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1. INTRODUCTION 

The possibility of investigation of dynamical properties 

of solids by means of neutron inelastic scattering experiments 

is well proved at present, and the neutron spectroscopy as 

an independent direction in the experimental study of conden­

sed matter in general and of crystalline solids in particular 

became traditional and dev.elops intensively together with the 

optical spectroscopy of solids. Considerable results have 

been obtained both in experimental and theoretical investiga­

tions of a great nhmber Of solids in equilibrium state (see, 

for example, refs. l-S/ ) , and the advantage of the neutron 

inelastic scattering spectroscopy has been proved to be indu­

bitable in many cases. 
As far as the neutron spectroscopy of quasiequilibrium 

and nonequilibrium quasiparticles in solids is concerned, 

the situation is not the same here. Although this topic is 

already attracting a lot of attention of the theorists (see, 

as examples, refs./ 2.4-8/ ) , it still remains a new one in 

the experimental aspect. The main difficulty here is connec­

ted with too small concentrations of quasiequilibrium or 

nonequilibrium quasiparticles even created by rather high­

power external sources (such as laser fields, heat pulses, 

etc .... ). This circumstance makes the corresponding scat­

terin? cross sections too small to be measured in experi-

ments 4 ~ Nevertheless, it is of present interest to pose 

the question not only about theoretical but also experimen­

tal investigations in this direction since more and more 

high-flux neutron sources become accessible today 191. It is 

worth to note here that the neutron inelastic scattering spec­

troscopy,being free of the selection rules, can give in many 

cases essentially more rich information about the quasipar­

ticle structure as compared with the traditional optical 

Raman scattering methods. 
In the light of the present discussion, the use of the 

parametric resonance phenomenon in solids seems to be a good 

method for solving the small concentration problem in neutron 

scattering. This is the resonant phenomenon in which some 

certain modes of vibration in the system are amplified by an 
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external driving laser field that satisfies the required resonant frequency conditions and ha7 tfe intensity approach­ing some threshold value (see review 10 and references the­rein). This provides almost a sudden increase in quasipartic­le concentrations when the parametric excitation condition is reached, what will strongly influence the values of the scattering cross sections. This effect has been shown theore­tically for the process of neutron inelastic scattering on l . l h . f 161 . . anorna ous opt1ca p onons 1n re . ustng an appropr1ate formalism describing the anomalous fluctuations in electron­phonon systems placed under the action of a high-intensity laser field. 
In this work, following the same method, we present the calculations of correlation functions for the polaritons (this means an account of the retardation effect in the Coulomb interaction between particles), in the mentioned non­equilibrium situation, which are used then to obtain the analytical formulae for the cross sections of neutron ine­lastic scattering on these parametrically excited polaritons. The formulae thus obtained show the resonant behaviour of the cross sections as the intensity of the driving field tends to the threshold value determined by the parametric excita­tion theory. However, the complicated form of these formulae makes it difficult to have any quantitative representation that is necessary when the question about experimental pos­sibilities is touched. 

In a subsequent paper, using the relations obtained in the general parametric excitation theory 110 •11/, an essential simplification of the theoretical formulae will be made and a quantitative analysis of the process of neutron inelastic scattering by the plasmon and optical phonon modes amplified by a resonant laser field in the crystal of Indium antimonide will be carried out. 
It seems to us that such a complete consideration will show clearly how one can use the laser fields in parametric resonant conditions as described above, together with the choice of sufficiently high-flux neutron sources of suitable energies, to overcome the difficulties caused by small quasi­particle concentrations in some concrete inelastic scattering experiments. 

2. SCATTERING CROSS SECTIONS 
The physical system we have to consider consists of a neu­tron interacting with an electron-phonon subsystem of a crys­talline solid placed under the action of a strong radiation 
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laser field. The Hamiltonian of such a system will be of 

the form: 

H(t): 'N + V(r)+H(t), (I) 

where fN= P2
/2mN is the Hamiltonian of a neutron with momentum 

P. mass mN aild coordinate 't, 

vcrJ <£ br, acr'-ii 1, l c2J 

'·' is the neutron-crystal interaction potential (bp 8 is the 

nuclear scattering amplitude and Rrs the coordinate vector of 

the atoms in the unit cellr );H(t) is the Hamiltonian of 

our crystal interacting with a radiation field that, with the 

retardation interaction taken into account, can be written 

in the form: 

H(t) s H 0(t)+ H iot (t), 
(2. I) 

) 1 "[4 e 4 12 + + 
Ho<t =---"' p-- A 0(t) a a + :S '"kbkbk + 

2m ps c ps ps k 
(2.2) 

+ :S (qc)c+ c 
qv qv Ql! 

Hint(t),. .l. I. ¢ a+ a+~ ~a ,,a I. ¢ ....-a+~ a,·,> a+ a + 
2 ps q P+Qs P -qs p s ps- ps q {) -qs p s P+qs ps 

p's'q p's'q 

" + ( + e "l• e4 ]·~ + 
(2.3) 

+ "'vkap+ksap ~+b )- -- "' p- --A (t) A(q)a a 
!l~k s -k me psq c 0 P+qs ps 

• + + 
Here, ap 5(ap 5 ),bk(bk), cqvCcqv) are the creation (annihi-

lation) operators of an electron of canonical momentum P. 
effective mass JR• electric charge e and spin s, of a phonon 

of wave .... vee tor k and frequency w k, and of a._.photon of wave 

vector q and polarization v, respectively; A(k) is the spatial 

Fourier component of the vector potential of internal self­

consistent electromagnetic field, 

CTikv .is the ph?ton.polarizatio_p vector); ¢q""'4rre 2/q2and c 

the l1ght veloc1ty 1n vacuum; Ao(t) is the vector potential 

of the.str?ng radiation field that in the well-known dipole 

approx1mat1on can be expressed by 
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--. cE
0 A 0(t)a--cosw0 t (3) 

"'O 
(the corresponding electric field is E0(t)'*.E 0sinu..ot). 

In the treatment of the process of neutron scattering by bound nuclei in terms of the space-time correlation functi­ons112·13/ that is the most general one, the differential 
cross sections for coherent and incoherent inelastic scat­tering in the Born approximation are given by the formulae: 

d2 B2 P' ()Q ~~;-i.wt ,.. (--a-) a__$..- f[ d;dt e Gc(r,t), (4. 1) dw dQ cob 2rr p _, 

2 d2a- Bi p" oo ..,. ilt·!-icut ( -d---d-) = -- -- f( dr dt e a1 (r',t), w a incoh 217 p -<Xl 

where 

and 

N N 
l: l: [ e e-

(4.2) 

(4. 3) 

(4.4) 

Re(t)aS- 1 (t)ReS(t) (4.5) 
t 

with S(t) = Texp{-I [ dt'H(t')l in the general case of time-
dependent Hamiltonians ( T is the Dyson chronological opera­tor). In the formulae {4), B c. B i are the scattering amplitu­des for the coherent and incoherent processes, respectively (for simplicity the Bravais lattic~is sup~osed here, see also formulae (6.5), (6.6) below), I' and P' are the momenta of a neutron in the initial and the final states, respecti­
vely,"' .(P'2_p2 )/2mN is the energy transfer (the system of units with ii =1 is used), N is the number of unit cells in the crystal and the symbol < ... > means the statistical ave­raging over states of the solid subsystem. 

Introducing the expansion of the atom displacement UE (t) 
from the equilibrium position R£s in normal coordinates~ 

(5) 
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where eqj is the polarization vector of the phonon mode j 

. ~ Q + . h 
w1.th the wave vector q and qj= bq-.i- +b -qi IS the p onon coor-

dinate, one can express the cross sections for the one-phonon 

scattering process in the form: 

( d
2

a N P" --....... ---) ~-- :s 
dwd!l coh sJ p J 

d2 
(---'!-.) 

dtJJ d{1 incoh 

N P' ~I 4'-l> 2 -1 2 
~- -· "'- <I>.· (k,q,j) I w . < Q QJ. (w)>, 

8 rr2 p qj I QJ 

<I> (k-~-1> ') 't" -1/2 =l--+ 

i ,Q,J ~ "'"B1,M, (k e qj' ), 

' 

B ,.--: 
('S 

1/2 
B • br - <b 11 > =(rra. ), 

is ~ rs IS 

(6. I) 

(6.2) 

(6.3) 

(6. 4) 

(6.5) 

(6.6) 

ocs , ats are the microscopic nuclear scattering cross sec­

tions for coherent and incoherent processes, respectively 

( 
I 14/ 4 --* .... _. • , • 

see ref. ) ; k"=k-2rrK where K 1s the rec1procal latt1ce 

wave vector, R~ the position vector of the atom s in each 

unit cell. 
is con­

that 
(2. I) 

The influence of the external driving field Eo(t) 

tained in the phonon correlation functions <Q~t(w)> 

must be calculated on the base of the Hamilton1an H(t) 

to (2.3). 

3. CORRELATION FUNCTIONS IN THE PARAMETRIC 

RESONANCE CONDITIONS 

In the case of nonequilibrium statistical particle systems 

described by Hamiltonians dependent on time strongly, as in 

the case of our electron-phonon-photon system, the correla­

tion functions of fluctuations cannot be calculated by using 

the fluctuation-dissipation theorem. In the treatment here 

below, therefore, we shall follow the suitable formalism 

proposed in ref/ l5/ that permits one to express in some non­

trivial way the correlation functions in this case via the 

ones for the system of noninteracting particles. We shall 
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. d . 1 d . b d ,' 1 101 not enter 1nto eta1 s that have been already escr1 e ' but present here the main steps of this calculation procedure. We first define the fluctuation operator Bf 8 of the electron distribution as follows: 
of (p,p+q,t) ,, a+ (t)a (t)-<a+ a >. (7) s - ps p+qs ps p+qs 

where <a;
5 ap+qs >.-n0 (i),t)8q,o, n0 CP.t) is the equilibrium electron distribution function that is time-independent in the collisionless approximation, 

.... .... Ep-f.t -1 n0 (p,t)z n 0 (p)z(exp T- + 1) 
(8) 

( EP :::..p
2
/2m and f.l is the chemical potential of the electrons). + + As < bk(t)> = < b_k(t) >. 0, the operators bk(t), b -k(t)themselves rep-resent the fluctuations of phonons. 

Analogously, we introduce the corresponding oferators for the system of noninteracting particles, b~(t), b~k(t) and 
of 0 (p,p+Q,t)~a 0 +(t)a 0 (t)-n (p)o~ . (9) s ps p+qs 0 q,O 

All time-dependent operators are taken in the Heisenberg representation, that is, 

a (t).s-{t)a S(t), bk(t)2S- 1(t)bkS(t), (10.1) ps ps 

•;,<t)-s•-
1
(t)aP,s•ctJ, b~(t)-so- 1 (t)bks•(t), 

where 

' ' 

(10.2) 

S(t)~exp{-ifdt'H(t')l, S0(t)3exp!-ifdt'H0(t')l. (10.3) 
The equations of motion for the just~introduced operators are easily obtained on the base of the Hamiltonian (2.1) to (2.3) by using the density-matrix formalism according to which one has at least 

a A -1 A - i-a· ·O(t) • S (t)[ H(t), 0] S(t) t (II) 

for an arbitrary physical operator 6(t). The equations of motion for the fluctuation operators of noninteracting par­ticles lead directly to the following expressions for the correlation functions of the quantities 8~ , b~ (t) and b~:(t): 
<0f 0 + (:t"-+" -+,. t') 0 ~ ( ~~ ~ s" v ,p + q I ul- p,p+q,t)>':o: a:to'I>"B-+-~o,O " X s vP qq ss (12. I) 

a-+ - -+ "o'v+ q) [ l-n0 (p)] exp !iA (sin"o t-sinw0 t')+ i(E -E )(t-t' )I 
p P+ q ' 
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( 12 0 2) 

where 

Q~ (t) = b",(t) + b ::: (t)' 
+ wk /T 

<b b ( -1)-.' 0 k= kk>=e 
( 12 0 3) 

and ~ 
• I 2 A= e(qo E0) mw 0 o 

To establish the relations between the correlation functi­
ons (12) and the ones of the system of interacting particles 
in the presence of the high-power· laser field the following 
quantities are to be introduced: 

-~ .... .... + 
f(p,p+qot) = ap,{t)ap+q,{t) - a1~8\t)ap+qs (t)o (l3ol) 

( 13 0 2) 

(13o3) 

the equations of motion for which can be written in the form: 

. a - -+-+ .... - ........ -!at f s (p,P+qot) = (Ep -Ep+q + Wo ,\coswot) r, (PoP+iiot)+ 

+ [n 0(P +q)-n
0

\p)Ji1,q 2 8 r . (p',po+q,t)-
P 's' s 

- mec_ )p- ce A0(t) ]A(qo<)+V [Q 0 (t)+ ii (t)+ b + (t)Ji 
q q q -q • 

-i aat hk(t)=-wkbk(t)-v_, 2: .or,<I<i>'+kot)o 
p s 

.a-+ -+ __,. 
-•·;r"tb-k(tl=wkb-k(t)-v_k~oor,o (p'oP+ko<lo 

ps 
with the initial conditions: 

( 14 o I) 

( 14 0 2) 

(14o 3) 

lim f (t) = lim b "(t) = limb ~k (t) =0. ( 15) 
t·t-oo t-+-O<f" t-t-:><l 

A rigorous analysis of this system of equations leads to the 
following equation for the density fluctuation operator 

8n(q,t)= 2 or,(PoP+<iot): 
ps 

(16) 
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with the notation: 
iA{sinw0 t-sinw 0 t") i(E -E q<t-t') 

{lq(t,t'):e L[n
0
(p'..ij)-n

0
(p')]e P P+ , (17.1) 

ps 

/in°(q,t) = L 8f 0 (P.P+Q,t), ps s (17.3) 

Now, to have the closed system of equations to solve for the 
correlation functions of physical operators, one must inclu­
de into consideration the system of Maxwell equations for 
the self-consistent electromagnetic field with the vector 
potential A(q, t) and the scalar potential ¢ (q, t) expressed 
by 

¢(q, t) = ¢ qon(q, t)+ vq Q q(t). 

We present this system of equations in the form: 
... 1 -- a 1 aA ... 4rr ... 

/1A-- '-(-·-+ V¢)•- -j 
c at c at c 

. , 1 aA ~ 
diV< ( --- V ¢) •- 4rr p, 

c at 
~ 

divA= 0, 

where 
., 

-;->-+ e [~ k e A~ ] ~~~ J(k,t)~- l P+-
2

- -
0 0 (t) of,(P,P+k,t)­

m ps 

e2 -+ -+ ,.. 
-- l A (k,t)n (p), 

me ps 0 

( 18) 

(I 9. I) 

( 19. 2) 

(I 9. 3) 

(19.4) 

( 19. 5) 

Here,; is the dielectric tensor of the crystal lattice. Fur­
ther, from the equations of motion for f the fluctuation 
operator 8f5 that enters into equations (19) can be expres­
sed via 8f0 by: 

s 

X 
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t ~ -i((Ep-Ep+q)t:!-,\sin<u 0 t'J 

r dt"l~(t'-t")/ih(q,t")le 
(20) 

-~ 

In the presence of the retardation effect, as has been shown 

by the parametric excitation theory 1 10, tV, the coupling bet­

ween longitudinal and transverse waves of the electron­

phonon system takes place in the geometry with fuo..i k where 

k is the wave vector of the modes considered. Taking this 

case into consideration and passing to the Fourier represen­

tation of physical quantities, we obtain from the systems of 

equations (16), (19), (20) the equations for the Fourier 

components of On and A as follows: 

(21. I) 

8nc(q,cu) t-v P (co)Q"(co), 
q q q 

(2!.2) 

where A(ri.<u) and j 0 (Ci,w) here mean the components of the 

vectors s. and r == (eAn) 2. p sq <P+,p\ ri.t) parallel to the 

ps -· 

external electric. field vector E0 , and the following notation 

has been used: 
~ ~ 2 
wo(Q.w) e 1-¢ P (w)-1 V I P (u>)D (u>) 

~ qq q q q • 

<0 ( • 
lDt Q,w) 

[ (•• • l 2 
"o P+q) -no(P) PL 

E -E -w -iO 
p t-q p 

(22. I) 

(22.2) 

(22.3) 

(22.4) 
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D (u>)' ___ .L...._ __ - __ l __ . 
q ru - uJ -t-iO r1.H <u + iO q q 

(22.5) 

eE0 
A • ' 2r;"c-;;;-,; . ( 22 • 6) 

We now apply the following resonant condition concerning the frequencies: 

ru0 "" r,>p + w
1
_ 

(23) 
where r'JP and ro 1 are determined from the dispersion equations Re 0p(ii,cu)=0 and Ret.(q,w)• Ref<fc2/0 , 2- &, (q.w)loO, respecti­vely, and represent the frequencies of longitudinal (wp) and transverse (wt) modes of the el~ctron-phonon system for the fixed value of the wave vector k. Thus, we have 

21122 22 w 11 ~- w +r'JLO ±( ru -CJJLO H 1 + . 1.2 2 p p 

-II 12 2 8¢q vq "'Lowp 1!2 

( 
-;;2,--.,-2 -. ,"""2 ....c.- J I · 

UJP -c,; LO' 
(24) 

2 and vJ 1 1. 2 is of the same form (24) with co2 ""(c.1 2+q2c2)/( PC P "" instead of . 
~ 2 . the quadratic plasma frequency ru :::=4tre nl( m 1n p 

(24) ( (""is the high-frequency dielectric constant of the crystal lattice and wLo the longitudinal optical phonon fre­quency). 
The condition (23) expresses the so-called two-mode ap­proximation in which the equations can be considerably sim­plified. The calculations in this case lead to the following formula for the correlation function of electron density fluctuations: 

(25. I) 

F2 (if.w.T.A' )(w0 -[w[) l,. l8([o,[-<u
0 

+o>ti )+8([w[-w
0

- 0, .)][ix 
" (25.2) 

where the notation is as follows: 
~ w(w 2"""'t,2r) [vq[ 2P~([w[)lmDq(lwi)-ImPqCiwl) e(q,w)~ "1--l-

wfl-wf2 1m 0r (ii.lwll 
(26. I) 
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(26.2) 

(26.3) 

(26.4) 

(26.5) 

Note that i =1 ,2 and wT0in (26.4) is the transverse optical 

phonon frequency. 
The correlation function for phonon fluctuations is now 

obtained without difficulties by using the relation: 

Qq(w)~Q;(o>) + v_q Dq(w)on(q,w), 

and is of the form: 

<Q+, (w')Qq (w)>~ 2rro-.~. o ,<Q 2 (w)>, 
q l.{Q - ww q 

(27) 

(28. I) 

<Q~(w)>~8Q(q,w.A')I[F 1Q(<j,,",T,I.' )­

F2Q(q,w,T,A')(w0-[w[)~ [o([w[-w +w. )+o([w[-w
0
-w. )l[lx 

i 
0 " " (28.2) 

f [o(w+wp, )+ o(w-w li )] 

with the following notation used: 

1[1-1
2
(-\')+2Re(l-¢ P ([w[))llmD ([w[)+ 

q q q 

(29.1) 
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~'< . ' Q Q.w.A) 
2 • 2 

I (q,(tJ,A' )~ l'L 
4 (J) 2 

p 

2 2 2 
fJJ (r<J -rtJLr} (29.4) _____ 2 ___ . 

(J) (J) 

LO p 

2 • ·where FJQ(q~,(d ,T,A' ) .. F 
1 

(Q'.ro. T. A') and I (Q,t,; ,A') is defined 
by (26.4). 

From the formulae (25) and (28) we see that the spectral 
distributions of fluctuations reveal the sharp maxima at the 
frequencies of the coupled longitudinal plasmon-phonon as 
well as the coupled transverse polariton modes of the system 
which Could be excited in pairs (one longitudinal and one 
transverse modes each time) by the laser field. Besides that, 
the obtained formulae show that the level of collective fluc­
tuations increases anomalously when approaching the border 
line of parametric instability regions for which the term 
l-I2 ..... o. By the definitions (6) the same features will charac­

terize the behaviour of the cross sections of neutron inelas­
tic scattering by the plasmon-phonon and polariton modes in 
the crystal. 

In the case of ·k II Eo geometry the transverse and longi­
tudinal modes of the system do not couple to each other, and 
only the longitudinal modes represent the practical interest 
in the problem considered since the pure transverse vibrations 
are rather "hard" to be excited by radiation fields (see 
refs/10,11/ ) . In this case the spectral distribution of 
the phonon correlation function that exhibits the main featu­
res of the neutron inelastic scattering process by the coupled 
longitudinal plasmon-phonon modes will have the form (28) 
with the following notation (the same formula has been ob­
tained in ref. /6/ ) : 
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[ 1- ~~- r~r<l.w,\J ~0~--l.- 1 

a(w0-!rull ImO (ru -!w!) 
q 0 

(30. I) 

a(w)~ 

2 2 
w -wp -. &erii.w) (30. 2) 

[ 1- .PqPq (w )]Dq(w) 

(30.3) 

where J 1(A) is the Bessel function of the first kind of the 
4

4 2 
argument ,\"" e(qE0 )1m w 0 ; the term with F1Q and F 2Q in braces 

in (28. 2) should be replaced by Fp , 

-+ · 2 -+ -1 w /T -1 
F1 (q

,w,T,,\)~!1-I (q,w,\)1 ll(e -1) -

2 -+ (w--w0 sgnw )t T -1 
(30.4) 

I (q,w,\)(e -1) II . 

In a subsequent paper this last case, as the most simple 

one, will be analysed to obtain some numerical estimations 

of the scattering cross sections on plasmon-phonon modes in 

a crv~tal of indium antimonide. 
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