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1. INTRODUCTION 

Different experimental techniques are available in order 

to measure the characteristics of the surface phonons in the 

case of adsorbed atoms or adsorbed monolayers. Recently, also 

the neutron spectroscopy has been extended to these cases11•21 

(the frequency distributions of chemisorbed H atoms on Ni -ca­

talysts were determined121). In order to give a qualitative 

interpretation of the neutron inelastic scattering experiments 

from a surface with adsorbed atoms, the local freq~ency dis­

tribution functions of atoms of the adsorbate-substrate sys­

tem have to be calculated. The previous theoretical work on 

this subject considered either the se~i-infinite crystal (or 

slab having a thickness of several atomic planes with an ad­
sorbated monolayer/31), or a crystal with various concentra­

tions of impurity atoms in the surface layer 141. 
In this paper it is assumed that the adsorbed atoms are 

randomly distributed on the (001) crystal surface of a simple 

cubic lattice and are bound to the surface atoms by central 

and non-central force constants. The calculation of the fre­

quency distribution function is based on the VPA method. The 

Green function of a crystal with a planar defect is also de­

rived. 

2. MODEL 

We consider a semi-infinite harmonic simple cubic crystal 

with (100) surface covered by randomly adsorbed atoms of a gi­

ven concentration. Each adatom is assumed to be bound to one 

surface atom only. In the harmonic approximation this bound 

can be described by the central force constant a and by the 

non-central one ~-

We assume that relaxation and reconstruction of the surface 

layer take place neither at the clean crystal surface nor due 

rto the presence of adsorbed atoms. Then, by assuming only the 

nearest neighbour interaction between the crystal atoms and 

the adatoms, the whole system can be characterized by masses 

of crystal atoms Me , of ada toms M', and by the force constant 

matrixf.which is identical to the force constant matrix of 

an ideal crystal: for all crystal sites but the surface layer, 
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where the force constant submatrices have the following form 161 

F ... 0 ,i -{: : ';) 
(I ) 

:) F =- (: •.Q ,-! 
0 

0 

{3 

0 

!o.o =-C!o,i + !o.-i +! o,j + !o.-J + !'o,k + !o.-k ) 
..... - -- .... 

= (1, o. 0), i=(0,1,0), k = (0, 0, 1), 

The origin of the coordinate system is in the surface plane 
and z-components of coordinates of adsorbed atoms are equal 
to +1, n1 is the occupation number operator at the site i. It 
is equal to zero when no adatom is bound at the site i a~d is 
equal to one in the opposite case. We assume that the opera­
tors acquire their two possible values in a random way and are 
nonzero only on the surface. Since the goal of our calcula­
tions is the frequency distribution function, we shall not 
take into account the restrictions in the force constants due 
to the invariance under an infinitesimal rigid body rotation 
of the crystal, i.e., we put 11=0.It was shown151 that this ap­
proximation has only a small effect on the shape of the fre­
quency distribution function (FDF), all its qualitative fea­
tures remaining unchanged. On the other hand, the approxima­
tion simplifies substantially further calculations. 

In order to use the single-site CPA treatment13~in the first 
period of our calculation we also ignore the interaction bet­
ween the adatoms taking into account only the bond with the 
surface. Measurements of the coverage dependence of the adsorp­
tion heat give us hint that this step may be often justified. 
In many cases the difference of the adsorption heat at zero 
coverage and for a monolayer, respectively, is less than J% 17( 
Then, Ft,!=-FQ.,Jc F.£,0 ... Fo...~ are the only nonzero force cons­
tant submatrices of the aDsorbed atom. 

Having determined the force constant matrix r we can write 
the equation of motion for the Green functions of the system 
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(Mw 2 - F)G - I , '(2) 
... ... ... ... 

2 ) 
~ 

and V', ~0 are diagonal matrices corresponding to the adatom 

layer and to the crystal atoms, respectively. 

Explicitly, the equation of motion for the diagonal element 

of the surface Green function has the form 

The first six terms on the left-hand side of Eq.(3) describe 

dynamics of surface atoms, the last one describes the adatom­

surface interaction and contains the nondiagonal adatom-sur­

face element of the Green function 911 0 . However, this ele­

ment can be easily eliminated from E<f:\2) by means of the equa­

tion of motion of an adsorbed atom 

n0 M'Ci)
2_Gt,o ""!t.o 9o.o + !t,k ~t.o ... !~.~ <22~ -~ ~·~) 

............... -- -- --
(4) 

By applying this relation to the last term of Eq. (3) we 

get 

where 
2 

tr'" 0 0 
.,2 -llt 

2 
t,..p- 0 fJ' w 0 - .,e ..a2 

0 0 

8 8 - a"/111". 



Since there are no elements of the force constant matrix con­necting a subsurface layer with adsorbed atoms due to the as­sumed short range of forces, the dimensionality of the matrix equation (2) can be reduced to the dimensionality of the equa­tion of motion of the clean crystal 

(5) 

where ! denotes the force constant matrix of the clean crys-tal and (A'!!l~:r- A<£:nrorr for all surface lattice sites. Knowing the solution of Eq.(S) the adatom Green function can be calculated directly from the diagonal element of the surface Green function SJo,o . Combining the equation of motion for 2k.k 
noM'w2 ,9k,k -£::.k<9o,k -,Slk,k)+l -!o.k <~h.o-gk.k )+I --................ -- -- ........ -- --

with Eq. (4), we obtain 

1 
0 0 

w2-ol 

1 
0 1 

0 9k.k = !9o.o no + M' w2-o2 
1 

0 0 
w2 -os 

where 

KIK -( "'s; -sl li" 
(By the Green symbols we denote three coordinate axes). 

The frequency distribution function of the lattice vibra­tions is closely related to the Green function. For the c.rys­tal with an infinitely large-disordered surface the local fre­quency distribution function (LFDF) of the surface layer _is equal to a configurationally averaged LFDF 
M 

p,(w 2 ) =- - 0-!im ImTr<g 0 •0 (w 2 + id>. (6) 
TT £-+0+ _. _. 

Similarly LFDF of the adsorbed layer 

p (w 2 )-- M' lim ImTr<"oGk k (w
2 

+ i<)>. (7) a 11 £ -+O+ _.., .... • .... 
It follows from Eqs. (6, 7) that for the calculation of 

LFDF' s Ps (w 2 ) andPa (w 2 ) we need the knowledge of the averaged Green function and the conditionally averaged Green function, respectively. The diagonality of the perturbation .6.<t in eq. 
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(5) allows us to calculate them by using a surface modifica­

tion of the coherent potential approximation (CPA) 141 • 

CPA is a single site approximation and does not take into 

account the correlation effects in occupation of sites by ad­

sorbed atoms. The averaged Green function is expressed in 

terms of the diagonal self-energy matrix I. 
2 -1 ... 

<G>CPA =[Mow I -<I> -l], , . . ~ 

The matrix l: 
synnnetry of th; 

is nonzero only on the surface and due to 
cubic crystal it has only two nonzero elements. 

J.l',1' =(~! ~I 
-- 0 0 

~ )sw 
la --

They can be calculated from ·the Seven-Taylor equation 

~o.o \! - (/\!!'~.?_.- ~~.?_. l<9o,o >cPA)= ci\~.o • 

where c is the concentration of adatoms on the crystal surface. 

The conditionally averaged Green function of an occupied 

site can be easily deduced from <£o.o >cPA by using the Dyson 

equation 
-I 

<n!!_£lQ..'!_ >CPA =(I-<,!?_<!,'!_>CPA(i\~,1!_ -~'?,.'!_)) <9'!_,0_>CPA 

To compare our CPA calculation, where we neglect the lateral 

interaction between adatoms, with the model involving small 

but nonzero adatom-adatom interactions, we calculate also the 

LFDF's of a crystal with an adsorbed monolayer with the fol­

lowing non-diagonal interadsorbate force constant matrices: 

F + =k.k- i ( 

.. 0 0 ) 

=- : {3"0 

0 0 {3" 
(

{3" 0 0 ) 

=- 0 a 0 

0 0 f3.. . 
(8) 

3. THE GREEN FUNCTION OF A CRYSTAL WITH PLANAR DEFECTS 

The force constant matrix of a simple cubic crystal with 

the nearest neighbour interaction and both with isotopic and 

force constant planar defects may be written down in the form , 

of the following table 
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!-2,-1 0 0 0 
~ ~ 

0 0 
~ 

~-1,-2 M-1"'2 -F-1,-{) F-10 
~ . 

Fo 1 0 
~· 

0 !o.-1 ~o cu
2

- ~o.o 

M1 w2-Ft 1 F12 
~ -· ~ . 0 0 F1o ~ -· 

F1 o M1w 
2 
-F1 2 .... 

~. ~. 

0 0 0 
~ 

~ 

(9) 
where the indices refer to the respective planes. This quasidiagonal form enables us to calculate easily the diagonal part of the Green function G-o-t for an arbitrary plane of the crystal: 

G =(M w 2 -F. -F Z F -F Z F )- 1, ._o,o .. o ;p,o .. o.-1 .. -t.-t .. -t.o .. o.t ,.1.1 .. 1,0 

Z = (M w 2 - F - F Z F ) - 1 .. -1,-1 ... -1 .. -1.-1 ........ 1,-2,. -2.-2 .. -2,-1 
(I 0) 

etc. 
For the defects confined to a finite number of planes, this infinite system of equations can be tru'ncated, as the matri­ces for the ideal planes are all identical. 
Only two equations of (10) suffice for evaluation of the diagonal part of the Green function of an ideal crystal 

G (M 2 F F )""' 1 , o o = o"' - o o- 2 o -12_1 F_1 o .... - -· -·--· (II) 

as 

Fo o ~ F -1 .:. 1 • Fo -1 = F- 1 -2 • M ~ M o • etc . •. • ""' • ""' • • , ""' n ,. 
To calculate the Green function of a ~rystal bo~~ded by. the plane "O" with a layer of adsorbed atoms (the plane "I"), we 
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put 

F21~F12~o. - . ... . M1 ~M'1, Mn ~M 0 I for n .so 
,. ~-·,..,. - ... 

[o,o , ~0.-1' ~o.t""~t.o and F1,1are defined by the expressions 

(1) and (8), respectively. (The indices which appear repeated­

ly will be denoted further by one index, e.g., [ 0 ,0 ~[0 ). In 

this case the infinite system of equations (10) is reduced to 

five equations 

91~(~'., 2 -!1- !1,0 ~o!,o,t )-
1 

G.o ~(Mow2 -Fo-Fo-1Z-tF-1o-Fo1Z1F1o)-1, 
... ... ... . - - . .. ........ 

(12) 

Because all the planes are translationally symmetric, it is 

advantageous to perform the calculations for .Fourier trans­

forms of Eqs. (12). The resulting equations are equations for 

c -numbers only: 
KK ( ( 2 . Kit ( KK K 2 -1 

z_1 </>1,</>2)- Mow -F_1 <f>1,</>2)-Z_1(</>1,</>2)(y)) • 

c/Jt•knt 8 t• r/>2•kH2a2, r 1
'
2 "'"f3, r 3

'""a • 

There equations yield 

KK ( Mow 2 -F~~ (</>1,</>2)±vtMow 2 -F-1(</>1,<f>2)) 2-4(y~) 2 

z_t <I> t'"' 2) - ~:..__ __ ..:...;..;.., 

(1.3) 

The sign in (13) should be chosen so that the Green functi6n 

of the ideal crystal (11) on the real axis would have a nega­

tive imaginary part. 

lim ImG0 (q, 1
,q, 2 ;w 2 + i<) ~ 0. 

E,.O+ "" 

In the area where the Green function is real, it is to be an 

analytic contributiO.n from the ·krea wft'h nonzero imaginary 

part. 
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Substituting (13) into the Fourier transform of (11) we get 

KK 2 2 KK 2 K2-1 Go (<{>1 ,~; w + i,J -'F [(M 0 (w + ;,) - F_ 1 (</>p</> 2)) - 4(y ) ]. 

Denoting M0w
2 

- F~ (<{> 1,if>2)s(;"we can write 
KK 2. ,)(2 K2 Go (</>1 ,<{>2 ; "' + ") - + [(~ ) - 4(y ) + 2Mo 

The aforementioned requirements for the sign in (13) are ful­filled when 

Knowing 
forms of 

where 

KK , Z_J<f>1,<{>2 )we can eas~ly calculate 
all the quantities in Eqs.(l2) 

Z KK ( A. ) ( ,K)2j-1 - 1 </>1'"'2 y ' 

y' 1,2 = f3,' ' = a ' 

8 

<:'<-2y'. 
(14) 

the Fourier trans-



KK ( ) KK ( ) ,K K 

F o ¢1 ,¢2 = F -1 ¢ 1 ,¢ 2 + y - y ' 

F 1/(¢ 1 , ¢ 21 =:?a "(1- cos¢ 1 ) + 2J'l'(1- cos¢ 2 ) + fJ', 

F~ 3(¢ 1 
,¢ 2 ) = 2fJ '(1- cos¢ 1 ) + 2fJ "(1- cos¢ 2 ) +a'. 

To calculate LFDF's, the diagonal elements of the Green 

functions should be obtained from Eqs.(IS) by double integra­

tion of the Fourier transforms 

KK2 1 1117
KK 2· 

Go 0 (w +i<l=-
4 2 

f fGo (¢1,¢2;'" +I<)d¢1d¢2• 
' 17 -11 -TT 

In the case when a/fJ =a''l{J"the double integrals can be 

reduced to the one-dimensional ones. 
Similarly, the diagonal elements of <G>cpA may be cal­

culated bl substituting in Eqs. (9-IS) ~ i';stead of F and 

M -'i.·/w M0 • 
.,. 0 "" ... 
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