
OtibBAMHBHHbiM 
MHCTMTYT 
RABPHbiX 

MCCnBAOBaHMM 

AYfiHa 

-+ 

orY)...~ 
P? 

X~ I f')'l /.'11'- d'l 
El7-81-614 "..-(, 

K.I. W ysoki:r\ski •, A.L.Kuzemsk y 

ELECTRON-PHONON INTERACTION 
IN DISORDERED TRANSITION METAL 

ALLOYS 

Submitted to "Journal of Physics'' 

*Permanent address: Institute of Physics, 
M.Curie-Sklodowska University, Lublin 20-031, 
Poland. 

1981 



I. INTRODUCTION 

In recent years there has been recognized that ·the micro­

scopic description of certain unusual features/1,2/ of the dis­

ordered transition metal alloys requires the proper treatment 

of the electron-phonon interaction. 
The electron-phonon interaction in disordered binary al­

loys has been studied by many authors. Chen et al. 131 introdu­

ced the model in which phonons were treated phenomenological­

ly while electrons were described in CPA. The electron-phonon 

interaction was described by the local operator. The model 

was later generalized by Kolley'/ 4/ and Wysokinski/5/ for the 

off-diagonal disorder. Allen/6/ attempted to develop the comp­

lete theory of the interacting electron-phonon system. He con­

sidered solids with weak static (impurities) and dynamic (pho­

nons) disorder. The limitation of the theory is.the weakness 

of disorder. The application of· Allerls theory to the disor­

dered transition metal alloys is not clear. Girvin and Jon­
son/7/ used the same Hamiltonian as in 131 but developed a more 

complete many-body theory of the electron-phonon interaction 

in strongly disordered metal alloys. Sacchetti/8/introduced 

a very simple model for treating the electron-phonon interac­

tion in the low-temperature region in random binary alloys. 

This author uses the results of the Migdal theory191of the 

electron-phonon interaction in simple metal for disordered 

alloys. However, the explicit form of the Hamiltonian as well 

as the derivation of the used formulae are not given in this 

paper. 
The purpose of our paper is to develop the complete micro­

scopic self-consistent theory of the electron-phonon interac­

tion in substitutionally disordered transition metal alloys. 

For the description of the electron-phonon interaction we ge­

neralize the Barisic et al/101 model to the case of alloys. 

Barisic et al/ 101 (to be referred to as BLF) introduced a mo­

del of the electron-phonon interaction in the transition me­

tals and their compounds. This model is a direct generaliza­

tion of the well-known Hubbard model in the case of deformed 

lattice and is formulated in the language of the tight-binding 

(TB) approximation. Additionally the 11rigid ion" approxima­

tion is used for the derivation of the BLF Hamiltonian. 
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"The BLF model was successfully appl,ied to the calculation 
of the ~upercond~cting transition temperature t , the McMil­
lan parameter, cohesive energy and paramagl)eticcsusceptibility 
of the transition metal/11·14/. The BLF' s tight-binding approach 
to the problem was later clarified in papers /15-17/. Holas et 
al./18/ and Plakida et al/191 used the BLF model to calculate 
the renormcilized electron and phonon spectia in crys.tal in the 
band and the atomic limits, respectively-. The present paper 
generalizes their resul~s to alloys. 

2 • THE. MODEL 

The total ·Hamiltonian of the electron-ion system in the 
substitutionally diSordered alloy is written, for a given con­
figuration of atoms, in.the followi:ng form 

H = H~ +Hee +He-t +H 1 , 

where 
Ho 
• =·.I !i ata a ta + !."' tij ata-a ja 

iU iju . 

(I) 

is one-particle Hamilt"o'nian of an electron in an alloy. The 
parameters E 1 and t 1j aT-e random quantities taking on the 
values E , E B . and -t ~A, t ~.B , t ~jB depending on the type of 
atoms oc~upying sites 1 an~ i,j. The prime in the second sum 
i~dicateS that summation over j is limited to the nearest­
neighbours Of an atom locate.d in site i. The electron-electron 
scattering is appro·ximated here by the ijubbatd 12°1 intrasite 
term with ~amdom parameters 

+ 
niu= 8 ta a tu (2) 

. The third term in (I) ·repreSents the electron-ion interaction 
in allOys. This par.t of the Hamiltonian is derived in the Ap­
pendix and it is a direct ~eneralization of the BLF model 

H _1= I IT~J(u~ -uj )a1>Ju, 
. e .iju a 

where 

T. a= 
ij 

RJ! 
R Ji • 

(3) 

(4) 

In (3) and (4) u~ is the. a -th component (a =X, y, z) of the dis-
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placement of an ion placed in an i -th site~ rio is the Slater 

coefficient describing the exponential. exp(-q~r), decrease of 

the d-functionltOI .. It is equal.. to q~(q:)J when an atom at 

a site i is of an A(B) type. R ji is the relative position 

vector of two ions at i and j 

~ ~ ~ 

R Ji ~ R l - R 1 ; (5) 

This simple form of the interaction Hamiltonian reduces to that 

given by BLF in the case of perfect crystal. However, it is 

not the only possible and unique extension of the BLF model. 

The last part of the Hamiltonian represents the ion Hamil­

tonian and in the harmonic approximation, we use here, is given 

by 

H ~ l: 
1 1 

p~ 1" " f3~f3a a 
--+-.<..., ut"'tl ul. 
2M1 2 !j af3 

(6) 

M1 denotes the mass of an ion at the i -th ·positionhn and it 

takes on two values MA' Ml! .The dynamical matrix ~[j- is, 

in general, a random quant1ty taking on various values as 

a function of the occupation and distance between the sites i 

and j. 
For our main interest is the description of the electron­

phonon interaction, we use here the Hartree-Fock approximation 

for the Hubbard term 

HHF ~ l: U 
ee ia 0 ia; 

tu 
utu ""ut <n t-u>. (7) 

Having this in mind we rewrite the Hamiltonian (I) 

H, He +H e-t +H 1 , (8) 

where 

(9) 
He:: 1: E~ a;a ata + 1;; ttj a~ a Ju 

" E t = E 1 + U i < n 1 -u > ' ( 10) 

and H~1 and H1 are given by (3) and (6), respectively. 

3 . .ELECTRON GREEN FUNCTIONS 

We use the two-time thermodynamic Green function (GF) 121( 

In the site representation it is defined for electron opera­
tors by 
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au. (t-t')= «a.· (t)a.+ (t1»=-i6(t-t')<[ai (t) a+] >. (II) lJ 1 o: J u . a •· J a + 
The calculations of (II) will be done with the help of the 
equation-of~otion technique as developed and used in pa­
pers /18,19.22·241. 

Proceeding in the standard way1211we obtain the following 
equation for the Fourier transform of (ll) 

~ u a a a + -.nhin(w)Gnj.(w)=l>tj + ITtn<<utnanalaju>>.w 
na 

where variou~ symbols denote 

(12) 

(13) 

To obtain the· formula for the GF <<u~anal at;.>> we differen­
tiB..te it ·with ,resp.ect to se~ond-time variable t'". We get 

·~hu.«u"a Ia+>> ~Tfl« aa I fla+ » (14) m IDJ, m na mu cu = mf3 mj uin na u mj rna w • 

Defining now the zeroth-order GF, a :7 (w) by 

~ h1: (w)a~(w) = 8 ij (15) 

we can easily solve the equations (12) and (14) for a:i (wd.,: 
To do this, we multiply both sides of equation ( 12) by a i 'i 
from the left and sum up over i. and similarly, multiply ( 14) 
by G~ from the right and sum up over j. We have 

au (w)=aOu (w)+ ~ G~(w)Kuf{w)a';"(w) (.16) j'j j'j if j i i 'i 
The scattering operator K is equal to 

a a a {3 + Kif (w) = l: ~ T i « u . a I u f a » nmaf3n mnqmmaw 
Tfl 

mf ( 17) 

Equation (16) can be written in the form of the Dyson equation 
(1 00" Oa (F (1 a .• 1 (w)~G 1 •. (w)+ l: G .• , (w)M 1e(w)ae. ("') (18) J J if J J 

if one introduces the mass-operator Mft(~) related to the 
scattering operator ( 17) by the formula 122·24/ 

(J u ( 
Kif (w) = M if w) + 

o Do o 
~ Mi. (w)a ... (w)K.-"(w). 
jj. J JJ J ' 

(19) 
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It follows from the last equation that M is a "proper part" 

(pp) of the scattering operator ( 17). The proper part of an 

irreducible GF .. (in our case irreducible GF coincide_s with GF) 

does not contain inner parts connected by one 0°-line. In the 

matrix notation we expressed this fact as 

M(w) = I K I PP • (20) 

The solution of the Dyson equation (18) can be written in the 

matrix fo-rm as 

(21) 

Hence, the 4etermination of G has been reduced to the deter­

mination of 0° and M .. 
Equations (20) and (17) give an exact representation of the 

mass operator in te-rms of higher-orde'r"GF -for a given configu­

ration of atoms in alloy. To find .explicit expressions for 

M(~) for different model parameters, suitable approximations 

to evaluate the higher-order GF in (17) should be used. 

In order to calculate the mass operator (20) self-consis­

tently, we have to express it approximatively by the loWer or­

der GF. The mass operator desc-ribes the inelastic scattering 

processes of the electrons with phonons. Starting from this 

physical picture reasonable approximations for M can -be found. 

The GF standing in the r.h.s. of equation (17) can be writ­

ten as 

<<u~ I f3 + » - _!_ f~ do>' (e{Jw'+ 1) x 
1n 3 nu 0 n .a mu ~ -

mr. , 2"- ru-w' · 

~ 

x J dte-1"'''<u~f (t}a-:;.,(t)u:;, ana>. 

(22) 

-
-1 0 

Here fl=(k 8T) w>th ka the Boltzmann· constant and T the absolute 

temperature. We decouple the correlation function in (22) in 

the following way 

fl 1 a fl a 1 

<umr(t) ama(t) u ln ana> = <umf (t) u 10 ><ama(t} ana> • (23) 

The approximate expression (23) results from neglecting of the 

vertex corrections. The used approximation of two interacting 

modes can be represented graphically 191 

r:::.z~ 
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where a st'raight line d~scribes the p:topagation of the .elec­ron and the·· wavy line represents the phonOn pl'bpagation. 
Expressing the cOrrelation functiOns in the r.h.s. of (23) through the GF""s by mecins of the spetiral theorem we o-btain from (23), (22) and (19) 

~ 1 + N(w 2)-n(wJ 
M

1'f (w) = [f dw 1dw
2 x 

...,OQ ru-ru
1
-ru

2 

X~ ~ IT" r-..!.ImO" (w +1•)][-..!.Im«u~ Ju1» ]T~! (24
) nm afJ in rr nm 1 rr tn m ,,··. co 2+te m . 

with 

n(w)=[exp({l<u) +11-1 
(25) 

The equations '( 19) and (24) form a closed self·-consistent sys­tein of equati"d'n.s 'for the electron ·cF. The tOtal el~ectiOn GF a;r,j depends. o.ri the mass-oper.ator· •. ~f which in turn·'rl:e . .'Pelld. s on the G. The phonon GF, entering into (24), also depe'nds on the electrOn GF. Now we eire g·oing· to fihd the soluti'on fo'r the phonon GF. 

4. PHONON GREEN FUNCTIONS 

The general scheme of calculations is the same as in sec­tion 3. Differentiating the pho~on GF 

o~· (t- t'l = « u ~ (t) u; Ctl» = -JO(t-t'l <[ u fct),u ;cnl_ > ,. (26) 

twice with respect to the first-time variable t we get. for the Fourier transform 

The calcula.tion of the GF «a :,fit., Ju ~»in the r. h. s. of be performed in the same way as in section 3. We get 
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(29) 

and 

~~·, ~ [ a r a r a r a ]T ~ 
p ij \(1)) = n!a Tin rinjm- inmj - nijm + nimj mj ' 

(30) 

Employing the same procedure (except of notation) as given by 

equations (17-20) we rewrite (28) in the form of the Dyson 

equation 

D~0 (0J) ~DF;'a(OJ)+ 
1
7, ;,.o~~(OJ)Ilr(<OJlDj;7(0J). (31) 

The proper part of the operator P has been denoted by II. In 

order to have a self-consistent expression for the "phonon" 

mass-operator n we use the same approximation as (23) 

(32) 

Proceeding in the same way as previously, we arrive at the 

following expression for ll 

II ~~·() 1 f~f n(OJ 2)-n(ru 1) 
lj' OJ ~ - dOJl dOJ 2 X 

rr2.....oc w+cu 2
-cu 1 

x n~ T1~ IImG ~m (OJ 2 )1mG~, (w 1)- ImG0:, (OJ 1 )ImG 1~- (OJ 2 )­

-lmG1f,(OJ 1 )ImG~m("' 2)+ lmG 1~ (co 1 )lmG~ ,(OJ 2)lT :; • • 

(33) 

Equations (19), (24) and (31), (33) form a closed set of the 

self-consistent equations for electron (19) and phonon (31) 

GF~s in substitutionally disordered alloys in the presence 

of electron-phonon interaction (3). 

5. THE CONFIGURATIONAL AVERAGING 

As we mentioned it previously~ all the calculations just 

presented have been done for a given (although for the sake of 

simplicity not explicitly specified)configuration of atoms in 
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the alloy. All the quantities in our theory ( G , D , M , ll 
as well as 0° and 0° ) depend on the whole configuration of 
the alloy. To obtain a theory of a real macroscopic sample, 
we have to average over various configurations of atoms in 
the sample /25·271.The configurational averaging cannot be exact-. ly made for a macroscopic sample. Hence we must resort to an 
additional approximation. 

First, let us write the equations (19) and (31) (to be 
averaged) in a short matrix notation (the meaning of symbols is obvious) 

(34) 

(35) 

M and ll are in turn the functionals of C and D 

M ~ M[G, D]; n~n(aJ. (36) 

If the process of taking configurational averaging is denoted 
by< ... >, then we have 

(37) 

witli. a similar equation for <D>. 
F.ew words are now appropriate for the description of the 

general possibilities. The calculations of<G0 >and<D0 >can be 
performed with the help of an arbitrary available scheme. The 
best would be the self-consistent cluster theory valid for 
the off-diagonal disorder127~In this work, for the sake of 
simplicity, we choose another possibility and, at the cost of 
additional approximations in the model Hamiltonian,' apply the 
single-site Coherent Potential Approximation (CPA) as deve­
loped by Soven /28/for calculation of the electron GF <0°> 1291

, 
and by Taylor ISDJ for the phonon GF <D0 >.The necessary approxi­
mation is the periodicity (i.e., no~andomness) of the transfer integrals t ij and dynamical matrix <11 ij • Thus the only random pa­rameters in our model are now: the energy levels ci ,Coulomb 
correla~ions Ui• the ion masses M1, and the Slater coeffici­ents q 1 • 

The BPA method as applied to the calculation of the elect­
ron and phonon GF is described by Elliott et al.1281.Here we 
write the relevant final formulae only. The matrix element of 
the <0°> in the site representation is expressed as 

e ut(it i -R
4 

j) 

(38) 
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where 
44 

'r 
z -ikR n 
l: t n oe 

n= 1 ' 
(39) 

z is the number of nearest neighbour-s of the site 0. and the 

coherent potential (or self-energy) ~ q(ru) is the solution 

of the CPA self-consistency equations. For the AxB 1_x alloy 

these read 1291 

(40a) 

(40b) 

On the other hand, the matrix elements of <D 0 > for the 

AxB 1_~ alloy with B-type ions being the defects are given 

by /30/ : 

o -o"- 1 
<D > ~ D .. ~""(w) ~ -- l: 

lJ NMA vk 
(41) 

where ru(kv)is the v-branch of the phonon spectrum of the pure 

A-crystal, eak is the a-th component of the relevant pola­

rization vectorv and i(ru) is a solution of equations ISO! 

;\w) ~(1-XJ."+<(w)[,_;(w)]w2D 0 (w), (42a) 

0 Oaa( D (w) ~ D ii w) , 
(42b) 

MA-MB . ~ (43) 

Now, let us return to the calculation of the configurationally 

averaged total GF"' s <C>and <D>.To perform the remaining ave­

rages in (37), we use the approximation 

(44) 

The calculation of <M> and <II> requires further averaging of 

the pruduct of matrices. We again use the prescription (44) 

there. However, the quantities like <q~jo> entering into <M> 

and <Il>. through <T iE'Imj > are averaged here according to 

< q iq j> ~ 
0 0 

Q 1 ~x(q~) 2 +(1-x)(q~ 2 if i~i 
(45) 

if i,1j. 
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Equation (45) is written in a closed form as 

(46) 

The averag~d quantities (in the following to be denoted by 
a bar, i.e.' <G> = G ) 'are periodic, So we can introduce the 
Fourier tr,B.nsform of them, i.e. , 

(47a) 

(47b) 

-u - Oa and similar formulae for C iJ and C ij • The "~hon~n functions'~, however, are additionally e~panded over polar1zat1.on vectors e!{t 

~ ~ ~ 

11- ~~ '( ) M "' ~ ~' 11- ik(Rt -R j) (48a) IJ <»=- .. •~•~ ~• N kv kv. kv kv 
~ ~ ~ 

-~M' 1 I' M'- . ik(Rt-Rj) 
Dij (w)= MN~"k'v"k'vDkv(w)e · (48b) kv 

Performing the configurational averaging of (18), (20), (31), 
(33) and Fburier transfOrming the resv.lting expressions ac­cording· to the.aboVe Tules, we obtairi . 

-a u -a -l Ck~(w) = (w -I (w)- M ~(w) -, ~) (49) k . k . 

where 

M':(w)=­
k 

(51) Q -Q ~ · 2 a 4 ... 4 4 + 2 1 L (e-. )2(t-.-l-. -++l_. -.-l-. 4 4) A (w,k-p-q;qv) 2 4 4 qv k k-q k-p k-.P-q . 41Y. AN p,q,v 

with 

(52) 

and 
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fi ~ (w) e­
, kv 

2U ~-+-+ 

I (H ~ -• ~) B (w,k-P,P)+ 
-+ . k-p p 
PIT 

(53) 
Q2- Ql -4 2 2 (J -+ -+ -+ ...., 

+ 2 
(e-+ ) l: (fk-+ --·€ -++£-+-+ .-J"'7E-+ -+) B (w,k-p-q,p) 

with 

2MAN kv ....,.,.. -p P k-p-q p+ q , 
pqu 

17 ( ~ ~ ~ ~dw1dw2 n(w 2)-n(w 1) 
B W, k-p ,p) = [( ___:,.---.: 

-oo 1T 2 Q.)-(t) +Ct.l 
1 2 

For metals from the same row in the 

1\J.es are equal to Q~= Q~= q /10/ . 

Q 1eQ 2= q~ and equations (5~), (53) 

forms with single sums only. 

periodic table the q0 va­

In this case we'have 
have greatly simplified 

6 o THE APPROXIMATIVE CALCULATIONS OF THE MASS-OPERATOR . 

In this .section we present an app,roxiinative so~ution to the 

system of equations (49)-(54) 0 They form a closed sen-consis­

tent system of equations. In principle, We c'an· st.ibs't.itute in 

the rohoso of (52) and (54) any relevant initial Green func­

tions. Here we choose integrable spectqll den.sit;ies of the vir­

tual crystal approximation (VCA)'. VCA is· in' f.ict "the first · 

term in the self-consistent .GPA _scheme. The initial GF .. s in 

the VCA, are given by equations (38) and (41.) with 

(55) 

;(w) ~ ;VCA = (1- x) 1 ~ < 1 > o 
(56) 

Thus, the spectral densi tie's are giv:en b·y· 

1 -vc& . -u 
--lmC.-+ · ~cu+U)=5(0J-t'-+) 

77 k k t 

(57) 

1 -VCA( . 8(w-;;;(kvll-8(w+;(kv)) 
- -lmD-+ cu + lE) = -----:-==-:-~_;_-

" kv 2(1-<t>);;;(kv) 
(58) 

where 

(59) 
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Using (57) and (58) we easily perform integrals in (52) and (54). Thus we have 
_ ..., _.a - ..., _a " ~~~ MA l+N(.,(qv))-n(<k'-~) N(w(qv))+n(<k'-(jl A (w,k-q;qv)= 1--------+----- l, 2<M1 >W'(q~v) w-<!-;rw(qv) w-i"f-_q+w<ii.v) 

(60) 

and 

-q -a 
n(r iJ- n(r k-jf) a .... ""* ..,. B (.,, k-p,p) (61) -a -a (1)-f.;_p+f p 

Equations (51) and (53) together with (60) and (61) constitute the final set of approximative expressions for mass-operators M and IT. The renormalized by the electron-phonon interaction electron and/or phonon spectra of the alloy are determined by (49) and/or (50). Having obtainedG and D we can, in principle, calculate by iteration the next approximation. This problem~ is, however, outside the scope of the present paper. 

7. THE ELECTRONIC SPECIFIC HEAT 
As a simple application of the developed theory we consider the low temperature electronic specific heat, cv. Usually it is expressed a~ 1811 · 

Cv = yT. (62) 

where y is the so-called low temperature specific heat coeffi­cient. The measurement of y is one of the most important expe­rimental techniques of looking at the electronic states of alloys. The specific heat' cv is defined 1311 as a temperature derivative of the electronic energy E of the system 

C=l_ 
v N 

aE 
aT (63) 

N is the number of particles and the energy E is given by 

E=<H +H 1 >=!E?'<ara 1 >+!t1J<a~aaJ.u>-e e- ia 1 u a ija 

l2 

-:!: 
ijaa 

T~<(ua-u~)a:a > .. lJ j 1 1<7 jO' 

(64) 



By the spectral theorem 1211 we express the correlation func­

tions entering into (64) through the GF's. Using then (12) 

and (14) we finally obtain 

E ~ .fdw n(w)w l [-.!.. ltr C ~ (w+i< ll. (65) 

-oo ia " 

As is usually in alloys we take the configurational average 

of c v and thus of E. So 

(66) 

where 

D(w)~- - 1-l 1 (67) 

rrN ka cu-Ia(cu)-M;(OJ}-£k 

is the renormalized alloy_qr.nsity of states. Note, it is tempe­

rature dependent through M~w). Performing the integral (66) 

by the well-known low tempe~ature expansion/31/(cf. recent 

calculations of the specific heat of the disordered-system 

with correlation performed in 132 j we obtain for y 

1 aD(• 1l 
y~...!."2k2D(e ) + -"2k2'I---=--

3BI 6Ba'I 

or in other form 

(68) 

The second term in brackets comes from the electron-phonon 

interaction. This many-body interaction manifests itself in 

the term D(o 1) as well. Equation (68) is a starting point for 

the study of the concentration dependence of y. It can also 

be used to explain the nonlinear behaviour of the Cv vs T 

observed in some systems. 

8. CONCLUSIONS 

We have presented a microscopic theory of the electron-pho­

non interaction in strongly disordered transition metal al­

loys. The derived Hamiltonian contains explicitly the charac­

teristic atomic parameters of both constituents. Working in 

the site representation we obtained the coupled set of exact 

equations for electron and phonon GF;s by the equation-of~o­

tion technique. The differentiation of the GF with respect to 
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the first and second time variable enables us to derive the exact Dyson equations for the electrons and phonons. Neglect­ing the vertex corrections in the mass-operators the closed self-consistent system of equations is obtained. We perform __ the configurational averaging so that the zeroth-order GF ao has a simple single-site CPA form. The virtual crystal appro­ximation has been taken as initial GF's giving the explicit analytical form of the mass-operator. However, better initial approximations can be used. The calculated low temperature coefficient of the specific heat y allows the comparison of the theory with experiment. To do this, however, it is neces­sary to perform the numerical calculations of the density of states. The results of such calculations will be presented elsewhere. 
The developed theory can be applied, after some modifica­tions, to the study of transition metal compounds. One can improve it using the more realistic Hamiltonian, going beyond the single-site CPA or choosing the better initial approxima­tions to the Green functions. 

APPENDIX 

We present here the short derivation of the alloy counter­part of the BLF Hamiltonian. As is usual in the tight-binding approximation, we define the localized atomic wave functions (for simplicity we take the nondegenerate d-band). In the bi­nary AxBl-x disordered alloy we can define two sets of atomic functions: for the A-type ion potential and for the B one. So 

In (AI) a=A(B) if the site 
We assume the d -functions 
orthonormal set 

(AI) 

i is oscupied by an A(B) -type ion. 
¢a(t-R 1) to form a complete and 

-+ ~ -+ -+ S (A2) J¢; (r- R 1) ¢ f3(r - R J) d r = 8 lj 

Note, if i=j, then certainly a=f3, because a given site can be occupied by one atom only. Thus, we can introduce the opera­tors a; and a1 creating and annihilating the electron in a state ¢(r-R 1)Xhe alloy one-electron Hamiltonian 
p2 ~ 

H=-+~ Vy(rC..Re (A3) 2m e 
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can, the-refore,, be -written in terms of these operators as 

afJ + 
H=~t a a , 

1ja 1j 1q jq 

(A4) 

where 

(AS) 

Writing the potential term of the Hamiltonian in (AS) in the 

form 
-'> -'> ... ... ... ... ... ... 

~ V (r - R, ) = V (r- R 1 )+ VfJ ( r- R J) + ~ V (r - R f ) 

f y L a u 1j y . 

we cal' doubly use equation (AI) with functions <Pa (r-R'1) and 

<l>{r-RJ ).For a#{J we have thus two possibilities 

A(B} _. _. - _. """ _. -+ 

t 1j = J</>~ (r- R 1)V A (r- R 1 )<1> 8 (r~ Rj) (A6) 

and 
(A7) 

where VA(B)(;-~(.J) )can be viewed as a "screened" P6teniial cl:.t­

tached to the s1te i (j) occupied by ap. ion of the type A(B). 

In the present paper. we take. by definitiOn 

t AB_ 1 (tA(Bl 1(A)B) 
1j - 2 1j + tj • 

(A8) 

However, other definitions of t~B are possible (e.g., t~9 = 

= nf?\(1-x)t\t18 ), Thus, ~n the tight-binding appr?ximati~n 

one can construct the var1ous models of the electron hopp1ng 

in disordered transition metal alloys. . . ~ 

In the deformed latt1ce, for. small d1splacements u i th~ 

relation (A2) is still valid as it follows from the "rigid 

ion" approximation. So, the hopping integral in {A6), (A7) 
-'> ... 

... ... ... -+ 

does not depend on R1 -R J , but rather on (R j- R 1 +.u J -u 1) 

A(B) _, - -+ -+ -+ -+ -+ -+ 3 

t 1j = f </> ~ (r) VA (r) </> 8 (r + R 1 - R J + u 1 - u j ) d r (A9) 

A(B) _, -+ -+ 4 

= t 1J (R 1 - R J + u 1 - u J ) , 

(A) B (A) B ~ ~ ~ ~ 

t 1j =t 1j (Rj-R1+Uj-u1) 

(AIO) 
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Expanding (A9) and (AIO) in power series of (UJ -uJ) and noting that for cubic lattices .11"01 

at (IAj)B R~ 
A jl A(B) ~ ~ -q 0-t 11 (0) (All) RJ·I aR Jl 

we obtain from (AS) 

a{J a{J 1 a {a){J {J a(fl) R ji ~ ~ t 11 ~t 1J (0)--
2

!q0 t 11 (0)+q 0 t 11 (O)i--(u1 -u 1 ), (Al2) 
R Jl t~f(O)means the hopping integral of the undeformed lattice. In this paper we assume 

t ~fll(O) =l t){J (0). 

So (Al2) becomes 
~ 

Rjt ,.... .... 
--(u

1
-u 1 ). 

R Ji 
(Al3) 

In the last formula we use the single indices i~j to denote the site and type of an atom at that site. Thus, the electron­phonon interaction Hamiltonian suitable for disordered alloys has the form 

H ~ l: 
-e-i ija (AI4) 

The Hamiltonian (AI4) reduces to the BLF model in the case of a pure crystal. 
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