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The ~xperi~ental r~su+~s in quasi- 1-d -anti~erromagnets,. 
e.g., TMMC, cpc 1 1~which suggest nonlinear~effects, have been 
interpreted as yet in terms of the antiferromagnetic Heisen
berg model. 

Here we consider a 1-d model with finite band width, for 
which we have shown recently 12·4•51 that in continuum approxi
mation solitary solutions exist. We .calculate the. excitation' 
energy and, ·in the .way! _as Krumhansl! and Schrie-ff.er./.6/ the· f·r·ee 
energy, the·.-static:.correlation· function· of• the- latti_ce_ motion 
and the width of the central peak of the dynamic structure 
fac.t.or connected with the solitary- excitations. 

· F~rmerly we have shown/4/ that the m~del in ti~e-dependent 
mean-field app:rc;:>xi~?tio:n ·an4, ~n co,:ri,tinuum l_imi~ is gi;ven b.y 
t~e. following. Lagl-~ng.ian density ' · 

S' = i 1 (c!J*~- ~·~ l+ Ma~x~.-}{ ,= a aa ·a a· . , .... 

= ; 1 (<I!* ·il! _ ~ • <I! ) + ~ a 2 x 2 _ .M. a2"' 2x' 2 
a a a a a f::. 2 0 

"·"! ,.,. 
,;I (I} 

with the ,condi,t~on,that' '~f'~w.; <I!+·<>~ 0 at the' boundary of 

the. sys.tem. }(r is. the: ·Hamil toni an densi·ty ·and' for the other.. , 
notation.s:· ~se-e·. r.e.f./ 1~ .. Instead o.f. t < .o· in ref • 1 ,ll we. write• here- . 

-t. · In cont·inuum ·limit, we• have R JO~ .af. and u J (I) ~·ax:(t", t). · ' 

The upper. ·signs .. in.· .(1) -concern the: anti·ferromagmetic cas.e;. 
the. 'lower. ·signs,. the ferrpmagne-tic one •. -In ·the following .. we. 
restrict ourselves to the antiferromagnetic· case. Illstead of 

the complex prqbability amplitudes c!Jd(f; t) and <l!_&(f; t) . to 
find an electron w:ith sp,in a or -a at the time t at the 
place •·f in the chain we use the fields b+ ((, t)- __L(c!J" ±<I!_,).· 

- · .. ..;2. . . 
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For the equations of motion a af af 
--- --=0, where at 

-'- ;: ! r, C ,C jwe obtain 'I' + -

M•• 2 .. 21 a <I c 12 Jc 1 2) X=Mcv 0 x -.....-- ae + -. _ , 

o¢' a¢ 

iC+ - T0 C.;' - (2T o-l'lC+ + 2Jax'C+- U (jC + j
2

- jC_j
2
)C+ = 0. 

with T0 ~-t + Ja. 

(2) 

This system possesses in the case of constant electron den
sity n(.f, t) ~ jC+i 2 + jC_J2= const. solitary solutions of the type 

x((,t) = x0tanh!•(.f-t 0 -U>t)l, (3a) 

C+(t,t) =C!sech{y{f-t 0 - ;;t)l ""Piifl(f-.fD)-iv+tl, 

(3b) 

(If the quantity y2>0 then c+<t ,t) is of the type "tahn" and 
C_(t',t) is of the type "sech"). The frequency"'=;{ and the 

·centre position ~ 0 are arbitrary. For the other parameters 
in (3) we obtain /3/ 

K=y= v (UTJ)n_, c~-C~- yR, Xo= ~' o JaK 
" v2 v2 (4) 

A u u {3 = -8 = - ~ 
0

, v+ = 2T 0-J"n -I' -
4
To' v_ =-2T0 + Un -I'+ 

4
T

0 
with J = (2J) 2 /M(w8- ~ 2). We can interpret the solution (3) as 
solitary spin distortion (domain wall) of the antiferromagne
tic ground state order (3b) which is accompanied by a solitary 
lattice distortion -(3a) 141. The non-linearity responsible for 
the solitary solutions is caused by the electron correlation 
as well as by the electron-phonon interaction. For the case 
of constant electron density one can give the N-soliton solu
tion, too /7/. 

Solitary soluti<ms of the type (3) with u = "', K = y and 

{3 = -8 = - 2*o are also possible; if the amplitudes c~ and 
C~ are different, then the domain wall is accompanied by 
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a solitary electron density wave 

where 
....,.,_....,.. t 02 2 02 02 
n(e,t} =n=C- +-y(C--C+ ). 

Makhankov et al. 18•91 described a further type of solitary 
spin distortions of the system (2) but it is not stable aga
inst small per.turbations of the differential system in cont
rast to domain_walls. Therefore we restrict ourselves to so
lution of the type (3). 

The solitary lattice distortion (3a) is connected with the 
well-known Peierls instability of A-d systems and lowers the 
total zero-point energy of the system. A lattice particle at 
the point a.e of the chain has in the ground state two pos
sibilities a~± ax 0 and owing to the solitary distortion it 
flips in. The one-site double-well potential ¢ o (x) 

= {a2x 2+ -lj.a4z 4 with A< O,and B>O,which is caused by the 

electronic system follows from- ~ .1._(1C+I 2-IC_j 2 j ;:-Ax-Bai\. 2. 
(2JJ2 ae A 02 02 

One obtains IAI = Ba2x&= 2~K 2, and ¢ 0 (± x 0)oi-J(C+ +C_ ). 
J 

In the case of n(e-, t) = const we get for the lowest energy of 
a lattice particle <foo(±xo>=-2Jn2.We remark that the investi
g8.tion has been extended also to systems /4/ ,where the Hamil
tonian includes an additional one-site double-well po-tential 
¢ such that the lattice is described by the standard model 
Hamiltonian for quasi- A._d·-systems 161 which may undergo 
a structural phase transition. For vanishing electron corre
lation energy U these systems (modified Peierls chains) show 
also solitary solution of the type (3) with K = y , U = cu and 

~ 

{3 =- f;.,.- _u_, which are accompanied by solitary electron den-
. 2To 

sity waves. The amplitude x0 of the solitary lattice distro
tion is given by the width of the additional double-well po
tential. The depth of the additional potential increases in 
consequence of the solitary spin distortion by the term 

A 02 02 -J(C+ +C _ ). 

Now we calculate the excitation energy J:H d{ = E + E 
of the domain walls (3). The Hamilton density :H we0~btai?,P 
from (1). The kinetic energy -

(6) 
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can be written for slow moving walls ~ 2 <<<Ug in the forln EgK= 
- rnD 2 h 4 M 2 for uv 2 << '·' 2 , h k, . f - 2 v0 , were m0 =a 2 x 0K ""'O 1st e 1net1c e-

fective mass and v0 =all is the velocity of the soliton (wall). 
For the potential energy E0 p we obtain 

+ 2T (C 02+ c 02) _ T ({3 2c 02 +82C 02) _ u(C 02_C 02)1 0+- 0 + -r+-

(7) 

because of 

u 02 2 I' = 2 C_ -2T 0 + T 0 8 .. 

For better understanding we discuss the result (7) for the 
case of constant electron density according_. to (4). Then it 
follows · .... 2 211 '2 ( "ll E 0 p(n = const) =-;;: - -g-(U-J) n + 4T 0 A- 8Tf n • 

For slow moving walls, this means U 2<<w ~, 8T 8 and i .... (2J) 2/Mcu6 
we get 

o 2 I 1 l 2 1' E 0 p(n= const) = 1<" 4T 0- 3 un +-;;- 3Jn • (8) 

Considering (3) one sees that 2a/K is the thickness of walls, 
and, because we have chosen g dimensionless, 2/K is the number 
of lattice particles in the wall. Then 2n/K is the number of elect· 
rons in the wall and we can interpret the first term in (8) 
as mean .potential energy of electrons· in the wall ; n(c -fl). 
The mean potential ener~y of an electron (related to zero) 
< =I' + 4To - } Un ~ 2T o+ lr Un is higher than the lower edge 
of the s -band 2T o= -2t + 2Ja from which we have to count be-
cause of the long-wave approximation (continuum limit). The 
second term in (8) is the potential energy connected with the 
motion of lattice particles in the wall (we remember that we 
used a rigid-ion~model). The mean potential energy of a lat
tice particle ~Jn2 is related to zero in (8) according to 
the selection of the Hamiltonian. (If we would count from the 



lowest energy of a lattice particle in the wall ¢ 0 (± xo)=-2Jn2 

we would get - -}.Jn 2 ) . To sunnnarize we can say the excita
tion energy for slow moving walls lies very closed to the 
ground state energy of the system. 

Because the excitation energy is finite for ~ _..,. 0 we can 
regard the slow moving solitons (walls) for low temperature& 
as a dilute gas of quasipa;.fOicles with the kinetic energy EoK 
and the potential energy E DP {related to the ground state 
energy) in a one-dimensional volume aN =L. 

If we calculate the partition function Zo, in the simple 
approximation of Krimhansl and Schrieffer/6/ ,dividing the one
dimensional volume in n s"" L/6. segments of the thickness of 
a wall 6 =2a/•.• we get 

(9) 

where nw is the number of segments occupied by walls and B is 
an appropriate phase space normalization. In the approximation 
that ~D is dominated by the most probable number nw .... which if 
exp!-,BE'hJ«l is also the mean value n =n exp{-flE8pl, 
from (9) we get using the Stirling formul: 

8 

. 2"ksT nv/2 iiw 
Zo" ZoK· Z op-""( ---) e . 

B2mo 
Thus we obtain for the free energy connected with the walls 

'0 
, 1 ~k 8T -E0 J"'ksT 

Fo=-k8T!nZ 0 =-k8TN 2 [1+ 2 1n B2m ]e 
D 

(I 0) 

This means, the free energy and the concentration ilw/n 8 of 
t~e walls ~rop .. exponentially ~ith decreasing temp_e;rature. The 
l~near exc~tat~ons of the latt~ce part (phonons) ,/61 as well as 
of the electronic part of the system~/10/ give contributions to 
the free energy proportional only to the temperature T. 

For application it is interesting to calculate the static 
and the dynamic correlation function of the lattice motion. If 
.the lattice particles are in the minima of ¢ 0 in the ground 
state and flip from x = ±x 0 to + x owing to a solitary dis
tortion we can use the approximation of Krumhansl and Schrief
fer JG/, too. 

We obtain for the static 
<x(O) x(t) > if e »2/ K 

density of walls 

two-point correlation function 
at low temperature, and at low 
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'0 
2 -f3Eop 2 <x(O) x(O> = x 0expl-{<e I= x 0 expi-O>. c I (II) 

'0 
1 f3Eop F with the correlation le·ngth Ac=-e .. or n(.;,t)= const 
K 

according to (4) and (7) 

2 J2n To (U-J)' n 
Xo= ,K=V -- and 

a2J 2(U- J) To 
•o 2n1 1' E 0 p= -(-Un + -Jn) . 

K 6 3 

Because the lattice distortions are strongly connected with 
the spin distortions, Ac gives information about the 
electronic system, too. For T -~> 0 we have A c -> oo like it is 
expected for A-d system. From the dynamic correlation func
tion S<x(O,O-) x(e, t) > or the dynamic structure factor 

S(q,w) = __!_
2 

[jdfdtet(<£-wt) <x(O,O) x(f, t)> 
(2n-) . 

we get some features of the frequency spectrum of the lattice 
part of Hamiltonian. The peaks of S(q,cu) at w±(J)o are connec
ted with linear excitations (phonons) and the central peak_ is 
connected with the non-linear excitations. If we calculate 
the width to of the central. peak in the phenomenological way
as Krumhansl and Schrieffer 161 we find for Ke >>2-, ·Kt>>2/U, 
where~ is the mean frequency of solitons (slow moving walls), 
and at low temperatures 

m ·o 
t =-D_£.ef3Eop (12) 

D ksT K 

with parameter according to (4), (6) and (7) in the case of 
n(f, t) = const. 

A detailed discussion of the static and dynamic correlation 
function is in preparation. 
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