


INTRODUCTION

The symmetry analysis of hexagonal perovskites ReMnOg
{Re; Er, Ho, 1, Se, }‘n}, Y) made on the basis of the paramag-
netic group Cé"-l' 1" has shown that the simultaneous appearance
of 84y and 8, —components should be described by two irredu-
cible representations of space groug (IRS) 038, of the star ik}
(notation according to the Tables %/ ) which for the magnetic-
structure model proposed by experimentalists’®7%/ are not at-
tendant’® and belong to different exchange multiplets 9/,

A detailed analysis of the structure Cgv of compounds
ReMnO4 allowed ug in part | of this work to propose the
existence of the praphase D¥p which is an initial phase for
the structure phase transition Dé‘h -+ Cesv with wave vector
k#0 and for the magnetic transitionm. '

Based on the symmetry group of praphase Dgh , we have shown
in part 2. that the magnetic structure observed in ReMnOg is .~
described by two stars: the component along the 2-axis is
described by the star & «0, ik 1 1 while the component in the
basis plane, }ike the structure phase transition, is described
by the star {K g} The magnetic moments in the basis plane ap-
pear because of the displacement of Mn atoms in the transition
Dgh - 03v .  Thus, supposing the praphase to exist in the com-
pounds &BMnOs we could more exactly define the structure of
hexagonal perovskites preceding the magnetic transition and
describe the reason for which such a complicated magnetic
structure is realized. In the course of analysis of the struc-—
ture and magnetic phase transitions we have formulated several
eriteria which may be checked experimentally,

1. THE CHOICE OF PRAPHASE; STRUCTURE TRANSITION

From the results obtained in experimental investigations/3-%/
it is found that near the point of magnetic transition these
compounds - form the strucgure of perovskites with the hexagonal
symmetry of the group Cgy . Atoms of Re are in positions(2a)
and (4b), atoms of Mn in position (6¢); oxygen atoms O;, in
(2a); O ,in (4b); Oy ,in (6c)3 OW,in (6c), where:

(2a): 1(0,0; ); 20,0, z + %)'
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. 1 2 a2 1 . 1 2 1 . 2 1 1
(4b): 1(-5-, 3 z); a-g-y -g-sz): 3(-5-, W + 25 4(—3'-; s —E-+Z), (1.0

(6c): Xx,0;2); 2(0;x, 2 ; 3(xx, 2; 4(x,0, S+ B 5(0.1.72--+-z): 6(x, x.é-»fz).

Rumning parameters are not determined exactly, but for the
atom of Mo in all compounds of the family it is indicated
that X is almost equal to 1/3. For the case of LuMnO; it
is approximately found that’®:

Luy (4b): z = 0.27, Luy (2a): Z =0,28,

Mo (6cr x = %—.:, z=0,

' 1
: = 5 . =0 ,
01 (2a = 7 O (4b =z (.2
| ©oxzd s L
Om; (6o =5 Zugs
O1v (Be)k x';‘.g..:, Z= .%..

These structure-experimental data om the position of atoms
in LuMnOg allow an idealized version of the structure of
this compound. For this purpose we put z for atoms Luy (2a)
and Lup (4b) to equal 0.25. Parameters x and Z for atoms Mn
and O will be chosen as defined in ref.”® but taken to have
exact values instead of approximate ones. The idealized struc— -
ture, we shall call the praphase, is shown in Fig.1,
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Fig.l. The idealized structure of the LuMnO 3  in the
coordinate system connected with a primitive cell of
the C#, group. The next four layers with z=1/2,

z’= 2/8, 2'=8/4 , 2°=5/6 are turned with respect to
first four layers by 60°



Fig.2. The imbedding of elementary
cells of praphase G and phase Cgy

for the idealized structure of he-
xagonal perovskites.
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Let us now define the group of symmetry of the praphase of
LuMnO, . We assume that the structure G, is a result of

a phase tramsition of the type of displacement from the pra-
phase whose symmetry is described by the group G. In this case
we consider that the ctrystal atom displacements are small

(u; «a, where a is a lattice parameter). Hence it follows
that the group G should be a supergroup of group Cgy.

In considering all supergroups G of group €y, we can very
reduce the list of supergroups if we establish_the channel of
transition’1%1%  from the praphase to phase Cgy - In other
words, we should first define the lattice type of the pra-
phase, the star of the wave vector and the set of its arms
describing the tramsition G- Gy, .

From Fig.l it is seen that the idealized structure LuMnOg
has the hexagonal lattice Iy, of axis X, ¥ which make the
angle 3¢° with x°,y’, respectively, of lattice I'n of struc-
ture Cesv.The imbedding of elementary cells of praphase G and
phase Casv is drawn in Fig.2. o

From tables of possible changes of the transition symmetry
of crystals in phase transitions (see/1%12/and’14)we find that
such an imbedding of elementary cells of highly and low sym-
metric phages is achieved in the transitign along the arms
ky«1/83(by +by) and kp=-k, of the star k13! of latt:i.cel"h
(channel 4 according to tables)

To define the group of symmetry G of the praphase, we uti-
lize tables of subgroups with kK 40 of space group . These
.tables, for each space group of the Pexag'onal system, contain
all subgroups with increasing cell (k # 0); for each transition
channel there is given the corresponding list of subgtroups.
The greoup C%v is a subgroup of the praphase symmetry group G
and should be contained in the channel 4 of lattice I',.From
tables/14 it follows that only the group Dj, has the sub-
group Cyy in channel 4.

'So, the praphase in compounds ReMnOg  has symmetry D;‘h.
Atoms of Re take the position (2a); atoms of Mn, (2¢); atoms
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of 01,(2b); and On(4f) withz=1/12. The atoms coordinates are:
Re (2a): 1(0, 0, 0) 2(0,0, —)
Mn (20): 1(i 2. Ly 2(2,-1-,-31) -

3 4
(1.3)
0, (@b 1(0, 0, ); 2(0,0, -3~’)

011(4f) A(‘g’,"““ Z), 2(

=l
=15 -
The elementary cell of the praphase with positions (1.3) is
shown in Fig.3.

9: 8%, 5. Lmiad, £ 1 -0

3’ 3’ 3’ 33"

O—_;O . o- Mn ' * _.L"'

Fig.3. D}, elementary cell with positions of atoms:
Re —-* , Mn - e, 0 - o . The remaining 4 layers
z2=3/4, z=0, z=1/12, 2=-1/12 are turned w1th respect
to the drawn ones at 60¢°,

Comparing FIES ] and 3 we see that the symmetry and coordi-
nates of atoms in the praphase D%, , are defined correctly.
The praphase D4 was observed at hlgh temperature for ¥MnQg 16/
Supposing the praphase to exist in ReMnO; we can obtain an
information on the structure in the Cgy phase much larger
than from the analysis of experimental data 78-77, Ye determine
now possible displacements of atoms in ReMnO in the tran-
sition D2~ C3 with the star [K 31.Using standard formu-
lae/11.12/ & evdluate the mechanical representation and modes
of displacement of atoms. The mechanical representation has the
form: -
2a: dtnl's

2b: d;ls

-+

T3 871y 875 €1y

rg ®ry 827

. ki3
2(:. d;g = 1'1 91’39?‘591’6 N (1.4)
4f: g 1%, ®ry Org 07y @2rz © Zrg.



The modes of displacements of atoms are listed in Table 1.

' To find the displacements of atoms in the transition Dy~
+C3,we should define the representation of this transition.
For this purpose we shall determine the restriction of group
D%, on subgroup CJ, .From Kovalev/2/we write out all elements
of the zero block of group D gy : : L

010), (glr), (hg]0), (hylr), (hgl0), Chglr),

(h7|0)9 (hsif), (hgio)r (hIU |r), (h11 lo)’ (hizl")’

Myg 100, (b, 1), 4510, (hyglr), (710, (Ryglr),
(g |0), (hggir ), (p1|D), (hgglr)y (hag|0), (hggr),

and of group Cgv;
(hiin)s (h2|?), (h3|0}9 (h4|r)! (hs\o)r (hetf )!

(h 19| 7, (hgp 10}, (hgy Ir), (gpi0), (hpglr), (hggiO).

Table 1

The modes of displacements of atoms in_ ReMnOg
with the star {kjg} ¥~ e=e

transition Dgy -Cgy

(1.5)

(1.6)
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_]Represern Position (2e)

tation 11 0 cell . 4”3{& - (e B~y ~Ta, #(TWr T

| 2 1 2 1 2
5 K, | 81 ool Q0 _ 00 i oog* 00 %2

K, | 001 ] 00 oog 00F 00g | OOF

,l_.. K, } 001 ] 001 00 € ~oog . oog+| oo0g*

4 Jx, | ooi | ool 00 £2 00 EL 00f | ooZ

K, |&%o |E%0 gt g0 £10 £10

— K, [£€0 ] €80 [ £70 £70 1820 18%0

s k, |€i0 £90 1£0 1£0 T gE*0

kK, |E10 |[Ef10 | E€%0 Egto je 0 980

K, £%0 | %o ig*o 1&%0 £10 £10
B féo (%o £ 70 £ 10 tE*0 Fetd

le K, |0 [EM10 120 Tz 0 £8%0 g£%0
K, [0 |£0 €0 £E%0 jgo0 1€ O




‘ Position  (2v) r
tl:::::‘n‘ - Arm 0 cell N C{Z N a:i' ‘f%&;,%z:) '
- 1 2 1 2 1 2
T K 001 001 00 | ©0F | 00£2| o003
Iy, 001 007 00z*| 00F2| ooe | 00
T K, 001 001 oog 00Ee 00£*{ 00&}
4 X, 007 007 0g*| o00g*| o00f | o0f
Ky, £%0 000 iép 000 | E10 | 000
1;_ X, 000 £%0 000 £70 o000 | 1%
K, 000 £'70 000 120 000 |gE%
: X, £10 ooo | Z¢’ 000 3€0 000
X, 000 T3] 000 £10 %0 000
) K, 10 000 | %0 ooo  |gi0 000
r X, %o 000 | £30 000 |&70 000
X, 080 Je0 000 | E*10 000 £10
%:giggfn— Position (2¢)
Arm | g5 ge11 v, 8y -(dard,) |8, 8, M 8
1 2 1 2 1 2
— K 150 £10 {efo [E*eo | €90 | g%
I; 1 — - - ~ —t—
K, |[£%0 |E&fb |eTo 10 | 1E0 | £%10}
T K, 120 | £30 | E‘EQ i £2%0 | 1820
2 £%0 | Ef% |E10 | Tfo dghv | £
K, - 000 1£0 | 000 EE0 000 | £*70
T= . Ky £&% ooc | o coo | £ Jo 000
K, E*%o0 000 | Tg%o 000 | £ 10 000
K, 000 1£20 | 000 | g% 0 ooo | £ 7o
K, 001 000 60f 000 oog? 000
— X, 000 00 000 coi 000 00g*
e K, oo | o0g | ooo | ocof*] ooo | o007
K, 0E*| oo0 00€ 000 00T 000




‘Represan-

Position (44)

0 pell
tation. Arm
1 2 3 4
T Eg 1£0 €10 £10 18 0 |
4 - = = = -
K, EE0 ¢£to £g%0 £2E 0
T IRy 1£0 £ 10 €30 jeo
2 X, EE0 £ £0 £ 80 €0
F 3 j £0
T K, 10 £70 £70 _ 1
: X, g0 |Ect0 gt £ 0
n '1:1 10 £ 70 £10 ig0
“ Ix figo | Zg0 ££%0 £Z0
K, 001 000 000 007
T X, 000 00E 00 000
K, 000 00 E 00 gt 000
' K, 001 000 000 0014
T X, 000 00& 00& 000
& K, 000 00 £ 00E 000
K, oot 000 000 00£%
[ K, 000 1€0 1£0 000
T_: Kg ££7% 1000 000 ££%0
J K, g0 000 000 £%0
X, 000 €D €0 000
K, 000 1£0 €0 000
" K, ££70 000 000 £2%
6 K, £2£ 0 000 000 £% 0
Ko 000 15%0 3€0 000

Considering that the coordinate system of D6

respect to the coordinate system of c?

the z-axis (see Fig.2), we rewrlte the elements of group Cav
1n the coordinate system of Dah 3

ig turned, with
, at angle 30° aroynd




W10, Byl (gl0), @, 1), (10, (gl),

(t.7)

(hoy 17}, (hyg|0), (hgglr), (hypy |0), (hyylr), (hag |0). .
Comparing (1.7) and (1.5) we see that ‘the set of elements
(L.7) is just the searched restriction of D%h on the subgroup
Cayin the transition over arms Ky, Ky of the star {F 45} of
the latticeI'y .Now for each IRS from (1.4} we check whether
the representation of this restriction has in the expansion
into. irreducible representations the identity representation
or not (the Birman criterion). It is to be noted that the con-
sidered representations should be the representation of space
group G induced ftom_irr§ducib1e representation of the group
Gp of the wave vector k,; of the star lkgi, (ky=-g(by+by)).
Cafculations show that the Birman criterion is satisfied only
by two IRS - r, and r, of the group Dqéh. The second arm of
the star {€,4} was chosen to be the vector Kp =Rygk =~k .

The next step in searching of atom displacements in the
transition Dgh - Cgv is to determine the coefficients of
mixing of modes (basis functions) of the representations ry
and r, . These coefficients which are structure parameters are
defined from the condition of invariance of the density func-
tion 6p under the group Cgv:

8 =clol+clalsclpticiod, _ (1.8)

where qbll'e and ‘75%.2 are basis functions of representations 74 and
74 respectively.Acting by generators of the group Cé?v((h2 Ir),
(hg4 [0)) on the functiondp (1.8) (which is in practice reali-
zed by the action of the corresponding to the generators mat-
rices in the given representation on the"wvector"of the struc-
ture parameter)and putting g8p=8p,we find the coefficients
of mixing of modes of representationms 7, and r, which describe
the displacement of atoms in the transition Dg'h > Cé?v :
ry{cqey) and r (c,€,). The searched displacements of atoms in
ReMnO g are present4ed in Table 2 and drawn in Fig.4 (for the
elementary cell of Dan phase). It should be noted that the
obtained displacements in the transition D§, - Cgv make ex-
perimental data more precise, namely: atoms of Re taking one
set of equivalent positions (2a) in the praphase are separated
into two sets (2a) and (4b), and the rumning parameters z, and
z), should have opposite signs, and z , should be twice z,.
(za and z, are reckoned from the idealized position z’=1/4).
The oxygen atoms, taking in the praphase positions (2b), are
also separated in the low symmetry phase into the positions
(2a) and (4b) with the same relation of z, and zy,as for Re,

r
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Table 2

The displacements of atoms in ReMnOg in the
transition D§ - CJ, as a result of mixing of
~modes ry{eqey) and ry(cycy)

Pomi-  ltavien 0 eell +8, . d,, |9, ~8a,
tions ofd tlrpl' -{@&+307 + (G 1-)
1 2 11 2 1 | 2
(2a) | T (&% 002 002 oot 007 007 007
l(2v) T (5@ 002 o002 007 001 oot o001
(20) T, (8 2o 270 210 120 10 { 179
(4£) T |iZo 210 20 2o
T® iZo 210 210 120
ogltions 1 1 3 4 ]

O—O o~ Mo o= b

Fig.4., Displacements of atoms in ReMnQy at the
phase transition from Dg, to Cjg, structure,



but reckoned from the idealized position z°=0. The oxygen
atoms, taking in the praphase position (4f) are divided into
two sets (6c), one set with the running parameter z"=1/8, the
second with the running parameter z°=1/6- exactly (these atoms
are displaced only in the =xy~plane). The running parameter x
for one set (6c) differs in sign from the corresponding para-
meter for the other set (6c) (calculated with respect to the
position x’=1/8) in the transition over r, and coincides in
sign in-the transition ovetr ty.The Mn atoms &re also displac-
ed only in the -xy-plane. -

We find that the phase transition into. the phase cg, is
described by the star {flsi and two. 1IRS .7, and r, of the
group D,  This result is due to the statement of the problem;
namely, we have given the group- of symmetry of the asymmetric
phase and looked for T1IRS which may partieipate in such
a transition. If we golve the problem of determination of all
possible phases with a given change of the initial elementary
cell, then it can be shown that the representation r; descri-
bes the transition into a phase with symmetry Dgh- and the
representation r, . into phase C§,. The group C%, is a sub-
group of Dgh..Therefore, in analysing the phase transitiom D:h-,
.+C§L we shall call the representation 74 relevant and the
representation r, attendant /8/, '

It is interesting to note that in considering the mixing
modes of only ome, relevant representdtionr, the Mn atoms
are not displaced from initial positions and the magnitude of
displacements of atoms of 0O (4) is the same for layers

158 7 11 y '
12712°12" 12’ ‘
displacements of Mn atoms and may diminish the magnitude of
displacements of atoms of G (4b) in layers £=11/12 and z-5/12.

Let us demonstrate that the displacements of atoms of Re
and O, which are described by the relevant IRS rq4  are ne-
cessarily accompanied by the displacements of Mn atoms. For
this we construct the thermodynamical potential ¢ from basis
functions 8y, ap of the representation r; and b‘i, by of the
representation r, ,Matrices of the reducible representation
7y 74, have the form: 10

=1 01
gllgaogstgéolggg ugp." = ' ]

des of the attendant representation r; describe

By+8y-841/814:814:8yg =

io



01
‘ 10
Bar By Bgrgyp 1 8p1 7 B2y~ oo |
1°0,
01 -
10 _
BgrBip By BygrBygrByy T 01 /° . ‘ (1.9)
10
ti,tg = —
e‘é .
€2 0
ty+t t tg 0.« I
itlg, —b1,= =1 - )
2 Iea 0
0 €

To construct & we find the con}plete rational basis of invari-
ants (CRBI). Following ref. we construct the normal seties:

his h7 tt
(1324 = 03 N 02 — cl;‘ -1 (1,10}

The numbers below dencte the number of elements in the subgroup

G {i - is the index number). The elements above arrows are

representatives of the group expansion in the normal series,
hig

for instance, gt > g3 means G4$ G3: hig G2, The CREI

has the form: :

I, =aj8,, I,=bby, Ig=af+al, I, =apf+a,pd,

: (1.11)
=18 8 = 2 = bt 4

Ig =b§+pf, I,-afp2+al?, I,=bla, +dia,,

IS —a?bg+ agbi, 19— 31b2+32b1, IID—a%bg-l-aabl-

The thermodynamical potential @ up to the fourth order in or-
der parameters a, and t:'i is as follows:

P - f13132+72b1b2+vl(3318+ 332) + Vg(aibgi" agbg) +
(1.12)
+ugafafiu bfnfc ugajaghbyr u(adpde aln ) .
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The obtained relation differs in quadratic terms from the con-

ventional form of ¢. Therefore we introduce the change of va-
riables:

In new
city):

. . . “
a'i=a,+a, ; hl _b1+b2 H

(1.13)
a:g =i(ai—a2) H b:o' = i(bl—-bg) .

variables (1.12) becomes (primes are omitted for simpli-

)

re@f+ad)+ g 24b2) +v (83-3a,28%) +

+velag(b8-1)) 24,0 0,1 v u @5 +25) ®+ uy0F4d3) 4 k1.14)

+ug{af+ ag)(b%+ bé%) +u4(af—a§)(bf- b22) .

Now let us write the equations of state:

12

ot op
., o = 0;

i

@y, =2ry8y + vy (Baf-3af) +vp0f-bf) +
+4ugag(af+a) + 2uga,(0%+ bg) +
+20,8,5-b)) =0,
©,,=2r 8, +v,(Ba.a,) +v, (-2byby) +
+4uyay(a§+ad) + 2uga,(bP+ bE) +
~2uga,(05-p§) =0,
@ 2 2

bl =2T2‘h1+V2(231b1é282b2) +4|.|é)1(b 1+ bg ) +

+2u3b1(ai+a§) +2u4b1(a’°i'—322) =0,
(1.15)
Dpg =2rgbp+ v, (258, — 22,0 1) + dub, (b2 b2) +

+2ugb,(a%+af) - 2u,b(af-a2) 0.



Consider the type of the .solution r{(00), 74(cc) (it means that
ay=8g= 0} by==bp= ¢ ) corresponding to the displacement

of atoms of Re and O provided that Mn atoms are not displaced.
Then eqs. (1.15) take the form: ‘

°,,: 0 =0,
by, 2vyc?= 0,
' (1.16)
Gy, : 2rge + Buge 8- 0,
¢'b2'. 21;20 +8].|.203= 0.

Considering that the interaction vp# 0 from the second of
eqs. (1.16) we observe that ¢ should be zero. This means that
the displacements of atoms of Re and O are necessarily accom-—
panied by the displacements of Mn atoms, The experimentally
observed displacements of atoms of Lu 1/ are "large", of
an order of 0.02 (relative to 0.25). This allows us ‘to comsi-
der the Lu displacements to be the main order parameter in
agreement with that the representationr, describing these
displacements is relevant. The magnitude of attendant displa-
cements is defined by the parameter of interaction Vy and
should be smaller than that of Lu displacements. This small-
ness is, obviously, the reasgn for which the coordinates of
Mn atoms in the structure Cgy have not been defined exactly
in works/®7 and for LuMnOg no displacements of Mn atoms
are observed. :

2. DESCRIPTION OF THE MAGNETIC STRUCTURE
IN THE PRAPHASE SYMMETRY GROUF

The Mn magnetic atoms take positionm (2c). The magnetic re-
presentation with star {£ ;3} has the form:
{;13;

dM =Ty

s Org @7 (2.1)
where r_,r, are one-dimensional IRS of the group G p of the
wave vector ¥;=1/3(Fy+b;)of the star €15} and rg5, rg are
two-dimensional ones. The magnetic modes calculated by the
standard formulae/11.12/ are listed in Table 3.
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Table 3

The magnetic modes calculated for the star iE_ 13}
of the group D7y (position 2¢)

Represen~- | "'a:-, +al, , -4, —é'.,_l
tation Ara 0 cell - (O ) + (G, 3w
1 2 1 2 1 2
— K, 1£0 |10 |efdo g0 €*io 1e%
h K, o0 |ef*o €19 1€0 1o | £*0
~— K, 10 g0 [gfo E£E0 £*30 1£%0
hy X, £€0 [sfo {eo 120 4820 | £40
K, 001 000 00& ©00 cog* 000
7] K 000 00g | 000 001 000 oo?:Ei
5 K, 000 00F | 000 | 00£% 000 001
K, 00g2 000 00E 000 001 000
K, 000 1€0 000 | ef%0 000 £4i0
T K, |eg% 000 10 000 &+70 000
K, £ 0 000 i) 000 £ 10 000
K, 000 o 000 | £%0 000 £10

Let us now define all possible types of the magnetic order-
ing of Mn atoms whose crystal symmetry will be 3 or the
supergroup of Cay in the consider%d transiti9¥4fhanne1. There
is only one group of this type - Dy, (Table ). For this
we should write out gll Shubnikov sungroups of the initial
paralgagnetic group D;h -1° with the crystal symmetry Dseh
or Cz, . Then the corresponding magnetic structures will be
defined by the conditions of invariance of spin density func-
tion with respect to generators of the chosen subgroups:

g, 5() = () . (2.2)

The spin density function can, in turn, be represented as

a superposition of basis functions (magnetic modes) of IRS
entering into the magnetic representation (2.1). Then the
condition (2.2) is reduced to the action of matrices cortes—
ponsing to generators of the chosen subgroup in the given
representation on the column of mixing coefficients of basis
functions:

14



cy C1

a*@py | - | o | 2.3)
‘ck ' Gy

It should be noted that here one should use the representation
of the Shubnikov group induced by the irreducible representa-
tion of group Gy for arms participating. in the transitiom.

Table 4

The types of spin ordering in the plane xy as a result
of possible types of mixing of magnetic modes

Repreaenta- X Loz =
tign ‘and 1 o0 - cell O, s, Qy, —Q,
t’iinf_i,f _"(0-1*'aa.) (B, @)
_ 1 2 1 2 1 2
Tz (c.c,) | 100 |ot0 010 100 o 30
Ti (€2Ca) | 120 [270 210 120 |- 310 - | .0
T (e Cy) | 100 joio o0 | oo 70 110
- (c,c)| 120|210 210 120 110 110
Tt Tl Taledd T (ce)

Frl oo
G g

Fig.5. Types of the spin order:mg in the zy plane
as a result of admissible mizing of magnetic modes.
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Matrices of elements g,.1° differ in sign from matrices of
elements g; . From (2.3) we obtain a system of equations for
determining the coefficients of mixing of magnetic modes.Thus,
for each Shubnikov subgroup of group Dgp-1” we find the way
of mixing of magnetic modes and the corresponding number of
IRS which allows us to draw the magnetic structure. The cal-
culation shows that the representations rg and rg from (2.1)
describe magnetic structures whose crystal symmetry does not
coincide with Cé; and Dsh. Therefore one should censider on-
ly representations rg ang r4 induced for 2 arms of the star
]gisiFrom the explicit form of matrices of these representa-
tions and (2.3) we find that in both the cases there are pos-
sible two types of mixing of modes (¢je;) and (e;¢;).This gives
4 types of the spin ordering in the plane xy (Table 4, £ig.5).

It is easy to see that they coincide with variants of the
triangular structure observed experimentally /. To obtain the
component of magnetic moments along the 2-axis (weak ferro~-
magnetism propsed in/48/), we should calculate the magnetic
modes with the waye vector K = 0 (star {K,;q }). The magnetic
representation d§13 is decomposed into IRS as follows:

-+
dikml=r ¥Pq +7Tg +7T .
M 3 8 9 12

(2.4)

The magnetic modes for representations rg and 7y are given
in Table 5,

Table 5

The magnetic modes for representations 7y
and rgq of the group Dgh with the star 1K 44}

Representation Position (2¢)
i 2
3 001 001
7o : 001 ool

As a more detailed calculation shows, the magnetic modes
of representations rg and r ypohave no z-components we are in-
‘terested in, and therefore, we will not consider them. Includ-
ing these results into the model of the magnetic structure
1), 2), 3), 4) considered earlier we obtain eight variants
of the magnetic structures:
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. _r4(c4c4)1r3(c'), 5. ryaleac,drg (@),

2. ry(ogey)rg(e’), 6. 19 (€gep) 7y (), (2.5)
‘3. g (0262) ’3:(c)_r 7. 79 (0262)1'3 (c')’. )
4o 1, (e c,) 7o (), 8. r, (6,9,) 75 (€.

They exactly correspond to the models proposed in/l. It is
clear that all the eight variants differ in the magnetic sym—
metry which is defined as the intersection of the magnetic
group of the component of the magnetic moment along the z-
axis and the magnetic group corresponding to ordering in the
xy plane. As the calculation shows, the magnetic symmetry

of possible models of ordering in the zy plane is represented
as follows (see Table 6). The magnetic symmetry of the z -com-
ponent corresponding to the representation rg is described by
the magnetic group P6jc’m’ and that one corresponding to the
representation rg by the magneticsgroup P83 cm”. Hence it fol-
lows that the crystal symmetry Cev (PBgem) is defined only

by the variants: r,(cgly)rg(c”) and rylcgcy)rg(c). There-
fore, the experimental data testify to the crystal symmetry

Table 6

The magnetic symmetry of possible models of ordering
of the magnitude moments in the xy plane

Hodela of The magne |
stru::t:ea The elements of the group tic group
in the xg-
plane
412 (314 |5 |61 20|24 22[23] 24
— 7 7 %
f;,__ (C;.\_Cg‘) %/ // / / P63)Clm
' 7
E ( Cy EJ_) / Péjclfm’
7 7 . y
T (c,C) / / Pb,cm
T (G Pé,cm

—> 9;.-//)
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C:v in the magnetic-ordered state, we should discuss only
these variants. From Table 6 it is also seen that the crystal
symmetry proposed by Koehler /4:8/ for magnetic structures

To (0202) +r4(c4c4) and 12(0262) +f4((34€4), whose SpinS ar
deviated from X or y directions is not described by group Cév.
The crystal symmetry of t,the structure rp(cgCg) +r4lcycy)

is described by group Cg.(The crystal symmetry of the magne-.
tic structure is understood as a symmetry of the group ob-
tained from the magnetic group by neglecting time inversion).
Therefore, a correct choice of the initial state in describing
the magnetic structures forbids some variants.

A proper choice of the initial phase allows also the sepa-
ration of the reflexes that contain information on the 5, -~
component. Indeed, as the 8, —component is described by the
star =0 of group Dé‘h,its definition requires to analyse the
magnetic contribution to nuclear reflexes of the structure
Dy The 8 y—components contribute to the remaining reflexes.

Bow we shall construct the thermodynamical potential for
describing the phase transition corresponding to the variant
rg (Cacq)rg(c). For simplicity we consider variables cor-
responding to displacements -of the Mn atoms only (parameter
(a,.8,) corresponding to the representation 71} and magnetic
variables: parameter- (¢) corresponding to the representation r
and parameter (by,by) corresponding to r, ). To obtain CRBI
we should construct five-dimensional matrices rgar e Ty for
elements of the group Dgh-l’. Then separating all different
matrices we construct the normal series, and following ref /1%’
construct the CRBI

2 - - _ a8 3
Il=c . 12_ 3,35, Ia_blhg, I,=ay+ a;,

T - g w2 2 _ 18, 1.0
15_a1b1+a2b2. Iﬂ_b1+b2,
1

4 4
Ig=bja, + bga,,
(2.6)
Iio =afpd +afpt, 1,,-bfag.bvfal.

Changing variables so that the invariants Ig and I3 take the

usual form: [,=a%+af and Ig b§+bg, we may write the
thermodynamical potential in the form:

@ zr102+r2 (a¥+3,§)+r3(b21+b22) +v1(af—3ala§) +
+ Vg la; (0%-b$) -~2a,(bby)] +

18



+ugets ug(af+ad)? +u3(bf+b§}2 +u4c2(a‘°{+ ag) +

v ugeBZibg) +ug(af+raf) b} + uy@i-aHO -0 .

(2.7)
The equations of state are as follows:
-g%: 2r1c + duqc 3y 2u,0(ad +ag)+ 2u50{b§+ b22) =
g;:’l: 2rpay+ vy(3a% ~332) + v, (b P-bE) + du,a (@f+ af) +
+2u4czal+20631(b21+b§) +2uq8 4(b{-Db3) = 0, (2.8)

: 2,2
%32: 2T232+ Vl(—ealaz) + Vz(—*gblb 2) +4U232(31+ 3-2) +

+ 2u02a o+ 2uga (b Pr b2) ~ 2uja ,(0F-b3) = 0,

,3%%’ Br4bi+ Vo(28,by ~22,0,) +dugh (03 b2 +

+ 2ugh 1"2 + 2“6"1(321+ ‘;*22) + 2uqby(a ?“ ag) =0,
‘%: 2rgh g+ vy (28,0~ 2ayb ) + augbg(b3+ b%) +

+2ugb ge 24 2ughy (ad+ 2%) —2usby(af-a3) = 0.
Consider the solution corresponding to the appearance of the
magnetic structure r,(c) and ,.4)(040 provided the Mn atoms

do not shift, that means 74000 : ¢c#0, by=by=c,, 84=38,=0.
The equation of state take then on the form:

QE-: .2r10+4u103+4u5004=0,
dc

22: 0=0,

631

_@_‘?ﬁ_: 2v c4~0,

dag

19
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8 g _
Brac +8uge '+ 2upc c¥ =0,

abl [
aigé: 2rse‘+8uac:+2usc 402-_— 0. (2.9)

From these equations it is seen that in case when the Mn atoms
do not shift, the components of magnetic moments in the xy
plane are zero. Therefore it may be assumed that in the consi-
dered compounds ReMnOg the displacements of Mn atoms are the
main condition for appearing magnetic components in the Xy
plane,

A detailed thermodynamical analysis of phase transitions. in
ReMnO 4 will be published elsewhere.
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