


Recently, Enz has published the review paper /1/ referred
here as I, devoted to the two-fluid hydrodynamic description
of ordered systems. However, his discussion ef the viscosity
of dielectric crystals is oversimplified. The assumed form
of compounents of the viscosity tensor for an isetropic (poly-—
crystalliney medium

yij.kp =y[é lk it +5‘:f’6jk +(U‘1)3ij5kpl (1.3.86)

has the complete Voigt symmetry. Thus, these components are
invariant under interchange of indices i and j and also
under interchange of pairs ij and kf .This form is proper for
a rarefied gasof real particles.However,the phenomenoclogical
expressions (1.3.43, 3.50) and also the expressions obtained
from the Chapman-Enskog theory /2/  (or derived from the line-
arized Boltzmann-Pelerls equations with the use of the Zwan-
zig projection operator'@/ yvield the viscosity tensor which

is less symmetric, namely it is invariant only under inter—
change of pairs of indices

ikl =Y wlsj ()

For an isotropic medium the vlsc051ty tensor depends on
three scalar coefficients y , a , d

Yijkl = a 5” Skf’ +}’5ik5j[r + ad ipajk ()
This form follows from the invariance under all rotations
belonging to the orthogonal group and symmetry (1) (cf.,for
example, table A 20 given by Sirotin and Shaskolskaya’4/).
In the Voigt notation the tensor y (2) defines the real,
svmmetric matrixz 99, which we shall call T’
This matrix is the direct sum of two matrices

F =A e B.

The 3«3 matrix A is equal to

1

A-(a+y+d)1, +dT + aT "~

where J, is the unit 3x3 matrix, and



0 1 0
T = 0 0
i 0 0
It is easy to check that T 1, . hence, the correspending
. . 2rk : .
eigenvalues are exp(i —-:-;-T--) , where k=0,1,2. The 6x6 matrix

B is a bit simpler

B=y16+ aly o,

where ¢® is the Pauli matrix

The structure of the matrix I' allows to write down immedia-
tely its eigenvalues. Most of them are degenerate.The eigenva-
lues which differ are

a+y + 3d, a+y, y-a4a.
Hence, the condition of the positivity of [° vields three

inequalities

{(y+a)>0. (y-a)>0, a+y+3d>0
3

Although two forms of tﬁe viscosity tensor (1. 3.86) and (2)
are quite different in both cases, the matrix A% depends

N
] at+d .
only on y and the ratio y = SX& i.e.,
: k4
2 T - ~ I,y ~” -
(A la)),. = =% -l (5.
Ny ; m,nqmyim,jn q = > (8 +an'qj)'
p P
" 12 X . 2 2 TJ}’
The matrix Ay has two degenerate eigenvalues RN 1='AN.2= S
. . ., s . . P
which are not necessarily positive, and one positive eigenva-

¥ Ehd ik h ity (a2 hich
lue Ay g = -(1+v)=¥(a+y+d). But the quantity ( N)f ,whic

defines the relaxationPtime N

2 ~ ~ Ty 7
(RN)f*qi(AEN % qj=---‘-1-:(v+1)= L (ysarqd)
ﬂp pp



is a positive number. This follows from the first and last of
inequalities (3).

> ‘
Since { Ag)y  depends on two scalar coefficients , and »

and is positive, the Enz results are correct and his discus—
cion of the Poisseuille flow remains valid.

One can ask.why the viscosity tensor for a crystal has a
lower symmetry than that for a rarefied gas (Lifshitz, Pitae-
vakii /%) . The above-mentioned more formal expressions show
that the reason is that in opposite to the velocity and the
momentum of a particle, .the quasimomentum and the group velo—
city for a phonon are generally not proportional. .

The lower symmetry of the viscosity tensor yields
another interesting difference for the case of a rerefied gas.
One can introduce the tensors of the first and second visco-
sity (Lifshitz, Pitaevskii/%) . For an isetropic medium the

tensor of the first viscosity depends on two constants ¥y:¥p:

™ - i - _
Vij.xk =Ly By O + 70 %5 é'(yﬁ Ve )8 8 1,

and does not depend on one scalar coefficient as for a rarefi-
ed gas.This fact is frequently overlooked (e.g.,Rogers/ef7 ).
The second viscosity part of the viscosity tensor depends
only on one scalar coefficient,exactly as for a rarefied gas
{Lifshitz, Pitaevskii /®/). _
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