


1. INTRODUCTION

In the previous paper’iﬂthe formulae for local frequency
distribution functions (LFDF) of the atoms in a semi-infinite
gimple cubic lattice with randomly adsorbed atoms were deri-
ved. The procedure was based on the CPA method. The adsorbed
atoms were distributed on the (001) surface so that each ada-
tom was bounded only to the one surface atom. The interaction
between the adatoms was neglected. In order to investigate
the influence of this interaction on LFDF's the Green function
of an infinite crystal with a planar defect was derived, too.
A limiting case of that model is just a semi-infinite crystal
covered by an adsorbed monolayer, i.e.,in terms of CPA, a
crystal surface with the concentration of the adatoms equal
to ome (¢ =1).

For the model discussed in ref./l,we first present in this
paper a detailed analysis of the behaviour of LFDF's of the
atoms for the concentration of adatoms equal to one. Using
the formulae of paperli{we give in the second part of this
paper, results of numerically calculated LFDF's of the adsor-
bed atoms as well as of the surface atoms for different con-
centrations, including the case c¢=1, and for different kinds
of adsorbed atoms. The frequencies of the modes localized at
the surface are also calculated.

2. THE GREEN FUNCTION OF A SEMI-INFINITE CRYSTAL WITH
AN ADSORBED MONOLAYER

LFDF's of the atoms are given by the imaginary part of the
diagonal elements of the Green function matrix Q.ggs elements
may be obtained by inversion of a certain matriz D, i.e., G =
- =p! the elements of which are matrices presenting the struc-
ture of the atomic layers and the interaction between layers
in ref.’V (compare with the equation (9}). ‘

The model used in the previous and alsc in the present work
is a harmonic simple cubic lattice with the {(001) surface and
with interactions (by means of central a and non~central 8
force constants between the nearest neighbours only. Further,
it is assumed that each of the surface atoms bounds one adsor-
bed atom by central e’ and non-central 8° force constants



(the adatoms form a layer). The interaction between the ada-

toms is not taken into account.The mass of the bulk and the
surface atoms is My the mass of the adatoms is M’ Let the
origin of the coordinate system be in the surface plane so
that the z-components of the coordinates of the surface atoms
are equal to 0 and those of the adsorbed atoms are equal to

l. Because we have studied the surface with an adsorbed layer,
we use a method for the determination of G=D"! more simple
than that given in ref,”V

The translational periodicity parallel to the surface in
all of the layers leads to the following relation:
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where the matrices ﬁrx(¢ ¢2) are analogous to the matrix
describing vibrations of a iinear chain with a defect at
its end. They are independent of each other and have
the following form
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where
K -
FE% = P (¢, 6,) = 2B0M™ + 2y, for 1=-1,-2, -3, ..

Fi = T 6y) = BON oy = E_y ey oy

with yl=y2= 8, yt=y'%&=g] y3=gq, y’8 a” The quantities OM" satis-
fy the relatiomns

oM 1o OM 2= a/B (1- cosd ) + (1~ oS g),
OM3 = 2 - cosg, — cosd, , (2)

¢1=k1m by =kya,

where the vector components k .k2 are associated with the two-
dimensional Brillouin zome an&‘ i is the lattice parameter.

In order to write the elements Gﬁf:KDKK)gfi_;it is con-

venient first to separate the displacement o the adatoms and
the displacements of the substrate atoms. This procedure re—
duces (1) to a quasidiagonal blok matrix. The inversion of
this block matrix leads to
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G (b by 0 ) = = 2 (3)
M (mz_yak/mx)(i-_vo%Kng)
for the adsorbed atoms and to
2 2 YR G KK =1 ‘
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for the surface and bulk atoms (i =0, -1, =2, =3....). The
matrix A%< is the force comstant matrix of an ideal semi-in-—
finite linear chain with the free end (in (1) we set.M0==M’=
= OMf=y* =0). Its Green function is defined as

'i)KK= f;m( (¢1 962 , wz) =[(M0w2-2ﬁOMK)’1\ _KKK]j-l (5)

and its (00) element, which appears in (3), can be calculated.
One gets

HmP ™ = LimP *%($ & _, w? 4 i) -1 i . (6)
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=g ~VEE-1 for £, <-1



where
£ =¢f,=0M 41 _mo®/eg,

§3=,8/a(0M3— M0w2/2ﬁ) +1

and where OM* is given by (2). And finally, the matrix V% is
the perturbation produced by the adsorbed layer. It has only
one nonzero element
2
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with 8=y "M’ Therefore, using (5), the Green function (4) can
be also rewritten in the explicit form as follows:
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with Vi defined by (7).

Now, in view of (3) and {8) the local frequency distribu-
tion function of the surface atoms and of the atoms of other
bulk layers can be expressed as
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—-KE 8, elean (@ )+§,Agi(m )i=0, -1, -2, -3,
and that of the adsorbed atoms as
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or, after some simple algebra, in the equivalent form

g, 0= 3 { PN (11)
g1 z 0

@ --BK

- where in accordance with (9) g§= gg,ﬂaan-bﬁgg-The relation

{11) is valid for a1102¢§€From {11) one sees that LFDF's of
the adsorbed atoms have the profile of the surface LFDF's
given by (9), modified by [5,/(w?-5,)1%. The first term on
the right-hand side of (9) describes LFDF's of the crystal

" atoms with a clean surface {the free surface). The second term

represents the contribution from the defect V"% From {(9) and
(11) it is seen that singularities and peaks in LFDF's of the
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"Fig.l. The graphical solutiom
of (12) for «=l=x and for
/\ the dimensionalless frequency
A/ vi-om  B=Mgw?/B. The solid line cor-
~— responds to [limePO"ox]ﬂ, the
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G / [ layer may occur only at fre-
quencies "*’2“’?0(:(‘?51?5 g for which

. KK 5 K
lim Re(1- Vg PO;) = 0, ¢, by~ comst. (12)

The graphical solution of this equation is presented in Fig.1.
The frequency w2=3, is the vibration frequency of the isola-
ted atom bounded to the non—move substrate. For this frequemn—
cy gKO(BK) =0 and g"l(’o‘x) 40, foo.

(i) Localized surface states
For w? satisfying

20M% + dy* <M w ?/B < 20M"
y*=1 for « =1,2

y*=a/f for x=3,

for a given value of ¢, and é,, the Green function Pggis real
in the limit e~ 0" (see (6)). Therefore the first term of (9)
vanishes. The second term is zero except at the frequencies
wl= “’15:: (¢1¢p)(the condition {(12)). These frequencies contri-
bute by a delta function to Ag'f(mg.qb1¢g). Replacing in (9) and
(10) the summation over ¢é,,¢, by integration we receive

Ol(l“nl! 2 XK P
Ag';(aaz) ~ of Ho 2l (b, 6, N a(OM yaom®, (13)

The functions z(OM) are the frequency distribution functi-
ons of the square lattice with the dispersion laws (2) and
those are known’%.From (13) it is seen that in g%(®®) the con-
tribution typical for the two-dimensional square lattice den-
sity must appear (the logarithmic singularities, .the discon-
tinuities in dz(w®)/& 2). Owing to the delta function the pro-
file of rw® will be modulated.

(ii) Resonance states ,
For given values of ¢, and $g» the Green function ng is complex
in the limit ¢-0%, for w? from the interval M, o2/ BE(20MS 208 44y *).



Therefore both the terms of (9) are nonzero. In addition, if
condition (12) is valid, the dencminator in (9) shows a reso-
nance behaviour and resonance levels may occur. For frequen-
cies near the resonance frequency mRQ, Ag’i‘ may be approximated
by

oM’

max F
AP st ®) — 2(OM ) aoM *,
! 0 (w?-w2)2,r 2
R
vhere sf(w®) = V5 Re(PS) 2 /(3 ReD/3w? ) and D=1- ViP5  The
width of the resonance I =ImD/(g RBD/amgHm ~,2 1is given by
2)2 .,k 2 ]
N (cuR) y'T 20MC 4 gy - M0 wp /B
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26Ky 20M +M0wR /B
whereas the condition (12) yields wi)SK and
8, .
wi=2 , (14)
2-M’8 /¥
i.e.,»% in this case is not dependent on ¢, and .. One sees

that the resonance is well-defined if Moduhzf =20M*% 4% Further
one sees that the known Lorentzian~type of the resonance is
1t " K( 2) .
smeared cut" by the factor Si\wg ). For the surface atoms it
is equal to

K (o 2) y"‘ml% [_QOMK+2y*—M0wI%/B
S lw ) e — R
O R (M2, soMK ~Myw2/B

3. RESULTS AND DISCUSSION

In this section we have shown the numerically computed
frequency of the localized modes (12) and the local frequency
distribution function (LFDF) of the surface (gosg_sm) and of
the adsorbed atoms (g 1=8,9for a fixed value of MY/M, and vari-
able & . In our calculation we have put /B8 =3 and Mg/B=1. The-
refore the frequencies of the lattice with the clean surface
(y’"=M’= 0) lie in the interval <0.2>, i.e., in the region
@2>20 only the localized states contribute to the spectrum,
The main interest is focused on the case corresponding to
the hydrogen on a crystal surface for which the neutron. scat—
tering experiments are known. In all numerically computed
LFDF's the lines correspond to the concentration &f adsorbed
atoms ¢ =] (see (9-11)), the dashed lines correspond to =0,25
(in/V see (7-8)).
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Table

The localized mode frequencies {(12) and resonance
frequency (14) for various and the mass ratios:
(2) M’/My=0.017, (b)M/Mg=0.5. OM*=2 and OM *=6
correspond. to the logarithmic singularities of
the function z(w?),0M*=0 and OM*=8 corresponds

to the discontinuities of the derivation of the
function 2lw )

N . a)
; ' wlec, I :ﬂ” fz )
6/ A T iFep OMfe6 OM'=8  OMF=0 0M'=2 OM'w6 oMFm8 WRS

%0.51 30.75 3,99 11,92 15.81 31.28 31.37 31.63 31.9 -
- 0,34 20.75 3,99 11.85 15.49 24,12 21.21 21.53 22.21 -
0.30 18.10 3.99 1M.79 15.09 18.42 18.52 19.08 10.33 -

0.23 14,00  3.99 11.46 13.20  14.25 1437 - - 15.85

8.17 10.00  3.99 9.52 9.8 10,2 10.34 - - 10,91

0.02 1.1 1.1 1.1 1e1 - - - - 1.11
b)

, W Soc CH 0 P) .
b1 J: a2 OMf=6 OM%=8 OMS=0 OM'=2 OM'x6 OM =B Wr

10.1 20.2 2.92 T.23 8.97 30.65 32.2 36.08 38.38 -
0.55 1.1 0.96 1.06  1.07 - - - - 1.52

(i) Modes polarized parallel to the surface k= 1=%

The solution of (12)forms the band with respect tod;landgbg.
Results for a few value of OMX(see the relations (2)) are
presented in Tables a, bD. It is obvious (see Fig.l) that
the resonance state may rise, for a given value of ¢, and bg.
only if the localized mode does mnot exist in the high fre-
quency region. From (12) the dependence of 8y versus wf o lbi9g)
can be also determined for fixed values of M’/M, and OM* .The
results are shown in Fig.2 (compare with Tables).

When 8, >20 and M’/M, =0,017, then in the frequency intexval
<0,20> the presence of the adatoms evokes only sharp singu-
larities at the points w?=4 and @2=12 (compare with Table a
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Fig.2. The relation

between the parameter
8y and the localized
mode frequencies w?Z=
= o, (¢ &) for the ca-
ses OM*=2 and OM*=6, By
the letters Land H we
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quency and the high
frequency localized mo-
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and with Fig. 2),other-
wise the surface LFDF
is roughly similar to
L¥DF of the clean sur—

case is not shown. The contribution in

face (see below, Fig.7)
and therefore this
the region %320 has

the shape of the modified two-dimensional frequency distribu—
tion functiom.

Figure 3 shows the typical behaviou

the region <0,20> In this case, for

r of g%, for 8, from

c=1, g:m_ has only three

Faurlw?) M o067
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0 . " L : .
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Fig.3. LFDF's of the surface atoms for o2 ¢ <0,20> ,
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Fig.4. a) LFDF's of the adsorbed atoms for several values of
the parameter &, (1.1, 10.0, 14.0, 20.75). b) The detail of
the low frequency part of the adatom LFDF for 3;=14 and 20.75.
For illustration the case with &, =30.75 is also shown.



M
=85
01 M,
i — [~ 202 -
i] B - 11
- Lt
rﬁ'( ~ . ” \\\
[ N Y P N
~ £
,/// ~ o ”/ \\\\ \\
s Bt e N
005.. /// \\\ \\
I //// ' A \
S
| g vl
L’/ '
[ \ \
7! ' \
't r‘ 1 \
N\
\‘ N
N\ ~
~ A
0 \\\ 0
: 1 N i R I L L At
0 4 8 12 16 20 o2

Fig.5, The low frequency part of the surface LFDF
for fixed M"/M; =0.5 and variable 5y

g, gl

x

01 -

Qgs |

33,2

0 4 3 T 2ow2

F15.6 LFDF of the adsorbed atoms for fixed M’/M, =0.5
and variable &,

10



x 2
) M .
el - = e (07)

fy =1

01
os |
_~clean surface
A
1.7~
~
g 7 S
X, o Q. |
e s > \
005 B \
1y A
\ K\
1 0 Yok
Y o Wt
\_‘\
AN
N
N
A
0 L L L L . 1 . i N e
0 I3
8 12 16 20 2
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for M/My =1 and 8, =1, illustrating the effect of the

- interaction between atoms in the surface layer. LFDF
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Fig.8a. The local frequency distribution functiom

of the adsorbed atoms if the adatom—adatom inte-
‘ raction is taken into account. For all curves is

B*/8=0.30, M*/M=0.017 and c=1 (/1/- g*/8*=1/4,
3y (2)- Br/B’=1/16, (3)- B~/B’=1/64, (4)-B"/B=0}.
Fig.8b, The detail of

; - . the low frequency part
18 22 26 30 34 38 2 of the spectrum.
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singularities and the resonance state at (we =15.8. Only for
this case the resonance is well-defined. LFDF's of the adsor-
bed atoms for the parameters §, are shown in Fig. 4a. Fig. 4b
shows the details of these distribution functions. The effect
of the factor [8; fw®-5,)12 1is clearly seen. For example,,
for 5, =14 the peak at the point ©®=13.2 must be associated
with the end of the low frequency band of localized mode fre-
quencies (see Tables).

The influence of the increasing mass of the adatoms on
LFDF is illustrated in Figs.3 and 6. The effect of the inte—
raction between atoms of the surface layer is illustrated in
Fig.7. For comparison LFDF of the clean surface atoms is shown,
too. It is also interesting to study the effect of the adatom—
adatom interaction on LFDT of the adsorbed atoms. This inte-
raction is taken into consideratiom if in (1) the matrix
element B¢ ¢,) is written as

DK1K1(¢1¢2) =M’w 2 _ %“OM"K (¢’1¢2) _ )”!S
where a’;8” are the corresponding force constants between the
atoms in the adsorbed layer. OM”*{(¢,é,) are defined by (2)
replacing a,8 bya”,B8”, respectively. LFDF of the adsorbed
atoms is obtained by the same procedure as was used for the
noninteracting adatoms. Results are shown in Fig. 8a, 8b.

(ii) Modes polarized normal to the surface k=23=2 -

Similarly as the x-polarization the vibration in the di-
rection normal to the surface (the z-polarization) can be
analysed. In this case the function ZA0M?Z) has only one singu-
larity. The computed LEDF's of the surface and the adsorbed
atoms are shown in Figs.9 and 10.
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