

сообщения объединенного

института Ядерных исследований

дубна

E17-81-567

W.Sikora, V.N.Syromiatnikov

hexagonal perovskites.

II. Praphase, Structural and Magnetic Phase Transition

INTRODUCTION

The symmetry analysis of hexagonal perovskites ReMnO_{8} (Re: Er, Ho, Lu, Sc, Fm, Y) made on the basis of the paramagnetic group $C_{8 V}^{3} \cdot 1, f 1 /$ has shown that the simultaneous appearance of $S_{\mathbf{x y}}$ and S_{x} :-components should be described by two irreducible representations of space group (IRS) C_{87}^{8} of the star $\left\{\mathbb{X}_{11}\right]$ (notation according to the Tables $/ 2 /$) which for the magneticstructure model proposed by experimentalists ${ }^{3 \cdot 7 /}$ are not attendant ${ }^{\prime 8 /}$ and belong to different exchange multiplets ${ }^{18 /}$;

A detailed analysis of the structure $\mathrm{C}_{8 \mathrm{~V}}^{8}$ of compounds
$\mathrm{Re}_{\mathrm{MnO}}^{3}$ allowed us in part 1 of this work to propose the existence of the praphase D_{8}^{4} which is an initial phase for the structure phase transition $D_{6 h}^{4} \rightarrow C_{6 v}^{3}$ with wave vector $k \neq 0$ and for the magnetic transition.

Based on the symmetry group of praphase $D_{8 h}^{4}$, we have shown in part 2 that the magnetic structure observed in ReNnO_{3} is described by two stars: the component along the z-axis is described by the star $\overrightarrow{\mathbf{k}}=0,\left\{\overrightarrow{\mathfrak{r}}_{18}\right\}$, while the component in the basis plane, like the structure phase transition, is described by the star $\left\{\mathrm{k}_{18}\right\}$. The magnetic moments in the basis plane appear because of the displacement of Mn atoms in the transition $\mathrm{D}_{6 \mathrm{~h}}^{4} \rightarrow \mathrm{C}_{\beta \mathrm{b}}^{3}$. Thus, supposing the praphase to exist in the compounds $\mathrm{R}_{6}^{\mathrm{V}} \mathrm{MnO}_{3}$ we could more exactly define the structure of hexagonal perovskites preceding the magnetic transition and describe the reason for which such a complicated magnetic structure is realized. In the course of analysis of the structure and magnetic phase transitions we have formulated several criteria which may be checked experimentally.

1. THE CHOICE OF PRAPHASE; STRUCTURE TRANSITION

From the results obtained in experimental investigations ${ }^{\mathbf{3}-9 /}$ it is found that near the point of magnetic transition these compounds form the structure of perovskites with the hexagonal symmetry of the group $\mathrm{C}_{6 \mathrm{y}}$. Atoms of Re are in positions(2a) and (4b), atoms of Mn in position (6c); oxygen atoms O_{I}, in (2a); o_{II}, in (4b); $\mathrm{o}_{\mathrm{III}}$, in (6c); o_{IV} in (6c), where:
(2a): $\left.1(0 ; 0 ; z) ; 20 ; 0, z+\frac{1}{2}\right)$
(4b): $\left.1\left(\frac{1}{3}, \frac{2}{3}, z\right) ; x_{\frac{2}{3}}^{2}, \frac{1}{3}, z\right) ; 3\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}+z\right) ; 4\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z\right)$,
(6 c) : $1(\mathrm{x}, 0 ; \mathrm{z}) ; 2(0 ; \mathrm{x}, \mathrm{z}) ; 3(\overline{\mathrm{xx}}, \mathrm{z}) ; 4\left(\overline{\mathrm{x}}, 0, \frac{1}{2}+z\right) ; 5\left(0, \bar{x}, \frac{1}{2}+\mathrm{z}\right) ; 6\left(\mathrm{x}, \mathrm{x}, \frac{1}{2}+\mathrm{z}\right)$.
Running parameters are not determined exactly, but for the atom of Mn in all compounds of the family it is indicated that x is almost equal to $1 / 3$. For the case of LuMnO_{3} it is approximately found that ${ }^{13,4 /}$:

$$
\begin{align*}
& \mathrm{Lu}_{\mathrm{I}}(4 \mathrm{~b}): \quad \mathrm{z}=0.27, \mathrm{Lu}_{\text {II }}(2 \mathrm{a}): \quad \mathrm{z}=0.23, \\
& \operatorname{Mn} \quad(6 \mathrm{c}): \quad x=\frac{1}{3}, \quad z=0 \text {, } \\
& O_{I} \text { (2a): } \quad z \cong \frac{1}{2} ; \quad O_{I I}(4 b): \quad z \cong 0, \tag{1.2}\\
& \mathrm{O}_{\text {III }} \text { (6c): } \quad x \cong \frac{1}{6}, \quad z \approx \frac{1}{6}, \\
& \text { OIV (6c): } \quad x \cong \frac{2}{3}, \quad z=\frac{1}{3} \text {. }
\end{align*}
$$

These structure experimental data on the position of atoms in LuMnO_{3} allow an idealized version of the structure of this compound. For this purpose we put z for atoms $L a_{I}$ (2a) and $\mathrm{Lu}_{\text {II }}$ (4b) to equal 0.25. Parameters x and z for atoms Mn and O will be chosen as defined in ref. ${ }^{/ 3 /}$ but taken to have exact values instead of approximate ones. The idealized structure, we shall call the praphase, is shown in Fig.l.

$z^{\prime}=0$

$z^{\prime}=1 / 6$

$z^{\prime}=1 / 4$

$z^{\prime}=\frac{1}{3}$

$$
0-0
$$

- M_{n}

$$
*-L u
$$

Fig. 1. The idealized structure of the LuMnO_{3} in the coordinate system connected with a primitive cell of the $C \mathrm{~g}_{\mathrm{g}}^{\mathrm{v}}$ group. The next four layers with $z^{\prime}=1 / 2$, $z^{\prime}=2 / 3, z^{\prime}=3 / 4, z^{\prime}=5 / 6$ are turned with respect to first four layers by 60°.

Fig. 2. The imbedding of elementary cells of praphase G and phase $C 8$ for the idealized structure of hexagonal perovskites.

Let us now define the group of symmetry of the praphase of LuMnO ${ }_{3}$. We assume that the structure $C_{6 v}^{3}$ is a result of a phase transition of the type of displacement from the praphase whose symmetry is described by the group G. In this case we consider that the crystal atom displacements are small ($u_{i} \ll a$, where a is a lattice parameter). Hence it follows that the group G should be a supergroup of group $C_{6 v}^{3}$.

In considering all supergroups G of group C_{67}^{8} we can very reduce the list of supergroups if we establish the channel of transition ${ }^{10-13 /}$ from the praphase to phase $C_{6 v}^{3}$. In other words, we should first define the lattice type of the praphase, the star of the wave vector and the set of its axms describing the transition $G \rightarrow \mathrm{C}_{6 \mathrm{v}}^{8}$.

From Fig. 1 it is seen that the idealized structure LuMnO $_{3}$ has the hexagonal lattice Γ_{h} of axis x, y which make the angle 30° with x^{\prime}, y^{\prime}, respectively, of lattice Γ_{h} of structure $C_{6 \vee}^{3}$. The imbedding of elementary cells of praphase G and phase $C_{8 y}^{3}$ is drawn in Fig. 2 .

From tables of possible changes of the transition symmetry of crystals in phase transitions (see ${ }^{10,12 / \text { and } / 14 / \text {) we find that }}$ such an imbedding of elementary cells of highly and low symmetric phases is achieved in the transition along the arms $\vec{k}_{1}=1 / 3\left(\vec{b}_{1}+\vec{b}_{2}\right)$ and $\overrightarrow{\mathbf{k}}_{2}=-\vec{k}_{1}$ of the star $\left\{\vec{k}_{13}\right\}$ of lattice Γ_{h} (channel 4 according to tables).

To define the group of symmetry G of the praphase, we utilize tables of subgroups with $\vec{k} \neq 0$ of space groups ${ }^{14 /}$. These tables, for each space group of the hexagonal system, contain all subgroups with increasing cell $(\vec{k} \neq 0)$; for each transition channel there is given the corresponding list of subgroups. The group $C_{6 v}^{3}$ is a subgroup of the praphase symmetry group G and should be contained in the channel 4 of lattice Γ_{h}. From tables/14/it follows that only the group $D_{6 h}^{4}$ has the subgroup $C_{8 V}^{3}$ in channel 4.

So, the praphase in compounds ReMnO_{3} has symmetry $\mathrm{D}_{8 \mathrm{~h}}^{4}$. Atoms of Re take the position (2a); atoms of Mn , (2c); atoms
of O_{I}, (2b); and $\mathrm{O}_{\mathrm{II}}(4 f)$ with $\mathrm{z}=1 / 12$. The atoms coordinates are:
$\operatorname{Re}(2 a): 1(0,0,0) ; 2\left(0,0, \frac{1}{2}\right)$
Mn (2c) : $1\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\right) ; 2\left(\frac{2}{3}, \frac{1}{3}, \frac{3}{4}\right)$
$\mathrm{O}_{\mathrm{I}}(2 \mathrm{~b}): 1\left(0,0, \frac{1}{4}\right) ; \quad 2\left(0,0, \frac{3}{4}\right)$
$\mathrm{O}_{\mathrm{II}}(4 \mathrm{f}): \Lambda\left(\frac{1}{3}, \frac{2}{3}, z\right) ; 2\left(\frac{2}{3}, \frac{1}{3}, z\right) ; 3\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z\right) ; 4\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}-z\right) ;$

$$
z=\frac{1}{12}
$$

The elementary cell of the praphase with positions (1.3) is shown in Fig. 3.

Fig.3. $D_{8 \mathrm{~h}}^{4}$ elementary cell with positions of atoms: $\overline{\operatorname{Re}-*}, \mathrm{Mn}-0, \mathrm{O}-0$. The remaining 4 layers $z=3 / 4, z=0, z=1 / 12, z=-1 / 12$ are turned with respect to the drawn ones at 60°.

Comparing Figs. 1 and 3 we see that the symmetry and coordinates of atoms in the praphase $D_{8 h}^{4}$, are defined correctly. The praphase $\mathrm{D}_{8 \mathrm{~h}}^{4}$ was observed at high temperature for $\mathrm{YMnO}_{3}^{16 /}$ Supposing the praphase to exist in ReMnO_{3} we can obtain an information on the structure in the $C_{6 v}^{3}$ phase much larger than from the analysis of experimental data $/ 3-7 /$. We determine now possible displacements of atoms in ReMnO_{3} in the transition $D_{6 h}^{4} \rightarrow C_{6 y}^{3}$ with the star $\left\{\vec{x}_{13}\right\}$.Using standard formulae $/ 11,12 /$ we evaluate the mechanical representation and modes of displacement of atoms. The mechanical representation has the form:

$$
\begin{align*}
& 2 \mathrm{~b}: \quad \mathrm{d}_{\mathrm{m}}^{\overrightarrow{\mathrm{k}}_{13}}=\tau_{2} \oplus \tau_{4} \oplus 2 \tau_{5} \\
& \text { 2c: } \quad \mathrm{d}_{\underset{\mathrm{m}}{\mathrm{k}_{13}}}^{\mathrm{m}_{2} r_{1} \oplus r_{3} \oplus \tau_{5} \oplus \tau_{6}} \text {, } \\
& 4 \mathrm{f}: \quad \mathrm{d}_{\mathrm{m}} \mathrm{k}_{13}=r_{1} \oplus r_{2} \oplus r_{3} \oplus \tau_{4} \oplus 2 r_{5} \oplus 2 \tau_{8} . \tag{1.4}
\end{align*}
$$

The modes of displacements of atoms are listed in Table 1.
To find the displacements of atoms in the transition $\mathrm{D}_{8 \mathrm{~h}}^{4} \rightarrow$ $\rightarrow \mathrm{C}_{8 \mathrm{bv}}^{3}$ we should define the representation of this transition. For this purpose we shall determine the restriction of group $\mathrm{D}_{8 \mathrm{~h}}^{4}$ on subgroup $\mathrm{C}_{\mathrm{Gv}}^{3}$. From Kovalev ${ }^{: / 2 /}$ we write out all elements of the zero block of group $D_{6 \mathrm{~h}}^{4}$:

$$
\begin{aligned}
& \left(\mathrm{h}_{1} \mid 0\right),\left(\mathrm{h}_{2} \mid r\right),\left(\mathrm{h}_{3} \mid 0\right),\left(\mathrm{h}_{4} \mid r\right),\left(\mathrm{h}_{5} \mid 0\right),\left(\mathrm{h}_{8} \mid r\right), \\
& \left(\mathrm{h}_{7} \mid 0\right),\left(\mathrm{h}_{8} \mid r\right),\left(\mathrm{h}_{9} \mid 0\right),\left(\mathrm{h}_{10} \mid r\right),\left(\mathrm{h}_{11} \mid 0\right),\left(\mathrm{h}_{12} \mid r\right), \\
& \left(\mathrm{h}_{13} \mid 0\right),\left(\mathrm{h}_{14} \mid r\right),\left(\mathrm{h}_{15} \mid 0\right),\left(\mathrm{h}_{16} \mid r\right),\left(\mathrm{h}_{17} \mid 0\right),\left(\mathrm{h}_{18} \mid r\right), \\
& \left(\mathrm{h}_{19} \mid 0\right),\left(\mathrm{h}_{20} \mid r\right),\left(\mathrm{h}_{21} \mid 0\right),\left(\mathrm{h}_{22} \mid r\right),\left(\mathrm{h}_{23} \mid 0\right),\left(\mathrm{h}_{24} \mid r\right),
\end{aligned}
$$

and of group $\mathrm{C}_{8 \mathrm{~V}}^{3}$:
$\left(h_{1} \mid 0\right),\left(h_{2} \mid \tau\right),\left(h_{3} \mid 0\right),\left(h_{4} \mid r\right),\left(h_{5} \mid 0\right),\left(h_{6} \mid r\right)$,
$\left(\mathrm{h}_{19} \mid r\right),\left(\mathrm{h}_{20} \mid 0\right),\left(\mathrm{h}_{21} \mid r\right),\left(\mathrm{h}_{22} \mid 0\right),\left(\mathrm{h}_{23} \mid r\right),\left(\mathrm{h}_{24} \mid 0\right)$.

Table 1
The modes of displacements of atoms in $\operatorname{ReMnO}_{3}{ }^{i \frac{2 \pi}{3}}$ transition $D_{6 h}^{4} \rightarrow C_{6 v}^{3}$ with the star $\left\{\vec{k}_{13}\right\} \cdot \epsilon=e^{\frac{1}{3}}$

Representation	Arm	Position (2a)					
		0 ceil		$+\vec{a}_{1},+\vec{a}_{2,1}-\left(\vec{a}_{1}+\vec{a}_{2}\right)$		- $\vec{a}_{1},-\vec{a}_{2}+\left(\vec{a}_{1}+\vec{a}_{2}\right)$	
		1	2	1	2	1	2
τ_{3}	K_{1}	M1	001	0_{0}	$00 \bar{\varepsilon}$	$00 \varepsilon^{2}$	$00 \bar{\varepsilon}^{2}$
	K_{2}	001	$00 \overline{1}$	$00 \varepsilon^{2}$	$00 \bar{\varepsilon}^{2}$	00ε	$00 \bar{\varepsilon}$
T_{4}	K_{1}	001	001	00ε	00ε	$00 \varepsilon^{2}$	$00 \varepsilon^{2}$
	K_{2}	007	$00 \overline{1}$	$00 \bar{\varepsilon}^{2}$	$00 \bar{\varepsilon}^{2}$	$00 \stackrel{\rightharpoonup}{\text { E }}$	$00 \stackrel{\rightharpoonup}{\varepsilon}$
T_{5}	K_{1}	郎0	$\varepsilon^{2} \varepsilon 0$	$\overline{\mathrm{i}} \varepsilon^{2} 0$	$\bar{i} \varepsilon^{2} 0$	$\bar{\varepsilon} 10$	E 10
	K_{2}	$\varepsilon^{2} \mathrm{E}^{2} 0$	$\varepsilon^{\text {cku }}$	ع10	$\varepsilon \overline{\text { ¢ }} 0$	$1 \bar{\varepsilon}^{2} 0$	$1 \bar{\varepsilon}^{2} 0$
	K_{1}	$\varepsilon^{2} \overline{1} 0$	$\varepsilon^{2}{ }^{2} 0$	$1 \bar{\varepsilon} 0$	$1 \bar{\varepsilon} 0$	$\varepsilon^{-2} \bar{\varepsilon}^{2}$	$\varepsilon \bar{\varepsilon}^{2} 0$
	K_{2}		$\bar{\varepsilon}^{2} 10$	$\overline{\bar{\varepsilon}} \varepsilon^{2} 0$	$\overline{\bar{\varepsilon}} \varepsilon^{2} 0$	iع 0	T¢0
T_{6}	K_{1}	$\bar{z}^{2}{ }^{2} 0$	$\varepsilon^{2} \bar{\varepsilon} 0$	$\overline{1} \varepsilon^{2} 0$	$1 \bar{\varepsilon}^{2} 0$	$\overline{\underline{\varepsilon} 10}$	$\varepsilon \overline{10}$
	K_{2}	$\left.\varepsilon^{2}\right)^{2} 0$	$\bar{\varepsilon}^{2} \varepsilon 0$	$\varepsilon \overline{10}$	$\bar{\varepsilon} 10$	$1 \bar{\varepsilon}^{2} 0$	$\overline{1} \varepsilon^{2} 0$
	K_{1}	$\underline{E}^{2} 10$	$\bar{\varepsilon}^{2} 10$	$1 \bar{\varepsilon} 0$	$\overline{1} \boldsymbol{\varepsilon} 0$	$\varepsilon \varepsilon^{\bar{z}} 0$	$\bar{\varepsilon} \varepsilon^{2} 0$
	K_{2}	$\varepsilon^{2} 10$	ε^{2} io	$\bar{\xi} \varepsilon^{2} 0$	$\varepsilon^{-2} 0$	i¢0	$1 \overline{2} 0$

Representation	Arm	Position (2b)					
		0 cell		$\begin{aligned} & +\bar{W}_{1}+\vec{a}_{2} \\ & -\left(\vec{B}_{1}+\bar{C}_{2}\right) \end{aligned}$		$\begin{aligned} & -\vec{a}_{1} \dot{x}_{x_{1}} \\ & +\left(\dot{a}_{1}+\vec{a}_{2}\right) \end{aligned}$	
		1	2	1	2	1	2
T2	K_{1}	001	007	00ε	$00 \bar{\varepsilon}$	$00 \varepsilon^{2}$	$00 z^{2}$
	K_{2}	001	$00 \overline{3}$	$00 \hat{c}^{2}$	$00 \bar{\varepsilon}^{2}$	00ε	$00 \underline{\varepsilon}$
T_{4}	K_{1}	001	001	00ε	00ε	$00 \varepsilon^{2}$	$00 \varepsilon^{2}$
	K_{2}	001	007	$00 \bar{\varepsilon}^{2}$	$00 \bar{\varepsilon}^{2}$	$00 \bar{\varepsilon}$	$00 \bar{\varepsilon}$
15	K_{11}	$\bar{\varepsilon}^{2} \varepsilon 0$	000	180	000	है10	000
	K_{2}	000	$\varepsilon^{2} \bar{\varepsilon} 0$	000	$\varepsilon \overline{10}$	000	$1 \bar{L}^{-2} 0$
	K_{1}	000	$\varepsilon^{2} \overline{10}$	000	$1 \overline{0} 0$	000	$\varepsilon \varepsilon^{2} 0$
	X_{2}	$\dot{\varepsilon}^{2} 10$	000	$\bar{\varepsilon} \varepsilon^{\prime} 0$	000	1 F \%	000
T_{s}^{\prime}	K_{1}	000	$1 \varepsilon^{2} 0$	000	$\bar{\varepsilon} 10$	$\widetilde{\varepsilon}^{\prime}$ ¢	000
	K_{2}	$1 z^{2} 0$	000	$\varepsilon^{2} \bar{\varepsilon} 0$	000	$\varepsilon 10$	000
	K_{1}	$1 \overline{8} 0$	000	$\varepsilon \overline{10}$	000	$\varepsilon^{2} \overline{10}$	000
	x_{2}	000	120	000	$\overline{\underline{\varepsilon}}^{2} 10$	000	$\bar{\varepsilon} 10$

Representation.	Arm	Position (2c)					
		0 cell		+ $\vec{a}_{1}+\vec{a}_{2}-\left(\vec{a}_{1}+\vec{a}_{2}\right)$		$-\vec{a}_{1}, \vec{a}_{2}+\left(\hat{a}_{1}+\vec{a}_{2}\right)$	
		1	2	1	2	1	2
T_{1}	K_{1}	$1 \bar{\varepsilon} 0$	$\bar{\varepsilon} 10$	$\varepsilon \dot{\varepsilon}^{2} 0$	$\bar{E}^{2} \varepsilon \bigcirc$	$\varepsilon^{2} 10$	$1 \varepsilon^{2} 0$
	K_{2}	$\varepsilon^{2} \bar{\varepsilon}_{0}$	$\bar{\varepsilon} \varepsilon_{0}^{2}$	$\varepsilon \overline{10}$	T80	$1 \stackrel{\rightharpoonup}{\varepsilon} 0$	$\bar{\varepsilon}^{2} 10$
T_{3}	$\mathrm{K}_{\text {+ }}$	$1 \bar{\varepsilon} 0$	ε 10	$\varepsilon \bar{\varepsilon}^{2} 0$	$\varepsilon^{2} \varepsilon{ }^{2} 0$	$\varepsilon^{2}-10$	$1 \bar{\varepsilon}^{2} 0$
	K_{2}	$\bar{\varepsilon}^{2} \varepsilon 0$	$\bar{\varepsilon} \bar{\varepsilon}^{2} 0$	$\bar{\varepsilon} 10$	旼0	$i \varepsilon^{2} 0$	$\bar{\varepsilon}^{2}{ }^{\text {¢ }} 0$
$T 5$	K_{2}	000	$1 \bar{\varepsilon} 0$	000	$\varepsilon \bar{\varepsilon}^{2} 0$	000	$\varepsilon^{2} \overline{10}$
	K_{2}	$\bar{\varepsilon} \hat{\varepsilon}^{2} 0$	000	$\overline{1} \bar{\varepsilon} 0$	000	$\bar{\varepsilon}$	000
	K_{1}	$\bar{\varepsilon}^{2}$ ¢0	000	$\overline{1} \varepsilon^{2} 0$	000	$\bar{\varepsilon} 10$	000
	K_{2}	000	$1 \bar{\varepsilon}^{2} 0$	000	$\varepsilon^{2} \bar{\varepsilon} 0$	000	$\varepsilon 10$
T	K_{1}	001	000	60ε	000	$00 \varepsilon^{2}$	000
	K_{2}	000	$00 \stackrel{\Sigma}{\varepsilon}$	000	001	000	$00 \bar{\varepsilon}^{2}$
	K_{1}	000	$00 \bar{\square}$	000	$00 \bar{\varepsilon}^{2}$	000	007
	K_{2}	$00 \bar{\varepsilon}^{2}$	000	$00 \bar{\varepsilon}$	000	001	000

	Arm	Position (4t)			
		0 cell			
		1	2	3	4
τ_{1}	4_{4}	$1 \bar{\varepsilon} 0$	$\bar{\varepsilon} 10$	$\bar{\varepsilon} 10$	$1 \bar{\varepsilon} 0$
	x_{2}	$\varepsilon^{2} \bar{\varepsilon} 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\varepsilon^{2} \bar{\varepsilon} 0$
T_{2}	x_{1}	1気0	$\bar{\varepsilon} 10$	$\varepsilon \overline{10}$	$\overline{1} \varepsilon 0$
	${ }^{2}$	$\varepsilon^{2} \bar{\varepsilon} 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\varepsilon \varepsilon^{2} 0$	$\bar{\varepsilon}^{2} \varepsilon 0$
T_{3}	x_{1}	$1 \bar{\varepsilon} 0$	ε 10	$\varepsilon \overline{10}$	$1{ }^{\text {ERO }}$
	K_{2}	$\bar{\varepsilon}^{2} \varepsilon 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\bar{\varepsilon}^{2} \varepsilon 0$
T_{4}	x_{1}	$1 \bar{\varepsilon} 0$	$\varepsilon \overline{10}$	$\bar{\varepsilon} 10$	í 0
	K_{2}	$\bar{\varepsilon}^{2} \varepsilon 0$	$\bar{\varepsilon} \varepsilon^{2} 0$	$\varepsilon \bar{\varepsilon}^{2} 0$	$\varepsilon^{2} \bar{\varepsilon} 0$
τ_{5}	K_{1}	001	000	000	001
	K_{2}	000	$00 \vec{E}$	00ε	000
	K_{1}	000	$00 \bar{\varepsilon}$	$00 \varepsilon^{2}$	000
	K_{1}	001	000	000	001
	K_{2}	000	$00 \bar{\varepsilon}$	$00 \bar{\varepsilon}$	000
	K_{1}	000	$00 \bar{\varepsilon}$	$00 \bar{\varepsilon}$	000
	K_{2}	$00 \varepsilon^{2}$	000	000	$00 \varepsilon^{2}$
$T_{5}{ }^{\prime}$	K_{1}	000	$1 \bar{\varepsilon} 0$	$1 \bar{\varepsilon} 0$	000
	K_{6}	$\bar{\varepsilon} \varepsilon^{2} 0$	000	000	$\bar{\varepsilon} \varepsilon^{2} 0$
	K_{1}	$\bar{\varepsilon}^{2} \varepsilon 0$	000	000	$\bar{\varepsilon}^{2} \varepsilon 0$
	K_{2}	000	$1 \varepsilon^{2} 0$	$1 \bar{z}^{2} 0$	000
$T_{6}{ }^{\prime}$	K_{1}	000	1 E 0	1¢ $¢$	000
	K_{2}	$\bar{\varepsilon} \varepsilon^{2} 0$	000	000	$\varepsilon \bar{\varepsilon}^{2} 0$
	K_{1}	$\bar{\varepsilon}^{2} \varepsilon 0$	000	000	$\varepsilon^{2} \bar{\varepsilon}^{2} 0$
	K_{2}	000	$1 \varepsilon^{2} 0$	$\overline{160}$	000

Considering that the coordinate system of $D_{6 h}^{4}$ is turned, with respect to the coordinate system of $\mathrm{C}_{6 \mathrm{v}}^{3}$, at angle 30° around the z-axis (see Fig.2), we rewrite the elements of group $C_{8}^{3} v$ in the coordinate system of $D_{8 h}^{4}$:

$$
\left(h_{1} \mid 0\right),\left(h_{2} \mid r\right),\left(h_{8} \mid 0\right),\left(h_{4} \mid r\right),\left(h_{5} \mid 0\right),\left(h_{6} \mid r\right)
$$

$$
\begin{equation*}
\left(\mathrm{h}_{24} \mid \tau\right), \quad\left(\mathrm{h}_{19} \mid 0\right), \quad\left(\mathrm{h}_{20} \mid \tau\right), \quad\left(\mathrm{h}_{21} \mid 0\right), \quad\left(\mathrm{h}_{22} \mid \tau\right), \quad\left(\mathrm{h}_{23} \mid 0\right) \tag{1.7}
\end{equation*}
$$

Comparing (1.7) and (1.5) we see that the set of elements $(1,7)$ is just the searched restriction of $D_{8 h}^{4}$ on the subgroup $\mathbf{C}_{6 v}^{3}$ in the transition over arms \vec{k}_{1}, \vec{k}_{2} of the star $\left\{\vec{k}_{13}\right\}$ of the lattice Γ_{h}.Now for each IRS from (1.4) we check whether the representation of this restriction has in the expansion into irreducible representations the identity representation or not (the Birman criterion). It is to be noted that the considered representations should be the representation of space group G induced from irreducible representation of the group $G_{\vec{k}}$ of the wave vector \vec{k}_{1} of the $\operatorname{star}\left\{\vec{k}_{18}\right\},\left(k_{1}=\frac{1}{3}\left(\vec{b}_{1}+\vec{b}_{2}\right)\right)$. Calculations show that the Birman criterion is satisfied only by two IRS $-r_{1}$ and r_{4} of the group $D_{6 h}^{4}$. The second arm of the star $\left\{\overrightarrow{\mathrm{k}}_{13}\right\}$ was chosen to be the vector $\overrightarrow{\mathrm{k}}_{2}=\overrightarrow{\mathrm{h}}_{13} \overrightarrow{\mathrm{k}}_{1}=-\overrightarrow{\mathrm{k}}_{1}$.

The next step in searching of atom displacements in the transition $D_{6 h}^{4} \rightarrow C_{6 v}^{3}$. is to determine the coefficients of mixing of modes (basis functions) of the representations r_{1} and r_{4}. These coefficients which are structure parameters are defined from the condition of invariance of the density function $\delta \rho$ under the group $\mathrm{C}_{6 \mathrm{v}}^{3}$:

$$
\begin{equation*}
\delta \rho=c_{1}^{1} \phi_{1}^{1}+c_{2}^{1} \phi_{2}^{1}+c_{1}^{4} \phi_{1}^{4}+c_{2}^{4} \phi_{2}^{4}, \tag{1.8}
\end{equation*}
$$

where $\phi_{1,2}^{1}$ and $\phi_{1,2}^{4}$ are basis functions of representations τ_{1} and τ_{4} respectively.Acting by generators of the group $\mathrm{C}_{6 \mathrm{v}}^{3}\left(\left(\mathrm{~h}_{2} \mid r\right)\right.$, $\left(\mathrm{h}_{24} \mid 0\right)$) on the function $\delta \rho$ (1.8) (which is in practice realized by the action of the corresponding to the generators matrices in the given representation on the "vector"of the structure parameter) and putting $\mathrm{g}_{1} \delta \rho=\delta \rho$, we find the coefficients of mixing of modes of representations r_{1} and r_{4} which describe the displacement of atoms in the transition $D_{6 h}^{4} \rightarrow C_{8 v}^{3}$: $r_{1}\left(c_{1} c_{1}\right)$ and $r_{4}\left(c_{4} \overline{\mathrm{c}}_{4}\right)$. The searched displacements of atoms in ReMnO_{3} are presented in Table 2 and drawn in Fig. 4 (for the elementary cell of $D_{6 h}^{4}$ phase). It should be noted that the obtained displacements in the transition $D_{6 h}^{4} \rightarrow C_{6 v}^{3}$ make experimental data more precise, namely: atoms of Re taking one set of equivalent positions (2a) in the praphase are separated into two sets (2a) and (4b), and the running parameters z_{a} and z_{b} should have opposite signs, and z_{a} should be twice z_{b}. (z_{a} and z_{b} are reckoned from the idealized position $z^{\prime}=1 / 4$). The oxygen atoms, taking in the praphase positions (2 b), are also separated in the low symmetry phase into the positions (2a) and (4b) with the same relation of z_{a} and z_{b},as for Re,

Table 2

The displacements of atoms in ReMnO_{3} in the transition $D_{8 h}^{4} \rightarrow C_{6 v}^{8}$ as a result of mixing of modes $r_{1}\left(c_{1} c_{1}\right)$ and ${ }_{r_{4}}\left(c_{4} \bar{c}_{4}\right)$

$z=1 / 12$

$2=5 / 42$

$z=7 / 2$

$z=14 / 12$

$0-0$

Fig. 4. Displacements of atoms in ReMnO_{3} at the phase transition from $D_{6 h}^{4}$ to $C_{6 v}^{3}$ structure.
but reckoned from the idealized position $z^{\prime}=0$. The oxygen atoms, taking in the praphase position (4f) are divided into two sets (6c), one set with the running parameter $z^{\prime}=1 / 3$, the second with the running parameter $z^{\prime}=1 / 8$ exactly (these atoms are displaced only in the xy -plane). The running parameter x for one set (6c) differs in sign from the corresponding parameter for the other set (6c) (calculated with respect to the position $x^{\prime}=1 / 3$) in the transition over r_{4} and coincides in sign in the transition over ${ }^{\circ}{ }_{1}$. The Mn atoms are also displaced only in the $x y-p l a n e$.

We find that the phase transition into the phase $C_{8 v}^{8}$ is described by the star $\left\{\vec{k}_{13}\right\}$ and two TRS r_{1} and r_{4} of the group $\mathrm{B}_{6 \mathrm{~h}}^{4}$. This result is due to the statement of the problem; namely, we have given the group of symmetry of the asymmetric phase and looked for IRS which may participate in such a transition. If we solve the problem of determination of all possible phases with a given change of the initial elementary cell, then it can be shown that the representation r_{1} describes the transition into a phase with symmetry $D_{6 m}^{8}$ and the representation ${ }_{r_{4}}$ into phase $\mathrm{C}_{8 \mathrm{vv}}^{8}$. The group $\mathrm{C}_{6 \mathrm{v}}^{36 \mathrm{~b}}$ is a subgroup of $D_{8 h}^{8}$. Therefore, in analysing the phase transition $D_{8 h}^{4} \rightarrow$ $\rightarrow \mathrm{C}_{8 \mathrm{v}}^{9}$ we shall call the representation τ_{4} relevant and the representation ${ }^{1}{ }_{1}$ attendant $: / 8 /$.

It is interesting to note that in considering the mixing modes of only one, relevant representation r_{4} the Mn atoms are not displaced from initial positions and the magnitude of displacements of atoms of $\mathrm{O}_{\text {II }}(41)$ is the same for layers $z=\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$. Modes of the attendant representation r_{1} describe displacements of Mn atoms and may diminish the magnitude of displacements of atoms of $\mathrm{O}_{\text {II }}$ (4b) in layers $z=11 / 12$ and $z=5 / 12$.

Let us demonstrate that the displacements of atoms of Re and 0 , which are described by the relevant IRS r_{4} are necessarily accompanied by the displacements of Mn atoms. For this we construct the thermodynamical potential Φ from basis functions a_{1}, a_{2} of the representation r_{1} and b_{1}, b_{2} of the representation r_{4}. Matrices of the reducible representation

$$
\begin{aligned}
& r_{1}{ }^{r_{4}} \text { have the form: } \\
& g_{1}, g_{3}, g_{5}, g_{20}, g_{22}, g_{24}=\left(\begin{array}{cc|c}
1 & 0 & \\
0 & 1 & \\
\hline & 1 & 1 \\
\hline & 0 & 1
\end{array}\right), \\
& g_{7}, g_{9}, g_{11}, g_{14}, g_{16}, g_{18}=\left(\begin{array}{ll|l}
1 & 0 & \\
0 & 1 & \\
\hline & & -1 \\
& 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& g_{2}, g_{4}, g_{6}, g_{19}, g_{21}, g_{23}=\left(\begin{array}{cc|c}
0 & 1 & \\
1 & 0 & \\
\hline & 0 & -1 \\
& & -1
\end{array}\right), \\
& g_{8}, g_{10}, g_{12}, g_{18}, g_{15}, g_{17}=\left(\begin{array}{cc|c}
0 & 1 & \\
1 & 0 & \\
\hline & 0 & 1 \\
& 1_{1} & 0
\end{array}\right), \\
& \mathrm{t}_{1}, \mathrm{t}_{2}=\left(\begin{array}{cc|c}
\epsilon & 0 & \\
0 & \epsilon & \\
\hline & & \\
& & 0 \\
& & \epsilon^{2}
\end{array}\right) \text {, } \\
& \mathrm{t}_{1}+\mathrm{t}_{2},-\mathrm{t}_{1},-\mathrm{t}_{2}=\left(\begin{array}{cc|c}
\epsilon^{2} & 0 \\
0 & \epsilon & \\
\hline & & \epsilon^{2} \\
\hline & 0
\end{array}\right) \cdot .
\end{aligned}
$$

To construct Φ we find the complete rational basis of invariants (CRBI). Following ref. ${ }^{15 /}$ we construct the normal series:

$$
\begin{equation*}
\mathrm{C}^{4} \stackrel{\mathrm{~h}_{13}}{\Longrightarrow} \mathrm{G}_{6}^{3} \stackrel{\mathrm{~h}_{7}}{\Rightarrow} \mathrm{G}^{2} \stackrel{\mathrm{t}_{1}}{\Rightarrow} \mathrm{C}_{1}^{1} \Rightarrow 1 \tag{1.10}
\end{equation*}
$$

The numbers below denote the number of elements in the subgroup G^{1} (i - is the index number). The elements above arrows are representatives of the group expansion in the normal series, for instance, $G^{4} \stackrel{h_{18}}{\Longrightarrow} G^{3}$ means $G^{4}=G^{3}+h_{13} G^{3}$. The CRBI has the form:

$$
\begin{align*}
& I_{1}=a_{1} a_{2}, \quad I_{2}=b_{1} b_{2}, I_{3}=a 1_{1}^{3}+a_{2}^{8}, I_{4}=a_{1} b_{1}^{2}+a_{2} b_{2}^{2}, \\
& I_{5}=b_{1}^{6}+b_{2}^{6}, I_{6}=a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}, I_{7}=b_{1}^{4} a_{2}+b_{2}^{4} a_{1}, \tag{1.11}\\
& I_{8}=a_{1}^{3} b_{2}^{6}+a_{2}^{3} b_{1}^{6}, I_{9}=a_{1}^{2} b_{2}^{4}+a_{2}^{2} b_{1}^{4}, I_{10}=a_{1}^{2} b_{2}^{8}+a_{2}^{2} b_{1}^{8} .
\end{align*}
$$

The thermodynamical potential Φ up to the fourth order in order parameters a_{i} and b_{i} is as follows:

$$
\begin{align*}
\Phi & =r_{1} a_{1} a_{2}+r_{2} b_{1} b_{2}+v_{1}\left(a_{1}^{3}+a_{2}^{3}\right)+v_{2}\left(a_{1} b_{1}^{2}+a_{2} b_{2}^{2}\right)+ \\
& +u_{1} a_{1}^{2} a_{2}^{2}+u_{2} b_{1}^{2} b_{2}^{2}+u_{3} a_{1} a_{2} b_{1} b_{2}+u_{4}\left(a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}\right) \tag{1.12}
\end{align*}
$$

The obtained relation differs in quadratic terms from the conventional form of Φ. Therefore we introduce the change of variables:

$$
\begin{align*}
& a_{1}^{\prime}=a_{1}+a_{2} ; b_{1}^{\prime}=b_{1}+b_{2} ; \\
& a_{2}^{\prime}=i\left(a_{1}-a_{2}\right) ; b_{2}^{\prime}=i\left(b_{1}-b_{2}\right) . \tag{1.13}
\end{align*}
$$

In new variables (1.12) becomes (primes are omitted for simplicity):

$$
\begin{align*}
\Phi & =r_{1}\left(a_{1}^{2}+a_{2}^{2}\right)+r_{2}\left(b_{1}^{2}+b_{2}^{2}\right)+v_{1}\left(a_{1}^{3}-3 a_{1} a_{2}^{2}\right)+ \\
& +v_{2}\left[a_{1}\left(b_{1}^{2}-b_{2}^{2}\right)-2 a_{2} b_{1} b_{2}\right]+u_{1}\left(a_{1}^{2}+a_{2}^{2}\right)^{2}+u_{2}\left(b_{1}^{2}+b_{2}^{2}\right)+ \tag{1.14}\\
& +u_{s}\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)+u_{4}\left(a_{1}^{2}-a_{2}^{2}\right)\left(b_{1}^{2}-b_{2}^{2}\right) .
\end{align*}
$$

Now let us write the equations of state:

$$
\begin{align*}
& \Phi_{a_{1}} \equiv \frac{\partial \Phi}{\partial a_{1}}=0 ; \quad \Phi_{b_{1}} \equiv \frac{\partial \Phi}{\partial b_{1}}=0 ; \\
& \Phi_{a_{1}}=2 r_{1} a_{1}+v_{1}\left(3 a_{1}^{2}-3 a_{2}^{2}\right)+v_{2}\left(b_{1}^{2}-b_{2}^{2}\right)+ \\
& +4 u_{1} a_{1}\left(a_{1}^{2}+a_{2}^{2}\right)+2 u_{8} a_{1}\left(b_{1}^{2}+b_{2}^{2}\right)+ \\
& +2 u_{4} a_{1}\left(b_{1}^{2}-b_{2}^{2}\right)=0, \\
& \Phi_{a_{2}}=2 \tau_{1} a_{2}+v_{1}\left(-8 a_{1} a_{2}\right)+v_{2}\left(-2 b_{1} b_{2}\right)+ \\
& +4 u_{1} a_{2}\left(a_{1}^{2}+a_{2}^{2}\right)+2 u_{3} a_{2}\left(b_{1}^{2}+b_{2}^{2}\right)+ \\
& -2 u_{4} a_{2}\left(b q_{1}-b_{2}^{2}\right)=0, \\
& \Phi_{b_{1}}=2 \tau_{2} b_{1}+v_{2}\left(2 a_{1} b_{1}-2 a_{2} b_{2}\right)+4 u_{2} b_{1}\left(b_{1}^{2} b_{2}^{2}\right)+ \\
& +2 u_{3} b_{1}\left(a_{1}+a_{2}^{2}\right)+2 u_{4} b_{1}\left(a_{1}^{2}-a_{2}^{2}\right)=0, \tag{1.15}\\
& \Phi_{b_{2}}=2 \tau_{2} b_{2}+v_{2}\left(-2 b_{2} a_{1}-2 a_{2} b_{1}\right)+4 u_{2} b_{2}\left(b_{1}^{2}+b_{2}^{2}\right)+ \\
& +2 u_{3} b_{2}\left(a_{1}^{2}+a 2_{2}^{2}\right)-2 u_{4} b_{2}\left(a_{1}^{2}-a_{2}^{2}\right)=0 .
\end{align*}
$$

Consider the type of the solution $\tau_{1}(00), r_{4}$ (cc) (it means that $a_{1}=a_{2}=0 ; b_{1}=-b_{2}=c$) corresponding to the displacement of atoms of Re and O provided that Mn atoms are not displaced. Then eqs. (1.15) take the form:

$$
\begin{align*}
& \Phi_{\mathrm{a}_{1}}: \quad 0=0 \\
& \Phi_{\mathrm{a}_{2}}: \quad 2 \mathrm{v}_{2} \mathrm{c}^{2}=0 \tag{1.16}\\
& \vdots \\
& \Phi_{\mathrm{b}_{1}}: \quad 2 r_{2} \mathrm{c}+8 \mathrm{u}_{2} \mathrm{c}^{3}=0 \\
& \Phi_{\mathrm{b}_{2}}: \quad 2 \tau_{2} \mathrm{c}+8 \mathrm{u}_{2} \mathrm{c}^{3}=0
\end{align*}
$$

Considering that the interaction $\mathrm{v}_{2} \neq 0$ from the second of eqs. (1.16) we observe that c should be zero. This means that the displacements of atoms of Re and O are necessarily accompanied by the displacements of Mn atoms. The experimentally observed displacements of atoms of $\mathrm{Lu}^{\prime \prime \prime}$ are "large", of an order of 0.02 (relative to 0.25). This allows us to consider the Lu displacements to be the main order parameter in agreement with that the representation r_{4} describing these displacements is relevant. The magnitude of attendant displacements is defined by the parameter of interaction v_{2} and should be smaller than that of Lu displacements. This smallness is, obviously, the reason for which the coordinates of Mn atoms in the structure $\mathrm{C}_{6 \mathrm{v}}^{3}$ have not been defined exactly in works ${ }^{/ 3-7 /}$, and for LuMnO_{3} no displacements of Mn atoms are observed.
2. DESCRIPTION OF THE MAGNETIC STRUCTURE IN THE PRAPHASE SYMMETRY GROUP
The Mn magnetic atoms take position (2c). The magnetic representation with star $\left\{\overrightarrow{\mathrm{k}}_{13}\right\}$ has the form:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{M}}^{\left\{\overrightarrow{\mathrm{k}}_{13}\right\}}=\tau_{2} \oplus \tau_{4} \text { 甲T }_{5}{ }^{\oplus \tau_{6}}, \tag{2.1}
\end{equation*}
$$

where r_{2}, r_{4} are one-dimensional IRS of the group $Q_{\vec{x}}$ of the wave vector ${ }^{4} \vec{k}_{1}=1 / 3\left(\vec{b}_{1}+\vec{b}_{2}\right)$ of the star $\left\{\vec{k}_{13}\right\}$ and $\tau_{5},{ }^{r} \tau_{6}$ are two-dimensional ones. The magnetic modes calculated by the standard formulae ${ }^{/ 11,12 /}$ are listed in Table 3.

Table 3
The magnetic modes calculated for the star $\left\{\vec{k}_{13}\right\}$ of the group $D_{8 h}^{4}$ (position $2 c$)

Representation	Are	0 cell		$\begin{aligned} & +\vec{a}_{1},+\vec{a}_{2} \\ & -\left(\vec{a}_{1}+\vec{a}_{2}\right) \end{aligned}$		$\begin{aligned} & \left.-\vec{a}_{1}-\vec{a}_{2}\right) \\ & +\left(\vec{a}_{1}+\vec{a}_{2}\right) \end{aligned}$	
		1	2	1	2	1	2
T_{2}	x_{1}	$1 \bar{\varepsilon} 0$	$\underline{\varepsilon} 10$	$\varepsilon \bar{\varepsilon}^{2} 0$	$\bar{\varepsilon}^{2} \varepsilon 0$	$\varepsilon^{2} 10$	$\overline{1} \varepsilon^{2} 0$
	K_{2}	$\bar{\varepsilon}^{2} \varepsilon 0$	$\varepsilon \bar{\varepsilon}^{2} 0$	$\bar{\varepsilon} 10$	$1 \bar{\varepsilon} 0$	$\overline{7} \varepsilon^{2} 0$	$\varepsilon^{2}{ }^{10}$
T_{4}	${ }_{\underline{K}}^{1}$	$1 \bar{\varepsilon} 0$	$\varepsilon \overline{10}$	$\varepsilon \bar{\varepsilon}^{2} 0$	$\varepsilon^{2} \varepsilon^{2} 0$	$\varepsilon^{2} 9$	$1 \bar{\varepsilon}^{2} 0$
	K_{2}	$\varepsilon^{2} \hat{\varepsilon} 0$	$\varepsilon \bar{\varepsilon}^{2} 0$	ε 㙰	$1 \bar{\varepsilon} 0$	$1 \bar{\varepsilon}^{2} 0$	$\varepsilon^{2}{ }^{2} 0$
T_{5}	x_{1}	001	000	00ε	000	$00 \varepsilon^{2}$	000
	K_{2}	000	00ε	000	001	000	$00 \varepsilon^{2}$
	X_{1}	000	$00 \bar{\varepsilon}$	000	$00 \bar{\varepsilon}^{2}$	000	001
	K_{2}	$00 \bar{\varepsilon}^{2}$	000	$00 \bar{\varepsilon}$	000	$00 \overline{1}$	000
T_{6}	K_{11}	000	$1 \overline{\mathrm{E}} 0$	000	$\varepsilon \bar{\varepsilon}^{2} 0$	000	ε^{210}
	K_{2}	$\varepsilon \bar{\varepsilon}^{2} 0$	000	$1 \stackrel{1}{8} 0$	000	$\varepsilon^{2} 10$	000
	K_{1}	$\bar{\varepsilon}^{2} \varepsilon 0$	000	$1 \mathrm{E}^{2} 0$	000	$\bar{\varepsilon} 10$	000
	K_{2}	000	$\overline{180}$	000	$\bar{\varepsilon}^{2} \varepsilon_{0}$	000	$\bar{\varepsilon} 10$

Let us now define all possible types of the magnetic ordering of Mn atoms ${ }_{3}$ whose crystal symmetry will be $\mathrm{C}_{8 \mathrm{v}}^{3}$ or the supergroup of $C_{6 v}^{3}$ in the considered transition channel. There is only one group of this type - $\mathrm{D}_{\mathrm{gh}}^{8}$ (Table $/ \mathrm{T}^{\mathrm{f}}$). For this we should write out all Shubnikov sungroups of the initial paramagnetic group $D_{6 h}^{4} \cdot 1^{\text {. }}$ with the crystal symmetry $D_{6 h}^{3}$ or $\mathrm{C}_{6 \mathrm{v}}^{3}$. Then the corresponding magnetic structures will be defined by the conditions of invariance of spin density function with respect to generators of the chosen subgroups:

$$
\begin{equation*}
\mathbf{g}_{1} \vec{S}(\vec{r})=\overrightarrow{\mathbf{S}}(\vec{r}) \tag{2.2}
\end{equation*}
$$

The spin density function can, in turn, be represented as a superposition of basis functions (magnetic modes) of IRS entering into the magnetic representation (2.1). Then the condition (2.2) is reduced to the action of matrices corresponsing to generators of the chosen subgroup in the given representation on the column of mixing coefficients of basis functions:

$$
d^{\nu}\left(g_{1}\right)\left(\begin{array}{c}
c_{1} \tag{2.3}\\
\vdots \\
\vdots \\
c_{k}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
\vdots \\
\vdots \\
c_{k}
\end{array}\right)
$$

It should be noted that here one should use the representation of the Shubnikov group induced by the irreducible representation of group $G_{\vec{k}}$ for arms participating in the transition.

Table 4
The types of spin ordering in the plane $x y$ as a result of possible types of mixing of magnetic modes

Representation and type of mixing	$0 \text { cell }$		$\begin{aligned} & +\vec{a}_{1},+\vec{a}_{2} \\ & -\left(\vec{a}_{1}+\vec{a}_{2}\right) \end{aligned}$		$\begin{aligned} & -\vec{a}_{1},-\vec{a}_{2} \\ & +\left(\vec{a}_{1}+\vec{a}_{2}\right) \end{aligned}$	
	1	2	1	2	1	2
$T_{2}\left(c_{2} C_{2}\right)$	100	010	010	100	110	-170
$T_{2}\left(C_{2} \bar{C}_{2}\right)$	$\overline{120}$	2̄10	210	120	- 110	. 1170
$T_{4}\left(C_{4} \bar{C}_{4}\right)$	100	010	010	700	110	110
$T_{4}\left(C_{4} C_{4}\right)$	120	210	210	$\overline{120}$	$\overline{110}$	710

$\frac{\text { Fig.5. Types of the spin ordering in the } x y}{\text { as a result of admissible mixing of magnetic modes. }}$

Matrices of elements $\mathrm{g}_{1} \cdot 1^{\prime}$ differ in sign from matrices of elements \mathbf{g}_{i}. From (2.3) we obtain a system of equations for determining the coefficients of mixing of magnetic modes. Thus, for each Shubnikov subgroup of group $D_{6 h}^{4} \cdot 1^{\prime}$ we find the way of mixing of magnetic modes and the corresponding number of IRS which allows us to draw the magnetic structure. The calculation shows that the representations τ_{5} and r_{6} from (2.1) describe magnetic structures whose crystal symmetry does not coincide with $C_{6 v}^{3}$ and $D_{8 h}^{3}$. Therefore one should consider only representations τ_{2} and ${ }^{r_{4}}$ induced for 2 arms of the star $\left\{\overrightarrow{\mathbf{k}}_{13}\right\}$ From the explicit form of matrices of these representations and (2.3) we find that in both the cases there are possible two types of mixing of modes $\left(c_{i} c_{i}\right)$ and ($\left.c_{i} \bar{c}_{i}\right)$. This gives 4 types of the spin ordering in the plane xy (Table 4, fig.5).

It is easy to see that they coincide with variants of the triangular structure observed experimentally/1/. To obtain the component of magnetic moments along the z-axis (weak ferromagnetism propsed in $/ 4,6 /$), we should calculate the magnetic modes with the waye vector $\vec{k}=0$ (star $\left\{\vec{k}_{16}\right\}$). The magnetic representation $d_{M}^{\mathbb{k}_{1 B}}$ is decomposed into IRS as follows:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{M}}^{\left\{\overrightarrow{\mathrm{k}}_{16}\right\}}=r_{3}+\tau_{6}+\tau_{9}+\tau_{12} \tag{2.4}
\end{equation*}
$$

The magnetic modes for representations τ_{3} and τ_{6} are given in Table 5.

Table 5

The magnetic modes for representations τ_{3} and r_{8} of the group $\mathrm{D}_{6 \mathrm{~h}}^{4}$ with the star $\left\{\overrightarrow{\mathrm{k}}_{16}\right\}$

Representation	Position (2c)	
	1	2
τ_{3}	001	001
τ_{6}	001	$00 \overline{1}$

As a more detailed calculation shows, the magnetic modes of representations τ_{9} and τ_{12} have no z-components we are interested in, and therefore, we will not consider them. Including these results into the model of the magnetic structure 1), 2), 3), 4) considered earlier we obtain eight variants of the magnetic structures:

$$
\begin{align*}
& \text { 1. } r_{4}\left(c_{4} c_{4}\right) \tau_{3}\left(c^{\prime}\right) \text {, } \\
& \text { 5. } r_{4}\left(\mathrm{C}_{4} \mathrm{c}_{4}\right) \mathrm{r}_{6}(\mathrm{c}) \text {, } \\
& \text { 2. } r_{2}\left(c_{2} c_{2}\right) r_{3}\left(c^{\prime}\right) \text {, } \tag{2.5}\\
& \text { 6. } r_{2}\left(c_{2} c_{2}\right) r_{B}(c), \\
& \text { 3. } \tau_{2}\left(c_{2} \bar{c}_{2}\right) r_{6}(c) \text {, } \\
& \text { 7. } r_{2}\left(c_{2} \bar{c}_{2}\right) r_{3}\left(c^{\prime}\right) \text {, } \\
& \text { 4. } r_{4}\left(\mathrm{c}_{4} \overline{\mathrm{c}}_{4}\right){ }_{5}{ }_{6}(\mathrm{c}) \text {, } \\
& \text { 8. } r_{4}\left(\mathrm{c}_{4} \overline{\mathrm{c}}_{4}\right) \mathrm{r}_{3}\left(\mathrm{c}^{\prime}\right) \text {. }
\end{align*}
$$

They exactly correspond to the models proposed in $/ 1 /$. It is clear that all the eight variants differ in the magnetic symmetry which is defined as the intersection of the magnetic group of the component of the magnetic moment along the z axis and the magnetic group corresponding to ordering in the xy plane. As the calculation shows, the magnetic symmetry of possible models of ordering in the xy plane is represented as follows (see Table 6). The magnetic symmetry of the z-component corresponding to the representation r_{3} is described by the magnetic group $\mathrm{Pb}_{3} \mathrm{c}^{\prime} \mathrm{m}^{\prime}$ and that one corresponding to the representation r_{6} by the magnetic group $\mathrm{Pb}_{3}^{\prime} \mathrm{cm}^{\prime}$. Hence it follows that the crystal symmetry $\mathrm{C}_{6 \mathrm{Bv}}^{8}\left(\mathrm{P}_{3} \mathrm{~cm}\right)$ is defined only by the variants: $r_{2}\left(c_{2} \bar{c}_{2}\right) r_{3}\left(c^{\prime}\right)$ and $r_{4}\left(c_{4} c_{4}\right) r_{8}(c)$. Therefore, the experimental data testify to the crystal symmetry

Table 6

The magnetic symmetry of possible models of ordering of the magnitude moments in the xy plane

$\begin{aligned} & \text { Yodels of } \\ & \text { magnetic } \\ & \text { structures } \\ & \text { in the } \times y \\ & \text { piane } \end{aligned}$	The elements of the group												The magne ${ }^{\text {tic group }}$		
			$\begin{array}{l\|l} 3 & 4 \\ & \\ & \text { VIIIII) } \\ \hline \end{array}$		5		19		21	22.23		24			
$T_{2}\left(C_{2} C_{2}\right)$										VIIM	$P G_{3}^{\prime} C^{\prime} m$				
$T_{2}\left(c_{2} \bar{C}_{2}\right)$															$P G_{3} \mathrm{c}^{\prime} \mathrm{m}^{\prime}$
$T_{4}\left(C_{4} C_{4}\right)$													$\mathrm{PG}_{3}^{\prime} \mathrm{Cm}{ }^{\prime}$		
$T_{4}\left(C_{4} \bar{C}_{4}\right)$													$\mathrm{PG}_{3} \mathrm{~cm}$		
		$\longrightarrow g_{i}$			$\rightarrow g_{i} \cdot 1^{\prime}$										

$\mathrm{C}_{6 \mathrm{v}}^{8}$ in the magnetic-ordered state, we should discuss only these variants. From Table 6 it is also seen that the crystal symmetry proposed by Koehler $/ 4,6$ / for magnetic structures $\tau_{2}\left(c_{2} c_{2}\right)+r_{4}\left(c_{4} c_{4}\right)$ and $\tau_{2}\left(c_{2} \bar{c}_{2}\right)+\tau_{4}\left(c_{4} \bar{c}_{4}\right)$, whose spins are deviated from \mathbf{x} or y directions is not described by group C b̂v. The crystal symmetry of the structure $\tau_{2}\left(\mathrm{c}_{2} \mathrm{c}_{2}\right)+\tau_{4}\left(\mathrm{c}_{4} \mathrm{c}_{4}\right)$ is described by group C_{b}^{6}. (The crystal symmetry of the magnetic structure is understood as a symmetry of the group obtained from the magnetic group by neglecting time inversion). Therefore, a correct choice of the initial state in describing the magnetic structures forbids some variants.

A proper choice of the initial phase allows also the separation of the reflexes that contain information on the S_{z} component. Indeed, as the S_{z}-component is described by the star $\vec{k}=0$ of group $D_{B h}^{4}$, its definition requires to analyse the magnetic contribution to nuclear reflexes of the structure $D_{6 \mathrm{~h}}^{4}$. The S_{xy}-components contribute to the remaining reflexes.

Now we shall construct the thermodynamical potential for describing the phase transition corresponding to the variant ${ }^{5}{ }_{4}\left(\mathrm{c}_{4} \mathrm{c}_{4}\right) \boldsymbol{7}_{6}(\mathrm{c})$. For simplicity we consider variables corresponding to displacements of the Mn atoms only (parameter (a ${ }_{1}, a_{2}$) corresponding to the representation r_{1}) and magnetic variables: parameter (c) corresponding to the representation τ_{B} and parameter (b_{1}, b_{2}) corresponding to τ_{4}). To obtain CRBI we should construct five-dimensional matrices $\tau_{6} \oplus \tau^{\oplus}{ }^{\oplus}{ }^{\boldsymbol{r}}{ }_{4}$ for elements of the group $D_{6 \mathrm{~b}}^{4} \cdot 1^{\prime}$. Then separating all different matrices we construct the normal series, and following ref..$^{/ 15 /}$ construct the CRBI

$$
\begin{align*}
& I_{1}=c^{2}, I_{2}=a_{1} a_{2}, I_{3}=b_{1} b_{2}, \quad I_{4}=a_{1}^{3}+a_{2}^{3}, \\
& I_{5}=a_{1}^{4} b_{1}^{2}+a_{2} b_{2}^{2}, \quad I_{6}=b_{1}^{6}+b_{2}^{6}, \quad I_{7}=a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}, \\
& I_{8}=b_{1}^{4} a_{2}+b_{2}^{4} a_{1}, \quad I_{9}=a_{1}^{3} b_{2}^{6}+a_{2}^{3} b_{1}^{6}, \tag{2.6}\\
& I_{10}=a_{1}^{4} b_{2}^{4}+a_{2}^{4} b_{1}^{4}, \quad I_{11}=b_{1}^{8} a_{2}^{2}+b_{2}^{8} a_{1}^{2} .
\end{align*}
$$

Changing variables so that the invariants I_{2} and I_{3} take the usual form: $I_{2}=a_{1}^{2}+a_{2}^{2}$ and $I_{3}=b_{1}^{2}+b_{2}^{2}$, we may write the thermodynamical potential in the form:

$$
\begin{aligned}
& \Phi=r_{1} c^{2}+r_{2}\left(a_{1}^{2}+a_{2}^{2}\right)+r_{3}\left(b_{1}^{2}+b_{2}^{2}\right)+v_{1}\left(a_{1}^{3}-3 a_{1} a_{2}^{2}\right)+ \\
& +v_{2}\left[a_{1}\left(b_{1}^{2}-b_{2}^{2}\right)-2 a_{2}\left(b_{1} b_{2}\right)\right]+
\end{aligned}
$$

$$
\begin{align*}
& +u_{1} c^{4}+u_{2}\left(a_{1}^{2}+a_{2}^{2}\right)^{2}+u_{3}\left(b_{1}^{2}+b_{2}^{2}\right)^{2}+u_{4} c^{2}\left(a_{1}^{2}+a_{2}^{2}\right)+ \\
& +u_{5} c^{2}\left(b_{1}^{2}+b_{2}^{2}\right)+u_{6}\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)+u_{7}\left(a_{1}^{2}-a_{2}^{2}\right)\left(b_{1}^{2}-b_{2}^{2}\right) . \tag{2.7}
\end{align*}
$$

The equations of state are as follows:

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial \mathrm{c}}: 2 \tau_{1} \mathrm{c}+4 \mathrm{u}_{1} \mathrm{c}^{3}+2 \mathrm{u}_{4} \mathrm{c}\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}\right)+2 \mathrm{u}_{5} \mathrm{c}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)=0 . \\
& \frac{\partial \Phi}{\partial a_{1}}: 2 r_{2} a_{1}+v_{1}\left(3 a_{1}^{2}-3 a_{2}^{2}\right)+v_{2}\left(b_{1}^{2}-b_{2}^{2}\right)+4 u_{2} a_{1}\left(a_{1}^{2}+a_{2}^{2}\right)+ \\
& +2 u_{4} c^{2} a_{1}+2 u_{8} a_{1}\left(b_{1}^{2}+b_{2}^{2}\right)+2 u_{7} a_{1}\left(b_{1}^{2}-b_{2}^{2}\right)=0 . \\
& \frac{\partial \Phi}{\partial \mathrm{a}_{2}}: 2 \tau_{2} \mathrm{a}_{2}+\mathrm{v}_{1}\left(-6 \mathrm{a}_{1} \mathrm{a}_{2}\right)+\mathrm{v}_{2}\left(-2 \mathrm{~b}_{1} \mathrm{~b}_{2}\right)+4 \mathrm{u}_{2} \mathrm{a}_{2}\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}\right)+ \\
& +2 u_{4} c^{2} a_{2}+2 u_{6} a_{2}\left(b_{1}^{2}+b_{2}^{2}\right)-2 u_{7} a_{2}\left(b_{1}^{2}-b_{2}^{2}\right)=0, \\
& \frac{\partial \Phi}{\partial \mathrm{~b}_{1}}: 27_{3} \mathrm{~b}_{1}+\mathrm{v}_{2}\left(2 \mathrm{a}_{1} \mathrm{~b}_{1}-2 \mathrm{a}_{2} \mathrm{~b}_{2}\right)+4 \mathrm{u}_{3} \mathrm{~b}_{1}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)+ \\
& +2 u_{5} b_{1} c^{2}+2 u_{6} b_{1}\left(a_{1}^{2}+a_{2}^{2}\right)+2 u_{7} b_{1}\left(a_{1}^{2} a_{2}^{2}\right)=0, \\
& \frac{\partial \Phi}{\partial \mathrm{~b}_{2}}: 2 r_{3} \mathrm{~b}_{2}+\mathrm{v}_{2}\left(-2 \mathrm{a}_{1} \mathrm{~b}_{2}-2 \mathrm{a}_{2} \mathrm{~b}_{1}\right)+4 \mathrm{u}_{3} \mathrm{~b}_{2}\left(\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)+ \\
& +2 u_{5} b_{2} c^{2}+2 u_{6} b_{2}\left(a_{1}^{2}+a_{2}^{2}\right)-2 u_{7} b_{2}\left(a_{1}^{2}-a_{2}^{2}\right)=0 .
\end{aligned}
$$

Consider the solution corresponding to the appearance of the magnetic structure $\tau_{6}(\mathrm{c})$ and $\tau_{4}\left(\mathrm{c}_{4} \mathrm{c}_{4}\right)$ provided the Mn atoms do not shift, that means $r_{1}(00): c \neq 0, b_{1}=b_{2}=c_{4}, a_{1}=a_{2}=0$. The equation of state take then on the form:

$$
\begin{array}{ll}
\frac{\partial \Phi}{\partial \mathrm{c}}: & 2 r_{1} \mathrm{c}+4 \mathrm{u}_{1} \mathrm{c}^{3}+4 \mathrm{u}_{5} \mathrm{c} \mathrm{c}_{4}=0 \\
\frac{\partial \Phi}{\partial \mathrm{a}_{1}}: & 0=0 \\
\frac{\partial \Phi}{\partial \mathrm{a}_{2}}: & 2 \mathrm{v}_{2} \mathrm{c}_{4}^{2}=0
\end{array}
$$

$$
\begin{align*}
& \frac{\partial \Phi}{\partial b_{1}}: \quad 2 r_{8} c_{4}+8 u_{8} c_{4}^{3}+2 u_{5} c_{4} c^{2}=0, \\
& \frac{\partial \Phi}{\partial D_{2}}: \quad 2 r_{3} c_{4}+8 u_{3} c_{4}^{8}+2 u_{5} c_{4} c^{2}=0 . \tag{2.9}
\end{align*}
$$

From these equations it is seen that in case when the Mn atoms do not shift, the components of magnetic moments in the xy plane are zero. Therefore it may be assumed that in the considered compounds $\mathrm{Re} \mathrm{NaO}_{3}$ the displacements of Mn atoms are the main condition for appearing magnetic components in the xy plane.

A detailed thermodynamical analysis of phase transitions in ReMnO_{8} will be published elsewhere.

REFERENCES

1. Sikora W., Syromiatnikov. JINR, E17-81-439, Dubna, 1981.
2. Kovalev O.W. Irreducible Representation of the Space Groups. Gordon and Breach, New York, 1965.
3. Yakel H.L. et al. Acta Cryst., 1963, 16, p. 849.
4. Koehler W.C. et al. Phys.Lett., 1964, 9, p.93.
5. Bertant E.F. Phys.Lett., 1965, 19, p. 455.
6. Bertaut E.F., Pauthenet R. Phys.Lett., 1965, 18, p.13.
7. Pauthenet R., Veyret C. J.Phys., 1970, 31, p. 65.
8. Izyumov Yu.A., Naish V.E., Syromiatnikov V.N. Kristallografia, 1979, 24, p. 1115 (in Russian).
9. Izyumov Yu.A., Naish V.E., Petrov S.B. J.Magn.Magn. Met., 1979, 13, p. 275.
10. Naish V.E., Syromiatnikov V.N. Kristallografia, 1976, 21, p. 1085 (in Russian).
11. Izyumov Yu.A., Naish V.E. J.Magn.-Magn.Mat., 1979, 12, p. 239.
12. Izyumov Yu.A., Naish V.E., Syromiatnikov V.N. J.Magn.Magn. Mat., 1979, 12, p. 249.
13. Izyumov Yu.A., Naish V.E., Petrov S.B. J.Magn.Magn.Mat., 1975, 13, p. 267.
14. Naish V.E., Syromiatnikov V.N. WINITI, 1977, No.486-77 Dep. (in Russian).
15. Kiniev V.O., Naish V.E., Syromiatnikov V.N. Fizika Metallov i Mietalloviedienie, 1980, 49, p. 241 (in Russian).
16. Lukaszewicz K., Kerut-Kalicinska J. Ferroelectrics, 1974, 7, (1-4, Pf.1), p.81.

> Received by Publishing Department on August 201981 .

