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Frequently, hydrodynamic phenomena in dielectric crystals 
are discussed in terms of kinetic coefficients proper for an 
isotropic gas real particles. For example, RDgers used the 
equation for macroscopic drift velocity V of a gas of phonons, 
which contains two scalar coefficients of the first and second 
viscosity ' and TJ• respectively 11.2/, We shall show that for 
dielectric crystals the tensor of the first viscosity depends 
on two scalar coefficients. For this purpose we shall use the 
results ob-tained by Gurevich Is! (cf. also Lifshitz, Pi taev
skii 1<1 ) • 

I. VISCOSITY TENSOR 

Since we are interested in purely hydrodynamic phenomena 
we confine our discussion to massive perfect crystals at low 
temperatures. Und·er such circumstances the only important 
processes which change the total quasimomenturn of the gas 
of phonons are the Umklapp processes. At low temperatures such 
processes are weak. Moreover we suppose that 

Iuhk a- --f h ka 

where f is equal to the Knudsen number Kn which is small in 
the hydrodynamic regime 

(- Kn << L 

Here Iu is the Umklapp part of the linearized collision ope
rator I, and JsJ-~" is the quasimomentum of a phonon (cf., for 
example,Beck 5 ). Since the dissipation of quasimomentum 
is weak, the hydrodynamic flows in a dielectric crystal are. 
described in terms of two inhomogeneous time-dependent fields. 
One of them is the scalar field of temperature T(r', t), the 
second one is the vectorial field of the drift velocity 
Vcr. t )- In order to describe the phonon part of dissipation 
processes one introduces the deviation function Sf(K ;f,t). 
The argument K=(k,j) labels the wave vector k and the pola
rization j of acoustic phonons. For the sake of convenience 
one takes Of in the form of product 

Of(K;r,t)= m(K)g(K;r.t). 
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where m(K) is the derivative of the Planck equilibrium func
tion f 0 (K). 

a r rf.Kl 
m(K)~ ---~ hJ3f (K)(f (K)+l) 

aw(K) 0 o ' 
-I where f3 = (kBT0) , To being the temperature of the equilibrium 

state. 
The deviation function obeys the: 'kinetic equation 

IN[g(K;r,t)J~iw(kT) v -sk (p-I) i~.L+ik v- i'.w.illa lx 
0 K v IJ. /.LV a rv 11 Kv c v /.LV 

a v. (r t) ( 1 ) 
x -"-'- + ~~ [k J- k (p-1) ,o, p , v cr'.t). a rv v Y Yl\ 1\Y yv v 

The presence of the last term differs our kinetic equation 
(I) from that obtained by Gurevich/s/. This term gives rise to 
the current of energy. However, the relaxation time approxi
mation/51 in which this term vanishes, indicates that this 
term is s~ll. Let .us explain our notation. The group veloci
ty VK is the derivative of the frequency w (K), s is the· entro
py per unit volume, c,v is the specific .heat and p· is a 
component of the phonon mass density tensor. Finalf], a com
ponent D/.Lv of the tensor D is proportional to the matrix 
element of the Umklapp part of the linearized collision ope
rator Iu 

D"v = ~ (g", lu~)(p -l)"v (g ~I<), 
v being the volume of the unit cell. The normal or Umklapp 

part of the collision operator is introduced with the help 
of the linearized collision integrals/51, For an arbitrary 
function of K, say 11 (K), one defines 

(i=N, U). 

The frequency is denoted by g0 (K); and the 
quasimomentum, by g{K). The scalar product 
with the help of the real bilinear form 

(tL,v)= ~ · ~ IL (K)m(K)v(K), 

a-th component of 
is introduced 

N, being the number of unit cells of a crystal. One can show 
that collision operators are nonpositive real symmetric ope
rators (cf., for example/&/ ) 

(i=N,U). 
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Thus, the tensor D, describing the: latt·ice part of the dis
sipaticn of the total qua·simomentum of t"he gas of phonons, 
is nonpositive. 

We shall confine ourselves only to· the discussion of the 
viscosity. With the use of the explicit expression for the 
density of quasimomentum 

llaiJ),t) =-I hka vKrPf(K;r,t) 

one .obtains the expression for components of the viscosity 
tensor 

~a{3.w :-Nh(gav {3' ~g•• ), 

where ~v(K) is an even function 
the kinetic equation 

IN[~ (K)]: {k VK - wf._K)s I!. J. 
/lV /l V C V f.I.V 

(2) -of k, being a solution of 

The function ~v(K) obeys the subsidiary condition which 
guarantees the uniqueness of solutions of the above equation 

(g 0 ,( 1
,):0, (3) 

The condition (3) aliows us to write 'Y1af3,1J-v in a symrm:;tric 
form 

~ :-Nh(l ( ,(; ). 
a{3, IJ.V N a/J IJ-V 

Thus, the tensor 11 is n,ollnegative and synnnetric in pairs of 
indices 

"a/3 ,iJ•• "·'I~·· ,a{3 ( 4) · 

The form (2) explains the reason for a lower symmetry of the 
viscosity tensor of dielectric crystals in comp·arisqn .with 
that for gas of real particles. For a gas (cL ref.f 4/ for
mula (8'.8) with suitable changes of notation) 

~ a{3.~v - -(Pa V {3' i;gv ): - ~·(PaP/3' ~ "v ). 

The viscosity tensor is in addition invariant under interchan
ge of indices within the pairs. This happens because the 
momentum of a particle is proportional to its velocity. For 
a crystal, the quasimomentum cannot be related to the group 
velocity in such a simple way. 

2. FIRST AND SECOND VISCOSITIES 

Now, we shall follow the discussion given by Lifshitz and 
Pi taevskii I 

41
· We shall confine our considerations to the· 

case of isotropic (polycrystalline) media. 
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Let us solve the kinetic equation (I) with all terms vanish
ing but the term proportional to the derivative of a veloci
ty. This equation can be cast t-o the form with _term-s _giving 
the first and second viscosities to be easily distinguished 

In order to find the first viscosity, let us consider the 
equation which follows from Eq. (5) for the divergenceless 
velocity v '{r,t) 

I ! J c I H a 5:. (6) N g ~ kJ.<vKy_,3 kvo,.,);j, . 
y 

Since .the derivative of tbe velocity component can take an 
arbLtrary value we look for the soluti'On of Eq. (6) in the 
form 

obeys the e·quation 

(7) 

Because one can subtract the term .1.
3 

s,.vTr({K) from ( (K) 
- J.<V 

without changing the function .g{K;l .-t). one can assume that 
( 11v {K) is traceless. H-ence, .the trace of both sides of 
Eq. (7) vanishes. This means that for an isotropic medium 
.the sub-sidiary c.ondition 

il) 
({ ).!v • g o)-Q 

is automa-tically fulfilled. The tensor of the first viscos-ity 
·(!) (I) 

~ aB,J.<V~-hN( gav B' ( J.<V ) 

contra~ted over the second pair of indices vaniches 

o(l) ~ -hN(g v , r(l) )20, 
a{3 ,/1Jl. a /3 ., JJ../1 (8) 

The same property has 1J(I) contracted over the first pair of 
indices. 

One can easily check that 17(1) is a nonnegative tensor_, 
symmetric in pairs of indices, 

n(!) ~ -hN(g v
8

- .1.gviJ 
13

,,;:(l) )=-hN(I ,--(1), r(l) ), a/3,.11.1/ a 3 a /1V N""af3 o,JlV 



(!) > 0 
~ (3 (3" c a ,n 

The most gen-eral form of the viscosity tensor ryO),compatible 
-with the rotati0nal symmetry and the condition _(8), is 

~(!(3) ~no 8(3 + a8 8(3 - -l...c rJ+a)o (38 
a ,JlV a11 v av 11 3 a- IJ.V 

(9) 

This form is different from that for a gas/4/ 

( l) [ ' 9 
'I 13 ~n o 8 +8 iJ --"'- 8 ll ]. 

a •11-V att {3u av f3f.J. "3 a-{3 JJ.t' ( 10) 

In order to find the se_cond viscocity we should solve the 

equation for a scalar, even ink'"' function '(II{K) 

IN(((ll\K)]~ (1-k~K _w(k) s ); 
3 cv 

The second viscosity tensor is _proportional to the uni.t tensor, 

with the nonnegative coefficient of proportionality 

n(ll) ~ -Nh( ! g;(, ( (!!) ) ~-Nh( !N(';l ((1!) h. O. 

In the d-erivation of the la-st -equation, we have used the sub

sidiary condition 
(II) 

(go.( )~o. 
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