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I. INTRODUCTION 

The two-phonon crystal spectra are the object of numerous 
experime:rital (refs /1-4/, and many others as well) and theore­
tical investigations (refs. 15-9/, etc.). In those works the 
researchers' attention is first and fore most directed to the 
changes of the spectrum caused by anharmonicity in the region 
of the summation of frequencies of the two phonons. The tempe­
rature influence in this case is examined as a secondary fac­
tor only (see, e.g., refs.-'4·7-' ). It is not difficult however 
to foresee that the temperature excitation of the optical pho­
nons can be the reason for two important qualitative effects: 

1. At zero temperature the anharmonic interaction is carried 
out between two virtual quasiparticles. At finite temperatures 
the interaction between the phonon modes increases, the anhar­
monic interaction of the really existing temperature excited 
phonons being added. This leads to removing the discrete hi­
phonon levels from the sutmnation two-particle bands w1 (k)+w2(K-k). 

2. At different from zero temperatures, processes of creat­
ing one phonon and of annihilating a real phonon from another 
mode are possible. The spectrum in the region of the frequency 
differences of the two phonons is renormalized by anharmonici­
ty and besides the ever existing two-particle bands w1(k) -
- w 2 (K+ k), it can contain discr~te levels of one-particle 
states (difference biphonons). 

The assumptions of the temperature variation of the phonon 
spectrum are used at the analysis of the experimental data110,~11 
Those papers report on the observations of the polariton spect­
rum peculiarities in the regiori of difference tones. An equa­
tion for the two-yhonon spectrum at .nonzero temperatures is 
deduced in ref.n. In that paper, however, the provoked by an­
harmonicity qualitative variations of the spectrum in the dif­
ference region are not analysed. 

In the present work the dielectric permittivity in the re­
gions of sutmnation and difference of frequencies of two pho­
nons (connec·ted by quartic anharmonicity) is calculated by 
the method of the temperature Green functions. The necessity 
of calculating the dielectric permittivity is provoked by the 
strong influence which its peculiarities exert on the polari­
ton spectrum in these regions. 
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II. DIELECTRIC PERMITTIVITY IN THE REGION OF THE SUMMATION 
AND DIFFERENCE TONES 

Let the ·spectrum of an ideal ·crystal contain two phonon 
modes of nondegenerate vibrations. We shall denote by bt , 
bk, wl(k) and respectively by cj; ,ck, "'2(k) the creation and 
annih1lation operators and the dispersion law of the two 
modes (we shall consider that w2(k) > w1(k) ) . Let's suppose 
that the anharmonic cubic terms are annulled (for symmetry 
reasons)·, and that the anharmonic quartic terms are essen­
tial. The crystal Hamiltonian assumes the following shape: 

(1) 

(A- anharmonicity constant, N- number of elementary cells 
in the crystal). 

At calculating the tenso~ of the transversal dielectric 
permittivity we shall use the following formula (refs/12,13/) 

2 
411 ea 4rr . ~ " < .. (w,K)=(l- -- « :£ -»)8 .. - --2,-;r-«J i (K,t)J. (-K,t')» , (2) 

lJ ~ V a rna 1J w vn J w 

where Vis the crystal volume, ea and ~are correspondingly 
the charge and mass of the particles a (electron or nucleus) 
and the last expression stands for the Fourier-transform in 
respect to the time of the retarded temperature Green fun.ction: 

G(K,t-t')=-iB(t.-t')« Ji (K,t)Ji (-K,t)». (3) 

The operator i in a dipole apprqximation is expressed by 
the following sum of the operators J~nof the impulses of all 

the charges in the crystal 1121 (see also ref / 141 ) 

'i<n J'(i) -iK• n 
Ji(K)= ::£ m · Un e (4) 

n,~n fLn 

<~n includes all charged particles in the point n of the lat­
tice). We use the relation between the matrix elements of the 
impulse operator and the electric dipole moment p<2>(K,k), to 
express operator (4) in the regions we .are interested in 
w2 (k1) ± w1 (k

2 ) 
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' '<' (2) + + 
J (K)=i"' w (k}p. (K,k)(b k-bk}(c K k+CK k )+ 

l k 1 1 - -+ - (5) 

+ i:l:w (K-k)p(
2
)(K,k)(b+k+bk)(c+K k -c ), 

k 2 1 - - + K-k 

The matrix element p(
2)(K.k) expresses the electrooptical 

anharm.onicity"~141, and is usually several times smaller in size 
or by an order smaller than the matrix element p(1) for the 
transition from a ground state ! 0 > into a state with a di­
pole-active phonon. Further we shall consider that the quantity 
p<2l (K,k)=; p(2) depends slightly on the wave vectors K, k . Such 
a supposition i"s fulfilled, e.g., in the case of the- intramo­
lecular vibrations in a molecular· crystal with one molecule 
in the elementary celL 

Having in mind equations (2), (3) and (5), the calculation 
of the dielectric permittivity is reduced to finding the Fou­
rier-transform of the Green functions of the following type: 

(1) + + 
G (k1 ,k,t)=-i8(t)« (b k (t)-bk (t))(c K. k (t)+CK k (t)}, 

-1 1 -+1· -1 (6) 

as well as of the functions a<2) , G(a) , G(4 ) with other com­
binations of operators in the moments t and t=O (see (3) and 
(6)). 

The calculation is done by the standard methods with time 
differentiation and with a following splitting of the chain 
of equations for the Green functions. Let's limit to the first 
order terms by the constant of anharmonicity. At the calcula­
tions we shall Use correlations Of the. type: 

«b~1 (t)bk (t}bk (t)bk (t)[b+k(O)-bk(O)][c+K k(O) +C K (0)]»~ . 
2 3 4 - + - -k. (7) 

+ + -i-
~ «bk (t)bk (t)»·«b"-' (t)b k (. t) [b. k(O)- b k(O)J[ c (0} + c (0)]». 

1 2 --a 4 , - K+k -K·k 

The first correlator we express bl. the occupation nurD.b:_rs' nb(k), 
n° (k) for the two phonon modes (n (k)= [ exp{t>ru1 (k)/kT)-1] 1) 

+ b 
«bk

1 
(t)bk

2
(t)» ~ ok

1
k

2
n (k 1 ). (8) 

We introduce the symbols: 
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For the dielectric permittivity we get the expression: 

i _ ~m,Cl)[ T 1(K.w)+T2(K.w)_. 2~(K.w,T) I (IO) ,,,. (w,K)=8,
3
. 

2 vh ,l
0 

(K,w) 1l
0
(K,w) 

(the addend <<I e! /rna>> is eliminated by using sum rules, si­
milar to tho sea. deduced in ref ! 121, ch. II). The poles of the 
Green functions and respectively the resonances ~f f:-.. (cv ,K) 

. d f . lJ we fln rom the equat1on: 

(I I ) 

The function R(K,w ,T) has the following form: 

R(K,w,T) = ~2 :l: [ 
2 

1 _______ 1 ____ ] 
. N h k1 w -[wi (k

1
)+w 2 (K-k 1)J" w2-[w

1
(k

1
)-w

2
(K+kfJ2 

[2nb (k2)+1l·[2n°(K-k2 )+1]+1 [2nb (k2)+1!~2n°(K+k2 )+1]- 1 
--- + ·-:::--"-c-;;;----L w2 -[w 

1
(k

2
) +w

2 
(K-k

2 
)j2 w 2-[w /k 

2
) -w

2 
(K+k

2
)J2 

(I 2) 

III. PECULIARITIES OF THE TWO-PHONON SPECTRUM 

1. At zero temperature (n c=D b=O) only .,a two-particle band 
w 1 (k) + w 2(K- k) appears in the spectrum (see (II)). At gre­
ater values of the anharmonicity constant A, a biphonon level 
splits from this band because of the adde.nd 1 in the numera­
tor of the sum (9a). (This level corresponds to the bound 
movement of the two phonons in the crystal). At temperatures 
different from zero, the positive value n b(k) + n C(K-k) is 
added to the addend 1, owing to which the effective anharmo­
nicity constant grows. At narrow phonon bands [~w/w 1.~cv2 /cv 2<<1; <lw 1 . 1lw 2 -width of the bands] and at high temperatures 
(kT>>bcv 1,hw 2 ) this "constant" is a linear function of tempe­
rature: 

+ b c A = A(1+n +n )~ av av (I 3) 
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With the growth of temperature, the biphonon level moves away 
from the two-p~rticle band w 1 (k) + w 2(K-k), and the: distance 
will increase linearly with t-emperature when the anharm.onici:... 
ty is strong, A+»t(~w 1 +~w 2 ). 

2. At zero temperature the quantity T2(K ,w )~ 0, and ther-e­
fore in the linear by ·anharmonicity A approximation the la··tte·r 
won't influence the band w2 (K+ k)-w 1 (k) (see equation (11)) .. 
At nonzerO temperatures anharmonicity manifests also in· the 
difference tones with the effective "constant" 

A-= A(nb -n• )~A {1:.(_1_ _ _L),. 
av av n wav av 

I "'2 

( 14) 

The more different the frequencies w1 and w2 of 'the two vib­
rations, the more visible the anharmonicity effects are·. At. 
considerable valUes of the quantity. A-, a discrete level 
of a difference biphonon splits froiD the two-particle band 
w2 (K+k)- wh(k). Its dependence on the temperature T will be 
stronger t an at the summation biphonon (compare (13) and 
(15)). 

3. Simultaneously with the appearance of discrete levels 
inside each band w2 (k1) ± w 1(k 2).quasibound, decaying states 
come into being. These states are solutions of the equation 
for the two-phonon spectrum (II) as well, and their position 
will change in. a comPlex manner with the change of temperature. 
The quasibound states will manifest as peculiarities of the 
density of the states, sometimes too strong, not coinciding 
with the Van HO.ve critical points. 

IV. PECULIARITIES OF THE,DIELECTRIC PERMITTIVITY 

At the analysis of 'the dielectric permittivity we shall 
first discuss the role Of the first term in the brackets in 
formula 00). With the increase of temperature the absolute 
values -of the quantities T1 (K,w) and T2 (K,ru) grow (see (9)). 
Be-side the discussed in the above passage temperature depen­
dence of the summation and difference biphonon levels, this 
leads to increasing of the resonance part o,f the refractive 
index and the absorption coefficient for the summation and 
'difference regions with temperature. In the vicinity of the 
discrete biphonon levels the frequency dependence of £L(ru,K) 
has a character analogous to the region of the fundamental 
'tones of the vibrations (Lorentz's curce with a width equal 
to the sum of the widths of the two phonon levels w1(k),w 2(k)). 
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In the two-particle bands w2 (k1)±w 1(k 2)the dielectric permit­
tivity has (shows) peculiarities caused by the quasibound le­
vels ,(see the end of the above section) and by the Van HOve 
critical points. As far as the quantities nb and ne depend 
monotonously on the phonon frequencies, the character of the 
f {w,K) change near the Van HOve critical points remains the 
same aS at zero temperatur~s (see. ref. 1151). 

The second tenn in (10) 2AR(K, w ,T)t..02(K, w) · is propor- I 

tional to the anharmonicity constant A,and hence, it is with 
a smaller order than the first term. The presence of an anhar­
monicity term in Hamiltonian (1) is the reason for appearing 
of polarization in the crystal to the difference region.There­
fore the band w2(k1 )- w 1(k 2) will manifest in the dielectric I 

permittivity at T:O as well. In the present paper, however, 
it is shown that the action of- anharmonicity at nonzero tem­
peratures may cause the splitting of a difference biphonon 
discrete level from the band w2 (k 1)- w 1 (k 2). 

A particularly simple expression for the dielectric permit­
tivity-can be obtained in the high temperature region, if the 
condition hcu 1<< kT << hw 2. is fulfilled (i.e., the vibrations 
of. th~ mode only are E7XC1ted by temperature: nb ... kT /hcu 1>>1>>nc) 
It is easy to show that the expre~sion for € (w.K) assumes 
the following shap~: 

[8r (K,w)~ r ge(K,we,ldwf 
cu -wE 

ge(w) is the density of the 
ticle bands !"2(k1) ±w 1(k 2)in 
ference ce =2) regwns. 

states in the harmOnic 
the summation ( e ~1) and 

(IS) 

two-par­
in-the dif-

In both freqUency regions the temperature ·ex_ci tat ion and 
the anharmonicity condition two effects: 1. inc~ease of the 
general contribution in the dielectric permittjvity kT/hwtimes 
(the absorption c;.oefficient grows respectively); .. 2. growtb of 
the anharmonicity constant by the same factor. The distance 
of the summation/difference biphonon levels from the summation/ 
difference two-pa.rticle bands grows approximately in the same 
manner. 
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V. CONCLUSION 

The investigations in the present work show that the j.oint 
influence of temperature (at kT;: tw ph ) and of anharmoni-
city of the two-phonon spectra can prove too strong. The two­
particle bands will be influenced relatively weaker as far 
as their position in the spectrum and their structure are de-

[ termined in harmonic approximation. But temperature will 
strongly influence the position of the levels of the anharmo­
nic bound states (the biphonons). We can consider as a quali­
tatively new result the possibility for existing of bound 
(one-particle) bands in. the region of the frequency diffe­
rence of vibrations. The temperature dependence of the hi­
phonon levels will cause a strong temperature dependence of 
the polariton spectrum. In the spectrum of the normal electro­
magnetic waves in the crystal a gap will appear~/ above the 
hi phonon levels (both in the swmnation and differ.ence regions). 
With the growth of temperatire the gap's position in the spect­
rum will change, and its width will grow as well (see formu-
la (15)). 

Naturally, the investigations of the phonon and polariton 
spectra at high temperatures will be hampered by the strong 
excitation of the low-frequency acoustic modes. In order to 
observe the predicted temperature effects, there should be 
chosen optical phonon modes with narrow phonon bands in crys­
tals with strong anharmonicity. In this case, the biphonon le­
vels will be sufficiently removed from the two-particle bands 
and the inevitable at higher temperatures background of acous­
tic phonons won't be an obstacle for observing the temperature 
changes of the phonon and polariton spectra in the two-phonon 
hand. 
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