


1. INTRODUCTION

In recent years there has been recognized that ‘the micro—
scopic description of certain unusual features/1® of the dis-
ordered transition metal alloys requires the proper treatment
of the electron-phonon interactiom.

The electron-phonon interaction in disordered binary al-—
loys has been studied by many authors. Chen et al.”® introdu-
ced the model in which phonons were treated phenomenological~
ly while electrons were described in CPA. The electron—phonon
interaction was described by the local operator. The model
was later generalized by Kolley/4/ and Wysokinski/5/for the
of f-diagonal disorder. Allen’®/ attempted to develop the comp-
lete theory of the interacting electron-phonon system. He con-
sidered solids with weak static (impurities) and dynamic (pho-
nons) disorder. The limitation of the theory is.the weakness
of disorder. The application of Allens theory to the disor-
dered transition metal alloys is mot clear. Girvin and Jon-
son’?/ used the same Hamiltonian as in’% but developed a more
complete many-body theory of the electron-phonon interaction
in strongly disordered metal alloys. Sacchetti’8/ introduced
a very simple model for treating the electron-phonon interac-
tion in the low—temperature region in random binary alloys.
This author uses the results of the Migdal theory’/? of the
electron-phonon interaction in simple metal for disordered
alloys. However, the explicit form of the Hamiltonian as well
as the derivation of the used formulae are mot given in this
paper.

The purpose of our paper is to develop the complete micro-
scopic self-consistent theory of the electron-phonon interac—
tion in substitutionally disordered transition metal alloys.
For the description of the electron-phonon interaction we ge-
neralize the Barisic et a1/1% model to the case of alloys.
Barisic et a1/10/ (to be referred to as BLF) introduced a mo-—
del of the electron-phomon interaction in the transition me-
tals and their compounds. This model is a direct generaliza-
tion of the well-known Hubbard model in the case of deformed
lattice and is formulated in the language of the tight-binding
(TB) approximation. Additionally the "rigid ion" approxima-
tion is used for the derivation of the BLF Hamiltonianm.



The BLF model was successfully app11ed to the calculation
“of the superconductlng transition temperature T , the McMil-
lan parameter, cohesive energy and paramagnetic suseeptlblllty
of the transition metal/11-14/ The BLF"s tight-binding approach
to the problem was later clarified in papers 715-17/ Holas et
al./18/ and Plakida et al./!® used the BLF model to calculate
the renormalized electron and phonon spectra in crystal in the
band and the atomic limits, respectlvely The present paper
generalxzes thelr results to alloys.

2. THE MODEL

‘ The total Hamlltonlan of the electron—lon system in the
substltutlonally ‘digordered alloy is writtem, for a given con-
“figuration of atoms, in the following form

H=_H;+ng +_He-i+Hi , o (1
. where
Ho‘z ‘ia’ia 1:;"'”2 10' io

. is one~part1c1e Hamlltonlan of an electron in an alloy. The
parameters ¢, - and t, are random quantities taking on the
values ¢, , ¢, and t ﬁﬁ,tAB R tBB dependlng on the type of
atoms occupying ‘sites 1 and ij. The prime in the second sum
indicates that summation over j is limited to the nearest-
neighbours of an atom located in site i. The electron-electron
scattering is approximated here by the Hubbard’/®%/ intrasite
term with ramdom parameters

Hea =?1E U nic:rni o ¥ niq*a:r;a’_io' L : . (.2)-
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. The thlrd term in (1) represents the electron-ion interaction
in alloys. This part of the Hamiltonian is derived in the Ap~
pendix and it is a direct generallzatzon of the BLF model
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‘In (3) and (4) u? is the‘q‘—th component.ﬂz=x.y.2) of'the'disf



placement of an ion placed in an i-th site. db is the Slater
coefficient deseribing the exponential, exp@-th), decrease of
the d-function’/1%.It is equal to qg(qg), when an atem at

a site i is of an A(B)} type. Ry ig the relative position
vector of two ions ati and |

R11=Rj—-R1 H R_ﬂ:lR_ﬂ ‘. . . (5)

This simple form of the interaction Hamiltonian reduces to that

given by BLF in the case of perfect crystal. However, it is

not the only possible and unique extension of the BLF model,
The last part of the Hamiltonian represents the ion Hamil-

tonian and in the harmonic approximation, we use here, is given

by

Pf 1 BaBa,a
M, 55 ,,23 WP Yy ()
M; denotes the mass of an ion at the i -th position, and it
takes on two values M,, M .The dynamical matrix QE’" is,
in general, a random quantity taking on various values as
a function of the occupation and distance between the sites .i
and j.

"For our main interest is the description of the electron-—
phonon interaction, we use here the Hartree-Fock approximation
for the Hubbard term

H1= ?

=2U _n, Uwan <n,_,>- (N

Having this in mind we rewrite the Hamiltonian (1)

H=H, +H +H, (8
where

H-3¢¢ata +5t . a"a_, (9)
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and H_, and H, are given by (3) and (6), respectively.

3. ELECTRON GREEN FUNCTIONS

We use the two-time thermodynamic Green function (GF) /2,
In the site representation it is defined for electron opera-
tors by



>. (1)
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The calculatlons of (11) will be done with the help of the

equation-of-motion technique as developed and used in pa-
pers /18,19.22.24/

Proceeding in the standard way ’?1/we obtain the following
equation for the Fourier transform of (11)

T @) 6 (@) = 8y + 2T, a<<ufa slal, e, o (12)

where various symbols denote
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To obtain the formula for the GF <<umam|a >> we differen~
t:Late it with respect to second-time varlable t’, We get

(14)

G & oo+ _ B : B .+
ﬁhmj «<ug am} am»c,J mEBT j<<uIn aml b %me e
Deflnlng now the zeroth—order GF, G, (w) by . _
Zh. (m)G&.’(co) =8.. ‘ o (15)

we can easily solve the equations (12) and (14) for G : (w).
To do this, we multiply both sides of equationm {12) by G
from the left and sum up over i, and similarly, multiply (14)
by ng from the right and sum up over j, We have

c" ) =G% (@) + EgCoa(w)K (@G ( ) . (16)
i'j
The scatterlng operator K 1is equal to
B+ B
if (w) = rfn EBT <«<u? anq1umg a . »w'TmE . (17)

Equation (16) can be written in the form of the Dyson equation

o Oc 0 o o
Gj'j (m)=Gj’j (o) + ifé Gj’i (w)Mig(m)GQ. (e} . (18)
if one introduces the mass-operator 1g () related to the

scattering operator (17) by the formula/22-24/

K@ =M%+ 3 M (0 %K% (o). (19)
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It follows From the last equation that M is a "proper part”
(pp) of the scattering operator (17). The proper part of an
irreducible GF-(in our case irreducible GF coincides with GF)
does not contain inner parts connected by one Ge-line, In the
matrix notation we expressed this fact as

Mw) = IR} PP . o : (20)

The solution of the Dyson equation (18) can be written in the
matrix form as

G-f@) oMt . 1)

Hence, the determination of G has been reduced to the deter—
mination of G® and M.

Equations (20) and (17) give an exact representation of the
mass operator in terms of higher-order GF for a given configu-
ration of atoms in alloy. To find explicit expressions for
“W(o) for different model parameters, suitable approximations
to evaluate the higher-order GF in (17) should be used.

In order to calculate the mass operator (20) self-consis-
tently, we have to express it approximatively by the lower or-
der GF. The mass operator describes the inelastic scattering
processes of the electrons with phonons. Starting from this
physical picture reasonable approximations for M can be found.

The GF standing in the r.h.s. of equation (17) can be writ-
ten as

ﬂwi+1) X

o + 1
<<y, ang|ufﬂ‘am>>m = -2—;_{“ ~— (e
o0 , (22)
x { de™® t<uf€ ®al, ®uya > -
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Here ﬂ=(kﬁrf1with kg the Boltzmann- constant and T the absolute
temperature. We decouple the correlation function in (22} in
the following way '

B B

t a @ : t
<umg(t)am0(t) ug > <upp ®uy ><a_ (t)a  >. _ (23)

The approximate expression (23) results from neglecting of the
vertex corrections. The used approximation of two interacting
modes can be represented graphically /%
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where a straight line describes the propagation of the elec-
ron and the wavy line represents the phonon propagation. _

. Expressing the correlation functions in the r.h.s. of (23)
"through the GF"s by means of the spectral theorem we obtain
from (23), (22) and (19) ' i

1+ N(mz)-n(wl)

M;E (@) = _{{ do do, %

W=~
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a 1. o 1 a Bl 1m By (26)
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with PR
N -lep@) - 11770 o) =lem(a) <2370 .+ (25)

The equations (19) and (24) form a closed self-consistent sys-
tem of equatidns for the electron GF. The total electron GF
Gf, depénds on the mass-operator M’ which in turn ‘depends

on the G. The phonon GF, entering inte (24), also depends on
the electron GF. Now we are going to find the solution for the
phonon GF. - o ' :

4. PHONON GREEN FUNCTIONS

The general scheme of calculations is the same as in sec-
tion 3. Differentiating the phonon GF -

: Dﬁa(t- t')=<<u'18(t)uja(t)»:-1B(t—t')<(uiﬁ(t)_ua(t‘)]_ >, (26)

twice with respect to the first—time variable t we get.-for the
Fourier transform

- 1 e
© MiDﬁa(m)=8“6aIB+?.£'[¢ﬁq+¢n-i‘8]Dnj @) -

(27)
+
| ~nEa [Tﬁ<<a;aaio |uj">>w "T1§<<aio analu-‘jz>>w 1.

The calculation of the GF <<a;oaw ]uT»in the r.h.s. of (27) can
be performed in the same way as in section 3. We get

.o (28)
DI* =D 13 5 pEpHpMa
b ] g . i o’ b iy 174
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where the zeroth-oxder phonon GF is given by

1eahia’ a@Ryn0ea o
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and
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(30)
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Employing the same procedure (except of notation) as given by
equations (17-20) we rewrite (28) in the form of the Dyson
equation

va o ova oy p” I
ng () _DEJ {w) + 5" E#'Dzi (m)n”, (m)Dj,Jl(w). (30

The proper part of the operator P has been denoted by I1. In
order to have a self-consistent expression for the "shonon"'
mass—~operator Il we use the same approximation as (23)

<a’t (® 8, () al a > =<at Ma,><a,,0) al >. (32)

Proceeding in the same way as previously, we arrive at the
following expression for I :

e’ oo nfw g )-nlw 4)
N @ =L ffw, dw, ik Tamadt L

n —® W+ gy
a o a o _ 3
x 3 T mG (@) 100G G- (w0 ;) - WG (g YImG e (0 y) (33)
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Equations (19}, (24) and (31), (33) form a closed set of the
self-consistent equations for electron (19) and phonen (31)
GFs in substitutionally disordered alloys in the presence
of electron~phonon interaction (3}.

5. THE CONFIGURATIONAL AVERAGING

As we mentioned it previously, all the calculations just
presented have been done for a given (although for the sake of
simplicity not explicitly specified)configuration of atoms in
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the alloy. All the quantities in our theory ( g s D, M, I
as well as (G° and D° } depend on the whole configuration of
the alloy. To obtain a theory of a real macroscopic sample,
we have to average over various configurations of atoms in
the sample /25-27/The configurational averaging cannot be exact-.
ly made for a macroscopic sample. Hence we must resort to an
additional approximation.

First, let us write the equations (19) and {31} (to be
averaged} in a short matrix notation (the meaning of symbols
is obvious) '

C=G°+ G°MG, | . (34)

D =D°+ DOMD. | (35)
M and II are in turn the functionals of G and D

M=M[GDl; 0O=0[GC] ) (36)

If the process of taking configurational averaging is denoted
by <...>, then we have

<G> = <0% + <G°MC> ’ 37

with a similar equation for <D>.

Few words are now appropriate for the description of the
general possibilities. The calculations of <G®>and <D°>can be
performed with the help of an arbitrary available scheme. The
best would be the self-consistent cluster theory wvalid for
the off-diagonal disorder 727.In this work, for the sake of
simplicity, we choose another possibility and, at the cost of
additional approximations in the model Hamiltonian,  apply the
single-site Coherent Potential Approximation (CPA) as deve-
loped by Soven /28/for calculation of the electron GF <G°> /2%,
and by Taylor 80/ for the phonon GF <D°».The necessary approxi-
mation is the periodicity (i.e., no?iﬁndomness) of the transfer
integrals tiy and dynamical matrix @ ij - Thus the only random pa-
rameters in our model are nmow: the energy levels ¢, ,Coulomb
correlations U;, the ion masses M,, and the Slater coeffici—
ents qli.

The 8PA method as applied to the calculation of the elect—
ron and phonon GF is described by Elliott et al./2%/ Here we
write the relevant final formulae only. The matrix element of
the <G° in the site representation is expressed as

o IK(E - )
b3 -y (38)
had
k

w- 2w~ <o

oy _ OO L
<G>_Gﬁ(m%-N



where
2 i—)—)
-~ikR g
EEt mn2=1 tnloﬁ v (39)

2z is the number of nearest neighbours of the site 0, and the
coherent potential (or self-energy) % “{w) 1is the solution
of the CPA self-consistency equationms. For the A;B, ; alloy
these read

3 %) =2 +0-D e G- TNF@, Dy -2, (40a)
F%,3) =6 . (40b)

On the other hand, the matrix elements of <b%> for the

A.B 4, alloy with B-type iomns being the defects are given
| SE(R - R y)
- ebB ea }
<D % - p %y - L %y g — (41)
i NMA v!? w 2[1 - !(cu)] - @ 20!1/)

where w(Ev)is the w-branch of the phonon spectrum of the pure
A-crystal, eagv is the a-th component of the relevant pola-
rization vector and #{w) is a solution of equations 730/

o) =1 -%¢ +el e~ w®*D%w), (42a)
D% =D ¥%w), L 4zb)
M,-Mp
= ——, 43
e N (43)

Now, let us return to the calculation of the configurationally
averaged total GF”s <Gand <D>.To perform the remaining ave-
rages in (37), we use the approximation

<GIMG> »<CB<M> <G> .- (44)

The calculation of <M> and <II> requires further averaging of
the pruduct of matrices. We again use the prescription (44)
there. However, the quantities like <q:)q e entering into <M>
and <II> through <T1€ij > are averaged here according to

L Q=x@hH? +a-n@p? A=) .
<qQ. Q> = 5
0" 0 Q=% ‘?(q%) Ry 2x(1—x)q%q%+(1_x)2(qg’ 2 f id].



Equation (45) is written in a closed form as
<qh%>=q2+@l-aﬁsu. S (46)
The averaged quantities (in the following to be denoted by

a bar, i,e., <G>=G ) are periodic, s0 we can introduce the
Fourier transform of them, i.e.,

™

e
~. . ik(R;~R ;)
M]g(a))e“ R

KR j~E )
by = ®i=Ry) (47a)

a

ij

K
" (47b)

Zh= z
wM LM

s s oot = 0o _ . .
‘and similar formulae for (3%- and G;;" .The "phonon functlonst,
however, are additionally expanded over polarization vectors e

- S
ik(R4 —Rj)

T M B :

M -5 Zeper Toe , (48a)
V .

~pp” 1 poop'z o KRRy :

Dij (@)= 4w > °n ot Py e : (48b)

Performing the configurqtional averaging of (18), (20), (31),
(33) and Fourier transforming the resulting expressions ac-—

cording to the above rules, we obtain

: v ® _
Col=lo - 2% -Mp) - e )7, | (49)
Dy -G li-cwl~w?®@-T,) , - (5

where
— Q -+ T Y
Ml = - —2 3 (€5 ¥ lenme, DA%, K-0; @) +
K Ny, gy av ko k-g ‘ .

: : : (51)
Q,-Q - ' I Ty
2 1 2 2,0 A
+ Z (s )HMep—ecp 2460 e o HA7 (w,k-p-q;qv)
4MAN2]3..QTV qv k k-q " k-p k-p-q . o
with
i M = — g 3 IT.D-.( )].
b lokg g [ == ot (G ol nD, (o,
(52)
and
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i3 - - €)% % lepg-ep)? B (w, K-P:D) +
ER _ A :
Qz-gl(g 12 Y (s et € )2Boh)€ P-4 ésa)
5 = -5 - 3 ¥ E> 3 +E—p—-1q,
oM NZ kv pia &P p  k-p-a’ a .
with

o0

3 o+
Ba(ms k"p vp) = IT 2
—o 0T Cd—(d1+€l.)2

deoy G -~ =g i |
(Gwg nlwg)-nlw 1) Imcé_ﬁ,(ml)fmﬁg(mz)._ (54)

For metals from the same row in the periodic table the g, va-
lues are equal to q&:q&: q /107 In this case we have
Q1=Q2=q2 and equations (5?),,(53) have greatly simplified
forms Witg single sums only. . -

6. THE APPROXIMATIVE CALCULATIONS OF THE MSS“OPERATORz :

In this section we present an approximative solution to the
system of equations (49)-(54). They form a closed self-consis-
tent system of equations. In principle, we can substitute in
the r.h.s. of (52) and (54) any relevant initial Green func-
tions. Here we choose integrable spectral densities of the vir-
tual crystal approximation (VCA). VCA is in fact'the first’
term in the self-consistent CPA scheme. The initial GF's in
. the VCA,atre given by equations (38) and (41) with

2"((9)423“::;{+(1-x)<;’;<sf >, (55)
¢ (o) _’;VCA =(l~-X)e =<e>. oy X (_56)
- Thus, the spectral densities are given by

L ine e cin 5=, R : (57)
k k
- 80 — o krD =80 + & (ki)

—lImDY.CA(mﬂ-ie): w ok = _,m w( i’ (58)

@ kv 2(1 - <2 ewlky)
where
— - ~Yi
wkr)=wlky) 1= <t >) : e;f, x<ef> + EE. “ (59)
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Using (57) and (58) we easily perform integrals in (52) and
(54). Thus we have

- n~ — PO+
Mgy Mo INGE- ) NG@ e o)
’ ' 2<Ml>a‘f(q"v) w—;f_e-a(ﬁ'v) w-%‘f_awa?(ﬁ’v) )
(60)
<M> =M, (1 -DM
and
R n(:g}“ﬂ(fﬂ;‘a )
B (0, k-p,p) = —= k-p | _ (61)

~ g ~0
A W= St e

Equations (51) and (53) together with (60) and (61) constitute
the final set of approximative expressions for mass-operators
M and [I. The renormalized by the electron-phonon interaction
electron and/or phonon spectra of the alloy are determined by
(49) and/or (50). Having obtained € and D we can, in principle,
calculate by iteration the next approximation. This problem,
is, however, outside the scope of the present paper.

7. THE ELECTRONIC SPECIFIC HEAT

As a simple application of the developed theory we consider
the low temperature electronic specific heat, c,. Usually it is
expressed as/S1/

¢, =»T, . (62)

where y is the so-called low temperature specific heat coeffi-
cient. The measurement of y is one of the most important expe-
rimental techniques of loocking at the electronic states of
alloys. The specific heat ¢, is defined’3l/ a5 temperature
derivative of the electronic energy I of the system

-1l _9E 63
cv"N aT ( )

N 1is the number of particles and the energy E is given by

E=<H +H >=3 ¢%ata
[:] [ 1 o

i io’i

St It <a+a,0> -
io ijo

ij ioj
(64)

- Tf<@u®-u®a‘*a .
{joa 1} i i i jo
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By the spectral theorem’?! we express the correlation func-
tions entering into (64) through the GF’s. Using then (12)
and (14) we finally obtain :

E- [don(e I (-2 IrCy (wriel. (65)
. o0 e I

As is usually in alloys we take the configurational average
of ¢, and thus of E. So

E- [dwwD@nlw), (66)
where
Diw) =~ -2 1 : (67)

N 2o w-E%)-Mhep
'is the renormalized alloy_ﬁgnsity of states. Note, it is tempe-
rature dependent through M Hw). Performing the integral {66)
by the well-known low temperature expansion/3V (cf. recent
calculations of the specific heat of the disordered-system
with correlation performed in 7%2] we obtain for ¥

an(e )
_ L2y 1 ze !
y = 3rrkBD(er)+ GW%BT e
or in other form
dinD(e )
1 2.2 r
y=—=mk D(e )1+ = -—). 68)
3° "B 2 31T ¢

The second term in brackets comes from the electron-phonon
interaction. This many-body interaction manifests itself in
the term D{e ) as well. Equation (68) is a starting point for
the study of the concentration dependence of y. It can also
be used to explain the nonlinear behaviour of the ¢, vsT

observed in some systems.

8. CONCLUSIONS

We have presented a microscopic theory of the electron—-pho-
non interaction in stromgly disordered transition metal al-
loys. The derived Hamiltonian contains explicitly the charac—
teristic atomic parameters of both constituents. Working in
the site representation we obtained the coupled set of exact
equations for electron and phonon GF's by the equation—of-mo-
tion technique. The differentiation of the GF with respect to
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the first and second time variable enables us to derive the
exact Dyson equations for the electrons and phonons. Neglect—
ing the vertex corrections in the mass-operators the closed
self-consistent system of equations is obtained. We perform
the configurational averaging so that the zeroth-order GF Q0
has a simple single-site CPA form, The virtual crystal appro-
ximation has been taken as initial GF”'s giving the explicit
analytical form of the mass-operator. However, better initial
approximations can be used. The calculated low temperature
coefficient of the specific heat y allows the comparison of
the theory with experiment. To do this, however, it is neces-
sary to perform the numerical calculations of the density of
states. The results of such calculations will be presented
elsewhere. ’

The developed theory can be applied, after some modifica-
tions, to the study of transition metal compounds. One can
improve it using the more realistic Hamiltonian, going bevond
the single-site CPA or choosing the better initial approxima-
tions to the Green functions.

APPENDIX

We present here the short derivation of the alloy counter-
part of the BLF Hamiltonian, As is usual in the tight-binding
approximation, we defime the localized atomic wave functions
(for simplicity we take the nondegenerate d-band), In the bi-
nary A B, = disordered alloy we can define two sets of atomic
functions: for the A-type ion potential and for the B one.

So :

(209 B e (R ) - % ¢-&
ot Va C-Rlg, 0K ) =cfg -8 ). (A1)

In (A1} e-A(B) if the gite j is ogecupied by an A(B) -type ion.
We assume the d -functions ¢G(F-Ri) to form a complete and =
orthonormal set :

* - nd - d 3 .
fe, (rmRi)¢ﬁ(r~Rj)dr~8U . (A2)
Note, if j.j, then certainly q=p8,because a given site can be
occupigd by one atom only. Thus, we can introduce the opera~
tors a; and 8, creating and annihilating the electron in a

state ¢ (f- ;)The alloy one-electron Hamiltonian

2
Y Y
H—E-HH--P-%V}’(Y“Re ) (AB)



can, therefore,: be written in terms of these operators as

H=3% taﬁa+ a , o . (Aa)
ii ij i¢ o o |
where
ij - 2] - i 2m : ﬂ y E .B j . - ( )

Writing ~the poténtial term of the Hamiltonian in {A5) in the
form ' :

? vV, @-Rp) =V, - R )+ Vg(r-R ) +£,4213‘ v‘y‘(r.f Ry )

we can doubly use equation (Al) with functioms 7¢a(}’—§’i) and
«;6ﬁ(?~Rj).For a# B we have thus two possibilities : ;

tf® = o2 GoR OV, G-R p(T=K)) (46)
and o .
:tg?)_n - ferE- ﬁfi)vn(;* ﬁ’j )%(E’.—R“’j ), B (AN

where ﬁA(B)G‘“R_; y)can be viewed as a ngcreened" potential dt-
tached to the site i(j) occupied by an ion of the type A(B).
In the present paper. we take by definition
tﬁ":lze(t;‘j“‘l ). . (A8)
s AB . y TAB
However, other definitions of t are possible (e.g., tij =

i

= xt?(B)+(1~x)t§A)B ). Thus, in the tight-binding approximation
one can conséruct the various models of the electron hopping
in disordered transition metal alloys.. . Lo

In the deformed lattice, for small displacements uyi the
relation (A2) is still valid as it follows from the "rigid
jon" approximation. So, the hopping integral jin QAG-.)_;, (A7)
does not depend on Ri—Rj , but rather on (Rj—Ri +u1——u1)

-~ -+ o - -+ - 3 !
tfj(BL fer@ ¥, Dy @+F-Rysumupdr= (A9)

- AP®R, - R, sU-uy )

ALOY
A)B AYB.S g 3 -+ {
t(ij) =t§j) (RJ—R1+uj —lli)-. .
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Expanding (A9) and (A10) in power series of @EJ-EJ) and noting
that for cubic lattices:/10/
A)B =+

2 €
ati R I
e S Y Al (a11)
IR 54 R

we obtain from (A8)

Rji
. Ry
th(O)means the hopping integral of the undeformed lattice.
In this paper we assume

t ;‘j Bgy - t(ﬁ)ﬁ ©.

t ﬂ;jﬁ =t ;?8 - %{qg tr(;;)ﬁ B, alB)

© + thij {(OF (l-l.J "'“-’1)! | (A12)

So {Al2) becomes

i, qi "y
def 9*%, Ry . o
t b > =y u, ~u, ). (A13)
In the last formula we use the single indices i,j to denote
the site and type of an atom at that site. Thus, the electron-
phonon interaction Hamiltonian suitable for disordered alloys
has the form

i, i = . .
Q.+ 1 Ry o :
Z g 0 i - +
H TS oy LT TRL VL P _ (A14)
‘The Hamiltonian (Al4) reduces to the BLF model in the case of

a pure crystal,
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