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In recent years the study of nonlinear effects has become 
still more and more actual. The understanding of many pheno
mena of the nonlinear origin is of fundamental importance for 
elementary particle physics, nonlinear optics, solid-state 
physics, that of plasma. 

The nonlinearity is naturally considered to be weak if 
changes it causes in the wave amplitude are slow as compared 
to fast harmonic oscillations. Otherwise the strong nonlinea
rity is meant. 

When nonlinear dynamic equations are studied in the case 
of weak nonlinearity, there arise difficulties due to the pre
sence of secular terms. These difficulties are eliminated by 
using either the Bogolubov-Krylov general method'1,8'' or the 
method of many-time successive approximations which is in 
fact a modification of the Bogolubov-Krylov method. 

This paper is a sequel to ref. / 8 / dealing with the study 
of the model with nonlinear interaction of currents. This 
representation first, is useful in view of a simple interpre
tation of nonlinear interactions on the basis of exact solu
tions; second, it allows one to include higher-order dispersi
on effects and to consider the nonlinear properties without 
restricting them to be small. 

Analytic solutions obtained here for the given model are 
expressed in terms of elliptic functions, a particular case 
of which is soliton solutions s . 

Following ref/ , 8 / we consider the model with the Lagran-
gian 

Ь-ф<и **, -^(фф^ + ^^фф*)* -gjJ^J*1 

4 — (О 
JM "-jf * * * . ( " 

where 

Here the metric from''" is used with the signature 

V ( 1 = V * V b f " " i o b o - a i b i •' 
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In what follows we shall consider the Lagrangian (1) on the 
class of harmonic functions with the use of the Lorentz-in-
variant representation 

Ф = р(9)-е1р''Ж . (2) 

Here x^t.x), u»«(y, vy), p^-Guy, t>vy)are Lorentz coordinates 
squares of which are invariants with the corresponding nor
malization 

u u p 
% « - 1. РцР -" 5 

the contractions are: 1) в»(щ,Ч^„-yfi-vtj.uhich defines 
the shift; 2) p(1xfi»<ay(t- vx), the invariant phase, where 
tm/m-tva. " t' l e fully antisymmetric tensor, <0 j - L у • 
- 1/Vl-v8. 

If one uses (2), the Lagrangian (1) takes the form 

Ьэфф. = -<Р0 ) 8 -V(p), 

V(p)=-£Tps -(-C)] 8 - A?-. I-e^egPj. (3) 
• m 2 _ 

In deriving (3) we have used the formula 

at U* = L |^|* = - ( p e ) 2 +P«P«-. 
The equation of motion corresponding to (3) reads 

о -A- -ffi- = 0. (4) 
ее 2 ap 

It is evident that the equation obtained from the Lagrangian 
(1) 

(о +тя)ф = г&.\ф'\*ф +g„- £ — (4a) 
6ф* 

transforms into (4) if (2) is substituted into (4a). Therefore 
these two equations are adequate. Multinlying (4) by Pg, taking 
into account that -g-W* 8 " *V60 a n d — P0 = v 0 w e o b t a i r l 

finally equation (40 in the form 3» 

( p 9 ) 8 - V , - 0 . (5) 



Equation (5) is easily integrated. 
(5) can be written as 

The general solution to 

e = [ *P (6) Vc-u(p) 
where IKp)«-V(p),C is the integration constant. The solution 
(6) can be interpreted as a certain "classical" motion in the 
field of the nonlinear effective potential IXp)'. 

The picture of trajectories on the phase plane (ir = pg,p) 
is shown in Fig.1; various cases of the finite motion are 
drawn versus the position of the constant с 

lifiii' Pv Рг> Pg' ̂ 4 a r e 

rotation points of the finite 
motion; C 0 , Cj , C E , C g are 
planes of the cross section; 
С>const is the limiting cross 
section, in this case the tra
jectory degenerates into a point; 
in case C g =0 the cross section 
has a trajectory, the separat-
rix S (its rotation point (яг -О, 

Ci«<fc p » 0) is the bifurcation point). 

a) Consider the case Cg= О 
(see Fig.1). Expression (6) ta
kes the form 

dp 
в p у/л — bp** 
where 
a - m * 

b - I t веРг 
Upon integrating we obtain 

In V»~- yfi - bp 8 
Жи>8-р«)И V» +>А»-Ьрв 

or, reversing this equation for the function p=p(0), we ar
rive at the well-known soliton s o l u t i o n / 8 / with natural boun
dary conditions 1Г: p l ^ 4 M - n l 

mi-
p(fl) - ( - e — ) eeoh.|(m B - p J ) • •IV (7) 

fl+«8Pj 
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b) Consider now С =0^,where Cg'^CjiCQ ( 8 ee Fig. I). 
He shall assume that the polynomial in (6) 

P 4 = С - U = -bp* + a p 2 + C (8) 
has the roots p., p „ , -p.. , p.. all real. Due to symmetry of 
the polynomial P 4(p)=P 4 (-p) the roots p t = -p 4. pg=-P3 and are 
given by the formulae 

„ a + J л 8 + 4ЬС о а _./а г + 4ЬС. 
pf=—^ . » ! - — £ w 

Therefore (6) can be written as 
7- P ( e ) d Jb-e*= / £ • =g . an - 1 (Bln«p, k) . (10) 

•/(p1-p)(p-PB>(p-P8)(p -P 4> 
where 

g = г / Ц + р г ). 
Inverting this integral we express the function p = р(в) in 
terms of the Jacobi elliptic functions / i / . 

Thus, for instance, for the interval 
Pg < * SPi 

we obtain the following solution 
Ц-к.впЧ^-в.к)] 

where к =( P l P e)is the modulus of the elliptic function. If 
Pl+PE 

one uses the Gauss transformation formulae for elliptic func
tions ''*', the solution can be finally written as 

PW)~p. .dn<xL(l + k)-0, k ) . (12) 
8
 2ЛГ V ^ ^ 

Here the function modulus is defined by k, = , "• • = = 
1 1 + к Pi 

0 <kj< 1. From periodicity of the function (12) dn(u+ ЖСк^.к^ 
= <to(u, k.) it follows that the period T, = 2K(kj) is defined 
by the complete elliptic integral of the first kind K(k i) • 
» P (IT/2, kj)> Then the period Tg for variable в is given by 
the condition 

^-(l + k).T 9 = T U (13) 
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т 0 = 

where 

Т „ = 2 

tt+k) Vb 
(-

а + ^ш*+ 4ЬС 
-) 

Лф ir/e 
Г - . 

Obviously, for the constant C=Ci, --д—<C|.<0 there i s one 
more interval of the f in i te motion, namely, for 

PA> P>-P3 • 
In this case the solution is represented by the function 

р(в)= p.-dn( ̂ ( l + k)<9, к t ) (14) 

Solutions (12), (14) can be interpreted as classical motion 
in the field of the nonlinear effective potential U(p) (fig.2a). 
It is to be noted that solutions (12), (14) in the limiting 
case at k, ^-——=1 or k = l pass into the soliton solution (7). 

1 1 + к 
Really, with the connection between hyperbolic functions (*J(u, 1)= 
- sechu we have 

p(fl)=±p, .dn(-5x?e, l) = ± V - r s e c h •Cv'»"-*). 
1 g b 

that is, equivalent to the transition of the cross section 
from the position C - C i to C - C B = 0 (Fig.2b). Therefore, on 
the trajectory S(C 8» 0),because from (13) the period T u = ~ at 
kj= 1, functions of the delta amplitude (12), (14) degenerate 
into solitons (7). 

Consider another limiting case k.=0. It is equivalent to 
«8 

the lowest position of the plane С - C f l=- — (Fig. 1). In this 
4b 

case, since dn(u,0)=l, the solutions (12), (14) degenerate into 
constants P1,PA' P ~\ p \ l"Allowing for the phase-dependence 
of the solution (2) we have 

,2v/b~ 

dn(2vll9( k j 

1*4 • dn(- -», ki) 

Ip»»* (15) 

We see that essential nonlinear waves of the form (15) in the 
limiting case kj=0 turn into the vacuum condensate (plane wa-
wes) <A « I H|-e'pM* with the period of linear oscillations 

P* CU-af/4b 



given by the formula 
T. = -£L.'.. (16) 
с) Consider next all possible positions of planes 
С = C 8 > 0 

(Figs.1,2b). In this variant the polynomial (8) has two real 
roots 

•ц..,../цт»г,« 
and two complex conjugate roots t,t, where 

. , *-у/аР+АЪС % g . „ _ К 
г = ( 2L_ ) a t (a B +4bC) > a . 

2b 
The solution (6) can be written as 

_ f№ dp 
Vb-fl= f — ~ g en"1 (co8<ftf k) (18) 

V^1-p)(p-p~z)l{p~bl)t+4\] 
with the notation 

8 4 (19) 
B 2 = ( p 8 - b 1 ) 2 +a8, . g=l/V^8. 

Inverting the integral (18) we obtain the solution p= p{ff) 

K-p [ 1 • <n(-£l<»,k) J + Bpj [1 - cn(-i^.e, k) 
| Q | i i - . . 

k) 
P(9) - . — : j | .: _ £ , (20) 

At 1 + cn(J^-e, k)l + В [ 1 - оп(^-в, k)] 

With the notation (19) the solution (20) for ̂  <.P<f>i takes 
the form 

p(6)-p8 .оо(^-в, к) . (21) 
[Frequency properties of the solution (21) are determined by the 
formulae 

i 
I v _ i _ , Т й « - * - • T u - — 1——-TV . (22) 

б 



Fig.2. a) Plane С takes the position С = С j < O^isJthe 
solution in the form of nonlinear waves p=p i,*(-j-<'(l+k)>k1) 
^ o r PeSPSPi» lu ••• t n e analogous solution for the fi
nite interval P4<P<P 8in the form p=?K 

b) The case C » C 8 - 0 , the solution on the trajectory, 
separatrix, in the form of soliton S with period T B=~. 
c) The case C=Cj>0, the_ solution is given by "cno-
idal" waves p = pg.cn(^—0,k) for p g <p <p '.. Here pt-tj-
•Pj\Д-*1"Рг is an extra modulus of the elliptic 
function <fc which coincides with the value of the 
second root p g. 

Fig.3. The periods T$ and T„ 
of the nonlinear oscilla
tions as functions of the 
parameter C. In the limit 
case С «-a8/4b (point for
mation of the condensate) 
the nonlinear waves tend to 
the corresponding linear tne corresponding linear ^ .j> 
waves with the period T^Hn/ay. c * ЧО 
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п / г йф 
Т - 4 . f - . о у1-кая1пв<£ 

к , ( Р - 1 - ? 8 ) В - ( А - В ) « ( • + V « B + 4bC) 

4АВ 2>/* 8+4bC 

In contrast to the functions (12), (14) the frequency proper
t i e s (22) for the solution (21) in the interval p"g <.p.< p"j 
and for 0< С < о» can change in a wide range of frequencies 

0 < „ < ~ (see F i f c l ) . Indeed. k 8 = (»/C W « 8/C + 4b) , £ 

T u = 4 • f — ̂ .6 £ 8 bounded and 
0

 v

/ l - k e s i n 8 ^ 

(»*+-4bO)- 1 / 4 . 
v m 1 ~ <к .. 

The complete picture of the solutions (12,14,21) versus the 
position of planes C=Ci,Cg,C8 is shown in Fig.2. From this 
Figure it is seen how the'solutions are transformed with the 
change of the position of planes for •» < С .< -a8/4b. 

The frequency properties of the solutions (12,14,21) are 
drawn in Fig.3, where the periods of nonlinear waves for the: 
corresponding positions of planes С are defined by the for
mulae: 

a" 
4b 

1 V ( 2 ) 

sre 

а + Уа 8 + 4bC! 

k « -
2 / a 8 + 4bCi 

т/В йф 
•« Г — . (23) 

о /l-kSsinfy 

0< к 8 < 1 
a + v 7» 8 + '4bC1 

f or С = C 3 , 0 < C 8 < ~, 

ir/e 
•T„ . Т.-Ч. / * (24) 

(a^bCj) 1'* 0 ^.кввт 8^ 
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where — 
k*= — Л L, i < k 8 < i . 

2у /а 5~й*с7 
Here constants a and b are given by parameters of the starting 
model (I) and equal a=m B-p 2 , b =g1+g2PJl-

As we may conclude from formulae (16), (23) and Fig.3, an 
important fact seems to be that in the limiting position С = 
= С, = _JL_ we obtain the limiting value of the period la-^nyJZ/л, 
but in this case the solutions (12, 14) degenerate into cons
tants -Pi,p4'. 

Formally, for such "constant" solutions periods Тд may be 
any numbers. If we consider the general solutions (15), then 
in the limiting case kj^O, or, what is the same, Cj -
= -a /4b,essentially nonlinear waves of the type (15) turn into 
the plane waves 6=( P l|| .e^ 1 with the period of linear os-

2_ P* Ic—i"/4b cillations TA=-32U. Theretore it is to be assumed that the curve 
Ш у 2* 

To (Fig.3) reaches the period of linear oscillations TA= -=--
о л ш у 

in the critical point C, =——rather than the period T =»rv/27a7 
1 4b 

as it follows from formulae (23). 
Besides, the roots of polynomial P in the integral (10) -a become degenerate: at C, =--—, p, = p , p„ = p.. Therefore in 

the integrand of (10) one may consider only the limiting 
transition as C,-»-a2/4b orkj^O. On the whole, the expres
sion (10) is valid and gives correct results. 

Full information on the existence of solutions (12), (14), 
(21) as functions of the parameter C, pc=p(c), is shown in 
Fig.4 for various possible values of C. 

Boundaries of the regions of existence of solutions as 
functions of parameter C, p / ̂ > P^"l i pfj are given by 
formulae (9), (17). 

As a result of studies of the given work, solutions of 
a more general type are found to be nonlinear waves express
ed in terms of elliptic functions. 

The solutions constructed include solitons and condensate 
states (plane waves) as particular cases. 

Upon studying the properties of these solutions a suffi
ciently complete picture is obtained on the evolution of the 
given system in spite of the absence of its complete integra-
bility. 
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Fig.4. I,II are regions of non
linear waves of the form 
P = I P} » p 4 1*0 H I is the 
region of nonlinear waves of 
the form p =p"2 . cn0, D is the 
boundary which separates re
gions I and II from III and 
forms soli'cons, DQ are boun
dary points where linear va-

4-1Р1,Р4||-е1р"/ 

| с—»8/< 74b 
formed. The shaded region is 
a zone forbidden for given so
lutions. 
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