. 

Pair of lines: Any pair 1, J has two lines, one from left to right (first index), second from right to left (second in
dex). miJ is the number of pairs I.J in a diagram at a coordinate z; the vertices provide for any z 
M=~m--=~m ..• 

ij lJ ij IJ ( 15) 
z Left block L ( ): Sum of all diagrams from z =- ~ to z mij 

L(~) = 1 (16) 
by definition. To avoid the serious complications which arise 
for N>>lif we follow Berezinskii 's definitions 131 based on or
dering of the lines for any z, we change the definitions of 
the blocks. Any diagram begins with vertex 2e; the vertices 
2a1 , ••• , 2d are adjoined in the same way as in 131. If there 
appear further vertices 2e no ordering of the pairs is intro
duced. Additional closed loops (besides the basic retarded one advanced one corresponding to the considered correlator (14)) are avoided by the following rules for adjoining the vertices 
2f, 2f, 2g: (i) The two lines of a pair are never coupled 
into one end of the impurity line. (ii) If one line of one 
pair is coupled to the line in opposite direction of a second 
pair, the two remaining lines represent a new pair. All pos
sible couplings should be taken. These rules are illustrated 
in~ 

We now transform 

6 

4sMz 
e (I 7) 

Inspection of speci
al diagrams shows 
that for an infini
tely long system 

Fig.3. Coupling of 
lines by backward 
scattering vertices. 



k 
I 

ICI 

(FI 
IIi I 

I Dl 

~--~/A--

'== 

k J 
l=- IGI 

Fig.4. Diagrams for the ~eri~ 
vation of the operators C, .•• ,G: 

Th~ diagrams for the opera
tors A ... (vertices, Fig. 2, a p····· 
;Is ) , B (vertices b, b ), and 
E (vertex e) coincide with 
the corresponding ones in 
Fig.2. C) The four terms in 
(24) (two coincide) corres
pond to the four possible con
nections. F) In addition to 
the coupling of the lines 
i,1 also coupling of i ,k should 
be taken; the two resulting 
terms coincide. G) Only ';)ne 
of the 8 possible couplings 
is shown. 

L does not depent on z. A differential equatio,y. for L is obta
ined (as in /3/ ) going in the construction of L from z to 
Z+dz by connecting the. lines at z by vertices: 

( 18) 

In order to give all formulae in a simple and short form ope
rator formalism is used. The operators a+(~+) create retar
ded (advanced) pairs, a- ({3- ) annihilate pairs: 

I m .. ) ~ I m .. + 1) , 
lJ . lJ 

a- I m ) ~ m I m - !) 
( 19) 

ijij ijij. 

and analogously for the advanced pairs (commutation between 
a±, a± and {3±, 13± and a±, {3± for different indices). We 
introduce the generating functional 

A l: L 
I mii J..o ( 

l:ij !)( ~ij ) 
lmlj-l mlf (20) 

liii 1i-1~o 
and the operator 

M~l:a+.a:: (21) 
ij lJ ... lJ" 

The operators A, ... ,G result from connecting the lines by 

the vertice~ (Fig.2a , ••• ,2g). The vertices 2a 1 , ••• ,2a3 con
tribute to A, the vertices 2b, 2b, to B: 
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L-{~+(1-.!...)-1-}:E a+. a-:. e Ne .. lJlJ 2 1 lJ 
- advanced, (22) 

B =-
1 :E (1-8j' )a:': a:-: 

N£ 1 ij t Jl tJ 
- advanced. (23) 

The operators 6, ... , Q follow from the vertices 2c, ... ,2g 
as is shown in Fig.4. 

L- _1_ :E {(1-8.k )ak+a+e+2(1-a e )a,+ a++ 2Nf1 iJ 1 J 1 1 LJ kl 
kf 

+ (1 - 8 , ) a;-, a+ } a-:- a L' - advanced , JL IL kJ lj KL 

(24) 

(25) 

L-1- :E :E{8 (1-B )a+,B~+8, (1-8. )a+ ,B + + Nfl ij r ik ir fJ " "' " 'J kr 

+ a 'k (1 -a. ) a + ,B ~ + a ' (1 - 8 . ) a:- ,B + }a :-: ,B -;_, • J Jr ir rL jr. Jr u kr IJ JU. (26) 

E = e
4

sz :E [8 .. a+
11 

,B.++ (1-8
1

. )a:': (,8:': +.B.+)], 
N(/ . . lj 11 J lj lJ Jl {. 2 lJ (27) 

F =- -
1
- :E f(1-8.f )a:.(a~ +a;)+ 8 ·e<·a +.]a - .. a :e - advanced, Nf ij L 1 J 1 1 J 11 lj 
2 (28) 

G = e-
4
sz :E ak+a:-: a,-; [(1-8,,) :E ,B2~,a::_,a.;:,+.R-::-,B_-.} + Nf .. J lJ KL ll.. -:- kJ lJ kL ·-yJ kt 2 ~ kj 

+ 8,, :E ,a+kf,a-:.,a::: 1. 
lL kf kj ij k i 

4. SUMMATION OF THE DIAGRM!S FOR THE CORRELATION FIJNCTION 
The procedure of construction of L from z =- oo to z =0 ex

tends in the same way to z >0. However for z > 0. we have to take 
into account that the retarded closed loop and the advanced 
one start and end at z =0. Out of the four possibilities 
(Fig.S, Sa) we consider explicitly only the one shown in Fig.S. 
The extension of the considered procedure to z> 0 defines the 
block X. This block depends not only on the pairs m' kf at iii'i<f 
at a coordinate z>O but also on the pairs mk£' iD-rexcisting 
at Z=O (including the additional retarded pa1r i,jk and ad
vanced pair j,i ). For z"4+0 of course 
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z' -4+0 

X c-~', !m~1 I ) ~ 0!m l,lm'/lm_
1

1. t;n.c
1

1 
(29) 

k1 k k k 
!iiiif I liiij;1 1 

The correlator is then given by 

1 ~ (. ' ) K ~ ~ l: L t:k1 I X 

N(h vF)2 ij !m,1 1~o !mitf I 
'.U.r~o (30) 

z' 

m' ~1)+(1-0 )X rq rq 

iii' =1 
rq 

+ further terms corresponding to Fig.Sa. 
(The notation m;q =1, m; =I means that all other variables 

are zero; ok1 ~oki o1
i ). q In analogy with (17) we transform 

ij z-0 

' I --.---
-r--

I 
I ---.,.--

___,..--
' I 

z 

® 
K r·-·- -·-·-·-·-·-·-·-·-·-·-

I 

k 
I 
I 

=r== 
=-= ' I 
==r== 
==r= 

' I 

1 z=O z=O Z=O 

i ~ :t= =t::::= 
i~ : l 

!~ ~ ~ 
j I I 

i 
L. -·-·-- -·-- - -·-·-·-·-

FiP.S, Pairs of lines at z =0. Each point • 
~ - + 
to a pair of operators a ( z ~o), a ( z ~o) 
Green function in (14). The insert Sa shows 
ther possibilities. 

corresponds 
from one 
the 3 fur-
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x(·l;: l)~ ' rq 

I iii.:.-} 
rq 

4sM"z' -
e X (31) 

Inspectation of special diagrams shows that for X dependence 
on z rema~ns. Because the construction of X is the same as 
that for L,the r.h.s. of the differential equations are the 
same: 

A d 
l4sM' + --, l i3 ( 

dz 
z")=IA+B+-···+Otac :z"oo. (32) 

The generating function~! E (with respect to the right va
riables) is related to X in analogy with (20). As initial 
condition (analogous to (16)) we use 

X (; ~~iq ~ol) ~ o. 
I m-- ~ol rq 

Eq. (30) for the correlator K can be written in the form 

K 

+ further terms 

(33) 

(34) 

(35) 
A similar method of attack was used in 131 (see there Eq. (26)). 

We transform (32) into an equation for F by (i) applying 
to (32) the operations acting ong in (35), (ii) using (33) 
at the lower integration limit, (iii) using that X-+ 0 for z'--. oo 
z'-+ oo and m;q /:. 0, iDf- fo 0 (what can be shown by inspection of 
special diagrams), (1~) introducing for F a generating func
tional~ in analogy with (20): 

... 1 + + " " "' 4sM'~---l:a f3 A~IA+B+ ... +Gl~ (36) N£2 iJ iJ ii 
,In order to obtain more symmetrical dif!etential equations 
'(especially with respect to the terms E,G) we transform 
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L rq = N II (m ! m ! ) L - ( lm l) 2M _ - ( lm rq l ) 
lm l rq rq rq · I m I 

(37) 

~ ~ 

·and analogously F-l'F. This transformation can be performed by 

changing in all eouations written in operator form from 
+ '+ ..... + -=r 

a-
7 

f3 - to a- , {3 -

_, + - ..........__.. 
aij(m,j) (mij+1)(m,,+1) 

c;~ <~l =<~l. 
(38} 

a-(0) =0 (and analogously for the advanced pairs), and by ad

ding to E the factor N2 and to G the factor '1/N 2 . 

5. TREATMENT OF THE N 2 VARIABLES m ij 

The generating functionals A,~ are generalizations of the 
corresponding functionals in 131 to the case of many variables. 
To see this more explicitly it is convenient to use a special 
representation of the operators and states: a+=<:: ;;-=ala(, 
- 1 m -

(m) =iii!((,') ; analogously for {3. In this representation 

the equations (18, 32) for the generating functionals take 
the form of partial_ differential equations with 2N2 indepen-

dent varibles {; ij, {; ij . One can show that these differen-

tial equations are of second order. Because we are only in
terested in the limit s~O we can avoid the solution of these 
complicated differential equations in many variables by a much 
simpler method of attack. Instead of introducing the variab-

les ' .. , ( 1.,. we remain with the variables m ..• m .. or, 
lJ, 'h .... lJ lj 

more str~ctly, w~t certa1n l~near comb1nat1ons of them. 
The variables iil =I , m ij, l (and ~ ) satisfy the 

condition (15) which can be interpreted as a plane perpendi
cular to the vector 

~ 1 
I= 211,1, •• .,11, 

N 
(39) 

in the N2 -dimensional space of them ..• We introduce a comple
te system of orthogonal vectors e P C~ =I, ... , N2 -1) on this 
plane. For any value of the main variable M we can write 

m = Mf + :£ gP8p.P, (40) 

analogously Pfor .ffi. Mf is the vector from the or1g~n to the 
centre of the plane (it describes the 11homogeneous distribu
tion" of the pairs among the indices), the second term descri-

ll 



bes the "general" deviation from the homogeneous distribution. As an example we consider the first of the four terms of CA in (18, 24): 

1 c ~---
1 2N1 

1 
~ (1 -<> ik)mkjmif [ 

k1 

-advanced. 

a like any other vertex leads to "special" deviations which add to the general deviation, and which shall be described 
by vectors r;a ( ij) (u numerates the vertices). In (41) only kf 
variables showing such special deviations are written explicitly. Because the special deviations also lie on the plane ( 15), 

;a(~) ~ ; aap C!) 0 P (42) 
The allP, {)ji Pare arbitrary variables. According to (40) they are restricted to such values that all components of m are integers; however in the following we generalize the {)~P, {)~P (like M) to continuous variables (compare (47) below). "" - ---+ ---+ We expand the functions L, F at m = MI (homogeneous dist-ribution) with respect to the general and special deviations into Taylor series. It is convenient to introduce derivatives with respect to the directions e p and ijO": 

aP ~ 
p a 

aP ~ 
p a 

eiJ -.--. e ij 
lj am lj ij arii iJ 

(43) a ~ a a a ~ 
-a a 

Tlij am IJ • ~lj -· a 
ij a 

ij am IJ 

The equations are symmetrical with respect to mirror reflec-tions: eP .. ---+_eP .. , eP=;p (pf:. p'); this can also be seen by direct calculations. Therefore, all derivatives changing ,.sign under such a transformation vanish. The Taylor series for L is 

( 
MI + ~ ;p 8~p +;a ) ~ 

L P ~ ~ L(M) + ~ ---+P - p - u MI + ~ e 8~ + ~ 
p 

12 

(44) 

higher order 

depend on M. 



We substitute (44) into (18) and the analogous series for 
F into (36). Because the Op.P, 5jiP are arbitrary variables, 

the Eqs. (18, 36) are equivalent to an infinite system of 
linear equations for L(F) and their derivatives to all orders. 

The system is of the type 
""' ""'II ""'IV 

L(M) - M(L + L + .••. ) = 0, (45) 
=n =IV =vi 
L (M) - M(L + L + ••• ) = 0, 

where numerical coefficients of the order 1 (depending also 
on N ) are omitted. The equation obtained in zeroth order in 
the Op. is not included in (45); it is the main equation, 
and it shall be treated below. Because the essential domain 
is that of large M (as in the one-dimensional case 131) the 
system (45) can be simply solved, giving for the derivatives 
the order of magnitude 

L (2n) = L M -n ( 46) 

The vanishing of derivatives noninvariant with respect to the 
mentioned mirror reflection symmetry can also be proved in 
such a way. 

As the further treatment shows (see (52,53)) the natural 
variables are 

p =N12 sM, 

S~ •P ~ yNsM S~P 
(47) 

and the Taylor series rapidly converges for large as well as 
for small M •. 

Thezzeroth order equation from (18) reads 

4sML(M) ~A+B+C+D+ E+ F + G, (49) 

where A, B,... correspond to M, SA,..... As an example we write 
down C1 (E<j. (41)): 

1 M 2 = 1 C1,P 2 = 
-

2
Nf 1~ (1-Sik) (-;2) [L(M) + (1-SJf )2 ;(a ap) L(M) + (50) 

1 k1 
+ higher order terms] - advanced. 

a S ,p corresponds to 7fc1 (to the special deviations in 
(41)). 

*The order of magnitude of the essential values of the o11P 

can be obtained from the statistical relation between the ave-

rages: <(S~P) 2 > = <m. > = _!_. (48) 
•J N2 
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6. MAIN DIFFERENTIAL EQUATIONS 
Evaluation of all terms in (49) leads to 

~ 1 1 2~ .; ~ 4sML(M) ~ --(2- -)M ! L(M-1) + L(M+ 1)- 2L(M)}, (51) Nf2 N 
if we at first neglect all second (and higher order) deriva
tives with respect top, which are present in all terms (see, 
e. g., (50)). Introducing we obtain (in the limit s ~ 0 ) 

4pL(pl ~c2- _!_l P
2 

!L(p-N£2 sl +L(p+N£2 sJ -2LCPJl ~ 
N (N£2s)2 

2 ~ 
~ (2- ~)p2 ~C&. 

N dp2 
(52) 

Inclusion of the second order derivatives leads to additional 
coefficients of the type (1 + a(N)/M) at any term in the 
curly brackets in (51). These terms do not violate the crucial 
effect that after introducing p the "adiabatic .. parameter 
s no more appears explicitly.(However the form the second 
order differential equations changes). Therefore, these terms 
do not violate localization for finite N.All details of bhe 
calculations will be given in a following paper. 

The analogous procedure for F gives 
2 ( ) 2-- P ~ 1 2 d F (p) 4pF(p) - ---L(p) ~ 2-- p . 

(NI2 s )2 N dp2 
(53) 

Again, after the introduction of P the s disappeared (with 
the natural exclusion of the prefactor of the inhomogeneous 
term). Eq. (52) and the homogeneous part of (53) can be trans
formed to the standard Bessel's equation. The solutions, 
satisfying the necessary boundary condit_ions cL(p) __, t, 
li'(p) ~ 0 for p ~ 0 compare (16,33); L(p) ~ 0, F(p) ~ 0 for 
p ---~> oo) are 

L(p) ~ 2v/;v. Kl (2y;;p) 0 

F(p) ~ {3p for p ~ 0 ; 
4 

for 

a~ ----,2· 
2- liN ' 

1 
/3 ~ -----. 

12(NI 2 d 

(54) 

(55) 

(56) 

The procedure already applied to (18,36) gives for the correla
tor (34) 

8 - 2 K ~ --- F(p) /p ~ N£2 s ~ (57) (hvF) 2 3hvFN£ 2 s' 

(p ~ N£2 corresponds toM=!). 
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According to (13) the lis-singularity in (57) manifests 

localization. The conditional probability density that the 
electron remains in the state at z =0 with width 11z is 

(58) 

7. CONCLUSIONS 

Comparing our main equations (51-53) which prove on a mic
roscopic basis localization for the case of N weakly coupled 
chains (N finite) with the corresponding equations for the 
10 case we note: 

(i) The characteristic length is N£ 2 instead of 12 ; (58) 

shows that the localization length · ·Lloc ~ N£2 in accordance 

with 14•
51 • 

(ii) The prefactor of p2 d 2/dp 2 is 2-1/N instead of I 

for the lD case. 
(iii) The situation is, however, different in the limit 

N _. ""' which according to the conditions (7a, 7b) can be per

formed in our model for d=3. but not for d=2. In this limit 
(N _,. oc), but s -;.Q and therefore M limited) the leading terms 

are that of order MN not containing interference terms (and 
not that of order M2 as in (5!-53)). Then from (49) follows 

4sML'(M) ~ 1r..!...tL'(M -1) + L'(M +1)- 2L' (M) l (59) 

2 - ~ 
instead of (52). The quantity L'(M) corresponds to L(M) how-
ever in the transformation (37) the prefactor 1sNM instead 

of N2~ Introducing p '~My £2 s gives 

4L'<P'l ~ d2i><P'l . 
dp'2 

Then for the correlator results 

(60) 

K-;: L' 2
(M)- -

1
- (dp'L' 

2
(p'), (61) 

M~O ,jS 

where the 1/ ..,;S -singularity manifests diffusions *. Concerning , 
d =2 we have to include oscillating vertices, what means 
more scattering. 

• The singularity 1/ y's corresponds to 1/ VI; we obtain this 

lD law for the diffusion because we are considering only the 
behaviour along z (in (12) the states in the cross section are 
sunnned over) • 
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(iv) We remark that we can get our result (57) in a very simple, but crude way: We consider the left part and the right part (identical to the z~O part) satisfying (51) (without special deviations), and connect the lines at z =0 in any possible way, ignoring all the serious difficulties connected 
with the indexing of the lines (which forced us to go via (30) and Sec. 5). With the difference that p appears instead of P' this is then similar to the consideration in (61) for diffusion (where the mentioned difficulties do not arise). The s in p (instead of Vs in p' ) then gives the 1/s -singularity of the correlator. In this way it is very clearly seen that also in the case of N chains the interference terms change the singularity of the correlator (like in the 10 case). 

Our general scheme allows for generalization of the model to include oscillating vertices, what will be investigated in a forthcoming paper. 
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