


I. INTRODUCTION

The two—phonon crystal spectra are the object of numerous
experimental (refs./!=4/, and many others as well) and theore-
tical investigations (refs.”™ 9/ etc.,). In those works the .
researchers’ attention is first and fore most directed to the
changes of the spectrum caused by anharmonicity in the region
of the summation of frequencies of the two phonons, The tempe-
rature influence in this case is examined as a secondary fac-
tor only (see, e.g., refs.®7 ), It is not difficult however
to foresee that the temperature excitation of the optical pho-
nons can be the reason for two important qualitative effects:

I. At zero temperature the anharmonic interaction is carried
out between two virtual quasiparticles. At finite temperatures
the interaction between the phonon modes increases, the anhar-
monic interaction of the really existing temperature excited
phonons being added. This leads to removing the discrete bi-
phonon levels from the summation two-particle bands mlﬂﬂ+w (K-k).

2. At different from zero temperatures, processes of creat-—
ing one phonon and of annihilating a real phonon from another
mode are possible. The spectrum in the region of the frequency
differences of the two phonons is renormalized by anharmonici-
ty and besides the ever existing two-particle bands w,(k) -

- wg(K+k), it can contain discrete levels of one-particle
states (differemnce blphonons)

The assumptions of the temperature variation of the phonon
spectrum are used at the analysis of the experimental data’10.11/
Those papers report on the observations of the polariton spect-
rum peculiarities in the region of difference tones. An equa-
tion for the tWOTPhonon spectrum at nonzero temperatures is
deduced in ref. In that paper, however, the provoked by an-
harmonicity qualitative variatioms of the spectrum in the dif-
ference region are not analysed.

In the present work the dielectric permittivity in the re-
gions of summation and difference of frequenc1es of two pho-
nons (connected by quartic anharmonicity) is calculated by
the method of the temperature Green functions. The necessity
of calculating the dielectric permittivity is provoked by the
strong influence which its peculiarities exert on the polari-
ton spectrum in these regions.



. II. bIELECTRIC PERMITTIVITY IN THE REGION OF THE SUMMATION
AND DIFFERENCE TONES

Let the spectrum of an ideal crystal contain two phonon
modes of nondegenerate v1brat3.ons. We shall denote by by,
by, (k& and respectively by ck €. wp(k) the creation and
ann1h11atlon operators and the dispersion law of the two
modes {we shall consider that « 2 () > w, (k) ). Let’s suppose
that the anharmonic cubic terms are annulled (for symmetry
reasons), and that the anharmonic quartic terms are essen-
tial. The crystal Hamiltonian assumes the following shape:
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(A~ anharmonicity constant, N - number of elementary cells
in the crystal).

At calculating the tensor of the transversal dielectric
permittivity we shall use the following formula (refs./12,18/)
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where V is the crystal volume, e, and m, are correspondingly
the charge and mass of the particles a (electron or nucleus)
and the last expression stands for the Fourier—transform in
respect to the time of the retarded temperature Green function:
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The operator J in a dipole approximation is expressed by
the following sum of the operators J,,of the impulses of all
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the charges in the crystal (see also ref.”'* )
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(uy includes all charged particles in the point n of the lat-
tice). We use the relation between the matrix elements of the
impulse operator and the electric dipole moment p‘®(K, k) to
express operator (4) in the regioms we are interested in
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The matrix element p(z)(K,k) expresses the electrooptical
anharmonicity”1%/ and is usually several times smaller in size
or by an order smaller than the matrix element p{!} for the
transition from a ground state (0> . into a state with a di-
pole—active phonon. Further we shall consider that the quantity
& (E,k)= p{® depends slightly on the wave vectors K,k . Such
a supposition is fulfilled, e.g., in the case of the intramo-—
lecular vibrations in a molecular crystal with one molecule
in the elementary cell. A .

Having in mind equations (2), (3) and (5), the calculation-
of the dielectric permittivity is reduced to finding the Fou-
rier-transform of the Green functions of the following type:
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as well as of the functions G® s a® s ¢™® yith other com—
binations of operators in the moments t and t=0 (see (3) and
(6)). o

The calculation is done by the standard methods with time
differentiation and with a following splitting of the chain
of equations for the Green functions., Let’s limit to the first .
order terms by the constant of anharmonicity. At the calcula-
tions we shall use correlations of the type:
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The first correlator we expkess by the ocdupation numbers nb(k).
n® (k) for the two phonon modes (n (k)={exp(hm1(k)/kT)-1]_l)

+ b
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We introduce the symbols:
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For the dielectric permittivity we get the expression:
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(the addend <X ei /m,>>is elimipated by using sum rules, si-
milar to those deduced in ref.“z/, ch.TI). The poles of the
Green functions and respectively the resonances of e;.,(m,K)
we find from the equation:

AgK.0)= 1-4 A [T, (K,0)+Ty(K, o)1= 0. an

The function R(K,» ,"I‘) has the following form:
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111, PECULIARITIES OF THE TWO-PHONON SPECTRUM

. At zero temperature (n®=n bEO} only .a- two~particle band
@, (k) + w K-k ) appears in the spectrum (see (11)). At gre-
ater values of the anharmonicity constant A, a biphonon level
splits from this band because of the addend 1 in the numera-
tor of the sum (9a). (This level corresponds to the bound
movement of the two phonons in the crystal). At temperatures
different from zero, the positive value nb(k) + B ¢ (K~k) is
added to the addend 1, owing to which the effective anharmo-
nicity constant grows. At narrow phonon bands [Aw /w Awy/wy<<l:
Awy, Awp - width of the bands] and at high temperatures
(ET>>bw 1, hwg ) this "constant" is a linear function of tempe-
rature:
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With the growth of temperature, the biphonon level moves away
from the two- partlcle band o (K)+w 4(K-k), and the distance

will increase llnearly with temperature when the anharmon1c1*
ty is strong, A" >>ﬁ(Am +Aw, ).

2. At zero temperature the quantity ToX,w)= () and theres
fore in the linear by anharmonicity A approximation the latter
won’t influence the band wp(X+ k)-w; (k) (see equatiom (i1))..

At nonzero temperatures . anharmon1c1ty man1fests also in the
difference tones with the effective “constant"
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The more different the frequencies «; and w2 of the two vib-
rations, the more visible the anharmonicity effects are. At
considerable valies of the quantity A™, a discrete level

of a difference biphonon splits from the two-particle band
w, (K+k)-w, (k). Its dependence on the temperature T will be
stronger than at the summation biphonon (compare (i3) and

(15)).

3. Simultaneously with the appearance of discrete levels
inside each band wg (ky ) R (uﬁkz)qu331bound decaying states
come into being., These states are solutions of the equation
for the two-phonon spectrum {i1) as well, and their position
will change in a complex manner with the change of temperature.
The quasibound states will manifest as peculiarities of the
density of the states, sometimes too strong, not coinciding
with the Van Hove critical points.

IV. PECULIARITIES OF THE:DIELECTRIC PERMITTIVITY

At the analysis of the dielectric permittivity we shall
first discuss the role of the first term in the brackets in
formula (10). With the increase of remperature the absolute
values of the quantities Ty (K,0) and T,(K,») grow (see (9)).
‘Beside the discussed in the above passage temperature depen-
dence of the summation and difference biphonon levels, this
leads to increasing of the resonance part of the refractive
‘index and the absorption coefficient for the summation and
'difference regions with temperature. In the vicinity of the
discrete biphonon levels the frequency dependence of el (w ,K)
has a character analogous to the region of the fundamental
'tones of the vibrations (Lorentz’s curce with a width equal
‘to the sum of the widths of the two phonon levels w,(K),w o(k)).



In ‘the two-particle bands wg(ky)tw(kg)the dielectric permit~
tivity has (shows) peculiarities caused by the quasibound le-
vels :(see the end of the above section) and by the Van Hive
eritical points., As far as the quantities nP® and n¢ depend
monotonously on the phonon frequencies, the character of the
¢ {0K) change near the Van HSve critical points remains the
same as at zero temperatures (see., ref./15/), o

The second term in (10) 2AR(K,w,T)AaeaL(u) .. is propor-
ticnal to the anharmonicity constant A,and hence, it is with
‘a smaller order than the first term. The presence of an anhar--
monicity term in Mamiltonian (1) is the reason for appearing
of polarization in the crystal to the difference region.There-
fore the band wp(Ky)~w, (k,) will manifest in the dielectric |
permittivity at T=0 as well. In the present paper, however,
it is shown that the action of anharmonicity at nonzero tem- !
peratures may cause the splitting of a difference biphonon |
discrete level from the band wg (kK D= w (k,).

A particularly simple expression for the dielectric permit-
tivity can be obtained in the high temperature region, if the
condition hg 1< kT <<hw is fulfilled (i.e., the vibrations
of the mode only are excited by temperature: nbakﬂﬁﬂmh>>1>>n°).
It is easy to show that the expression for ¢ (w,K) assumes
the following shape:
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8f(w) is the density of the states in the harmonic two-par-
ticle bands @z(ki)ia,ﬂkz)in the summation (?=1) and in.the dif-
ference (£«2) regions. S

In both frequency regions the temperature excitation and
the anharmonicity condition two effects: 1. increase of the
general contribution in the dielectric permittivity kT/hgp times
(the absorption coefficient grows respectively) Zf‘grbwfh of
the anharmonicity constant by the same factor. The distance
of the summation/difference biphonon levels from the summation/
difference two-particle bands grows approximately in the same

' manneyr,
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V. CONCLUSION

" The investigations in the present work show that the joint
influence of temperature (at kT‘gﬁa)ph ) and of anbarmoni-
city of the two-phonon spectra can prove too strong., The two-—
particle bands will be influenced relatively weaker as far
as their position in the spectrum and thelr structure are de-
termined in harmonic approximation. But temperature will
strongly influence the position of the levels of the anharmo-
nic bound states (the biphonons). We can consider as a quali-
tatively new result the possibility for existing of bound
(one—particle) bands in the region of the frequency diffe-
rence of vibrations. The temperature dependence of the bi-

. phonon levels will cause a strong temperature dependence of

the polariton spectrum. In the spectrum of the normal electro—

 magnetic waves in the crystal a gap will appear’® above the

biphonon levels (both in the summation and difference regions).
With the growth of temperatire the gap’s position in the spect-
rum will change, and its width will grow as well (see formu-
la (15)). '

Naturally, the investigations of the phonon and polariton

. spectra at high temperatures will be hampered by the strong

excitation of the low-frequency acoustic modes. In order to
observe the predicted temperature effects, there should be
chosen optical phonon modes with narrow phonon bands in crys—
tals with strong anharmonicity. In this case, the biphonon le-
vels will be sufficiently removed from the two-particle bands
and the inevitable at higher temperatures background of acous-
tic phonons won’t be an obstacle for observing the temperature
changes of the phonon and polariton spectra in the two-phonon
band.
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