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I. INTRODUCTION 

This is the first in a series of papers dealing with the 

dynamics of Bloch electrons in external electric fields. 

Since the first paper by Bloch/1/ , a large body of literature 

has been accumulated about this subject. In spite of this, 

mainly due to some subtle mathematical phenomena which appear, 

few rigorous results are known and matters like the existence 

of oscillating Bloch electrons, effective Wannier Hamil

tonians, Stark-Wannier ladder, etc., are still controversial. 

The aim of this series of papers is to obtain rigorous 

results about the dynamics of Bloch electrons in external 

electric fields and to settle some of the existing debates. 

The main aim of the present paper is to prove a result 

announced already/2/. In the second section, the problem is 

described and the main results are stated. The third section 

contains the first order th~ory. The recent result due to 

Bentosella 131 is shown to be a particular case of our first 

order theory. The fourth section contains the general theory 

and the proof of the main results. In the last section, we 

shall indicate some straightforward generalizations. As 

already announced 121 the r,roof follows essentially the proof 

of the adiabatic theorem 41 with some simplifications, due to 

the time independence of the starting Hamiltonian. 

2. DESCRIPTION OF THE PROBLEM AND THE MAIN RESULTS 

The Hamiltonian we shall consider in this paper is of the 

form 
(2. I) 

where (h = 1) , 

H , __ l_IJ.+V(i)=T+V. 
o 2m 

(2. 2) 

(2.3) 
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where n is the unit vector along an arbitrary fixed direction. The Hamiltonian (2.1) describes the dynamics of an electron of mass m in the potential V (x) and under the 
~ ' ~ influence of the electric field E = -n. e suppose that 

lim II V-1-11 = 0, a-.oo T+ a 

About V we shall 

(2. 4) 

i.e., V is 'I bounded, with relative bound zero. The condition (2.4) is a rather weak one; it is sufficient that V(~) be uniformly locally L 2 (ref. 151
, Th. XIII 96). In particular, if V(1} is periodic, i.e., for some basis {iiI i=l, 2 , 3 ~ R 3

, 
V(x+l) =V(X), it is sufficient to be square integrable over the unit cell. The condition (2.4) implies. via the KatoRellich theorem (ref. 161

, Th.4.3. Chapter V) that H0 is self-adjoint on D (T). It is known (ref .15 , Th.X 38) that H' is essentially self-adjoint on C(j(R 3
) Let a0 be the spectrum of H0 • We shall suppose that there exist A1 ,A2 f;R , such that 

a0 =aguai, a0 fo¢, 

dist(ag,ap = d> 0. 

Let us stress that we shall not make any nature of a 0 , so our results apply for well as for Jisordered ones (as far as a exists 171 ). 

(2.5) 

assumption about the 
periodic systems as 
forbidden gap 

Let P 0 be the spectral projection of H 0 corresponding to ag and 

y
0
(<,t)= II<I-P

0
)exp(-iH't) P

0 
II. (2. 6) 

Obviously 1-y/lk, t) is a lower bound for the probability to find at the time t the electron in a state corresponding to u~, if at t = 0 the electron is with probability one in a state corresponding to ag . The main problem, we shall be concerned with, is to obtain upper bounds on y 0(£, t). The main result obtained in section 3 is that (see Ths.3.J. and 3.2.) 

(2. 7) 
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for some constants O<C 1,c 2 < oo. In the periodic case, in 

order to establish the existence of oscillating Bloch elec

trons in weak fields 18 •91 , one needs to show that y
0 

(e, t) <<1 

1 I •~I for t of order T = :nr- , where is the linear dimen-

sion of the unit cell. Clearly, the bound (2.7) is not suf

fic'ient. In fact, eC ~ T is less than one only for .suf

ficiently large forb1dden gaps. On the other hand, physical 

arguments suggest that 
(2.8) 

irrespective of the smallness of the forbidden gap. Bounds on 

y 0(,, t), powerful enough to imply (2.8), are obtained in 

section 4. More exactly, it is proved that for a given in

teger. n , there exist O<e n, b n, C: <.,.,, k=l,2, ... ,n such that 

for' 0 < t <en 

n n k n+ 1 
y

0 
(,, t) s l c k , + b , t. 

k=l n 
(2.9) 

Moreover, during the proof of (2.9) the following construc

tion emerges. We shall construct a sequence of bounded 

operators Bn' n= 0,1, ... with the following pi'operties: 

i. Bn is well defined for t<!n and 

II B II< b ' n 
(2. I 0) 

n - n 

by 

n-t 
H (<) ~ H 0 -, l B k, 

n k= 0 
n = 1,2, .... (2. II) 

n-1 · 
Then ' l II B II < d

2 
, so that H (<) still has a gap in 

k=O k n 

its spectrum. Let P n be the spectral projection of Hn {t) 

corresponding to the part of its spectrum which coincides 

with ag in the limit t -+ 0. Then 

\I (1- P n )exp(-iH' t) P n II :S bn' n+lt. (2.12) 

iii. If H ~ (,) is defined by 

HW(<) ~ H' +<B 
n n 

or, otherwise, 

H~'{d=Hn{d+tXn+l, 

,, 
(2.13) 

(2. 14) 
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where 

(2. 15) 

then 

[Hw(d, P l ~o. (2. 16) n n 

4 iv. Suppose that V(~ is periodic and 
are the unitary operators representing the 
the basis vectors of the lattice. Then 

T ( a; ) , i ~ 1 ,2.3 
translations with 

(2. 17) 

and, consequently, 

[H (<), T(a. )J = 0, 
n ' (2.18) 

(2. 19) 

We have called H:(d effective Wannier Hamiltonians of order n , since the approximative Hamiltonians of the above Sort have been discussed for the first time by Wannier 11° 1 
(see also refs / 11 ·121 ) . 

3. THE FIRST ORDER THEORY 

We shall start with a few observations. 
I. Consider the family of self-adjoint operators 

Since u;(t)D(H 0) = D(Ho), we have D(H 0 (t))=D(H 0 ). Moreover, as it can be easily seen 

1-Jo -1>2-)-) H
0 (t)=2m(p-<nt) +V(x); p=-iV. 

2. Let for z <;p (11 0 (t)) =p(H 0 ) 

(3. I) 

(3.2) 

(3.3) 



Then, R 0 (t;z) 
and· 

is norm differentiable as a function pf t 

~ ~ 

d 1 _p·n 
-R (t;z) =<U*(t)---
dt o o H0- z m 

(3.4) 

. 1 p.n. r · 
To·See this, note first that the'bperator-·-- ---·-.-.-is 

bounded and Ho- z m Ho ....:. z 

(3.5) 

The general case follows from (3 .. 5), remarking t"4at 

_j_R (t;z)=U*(t)[.i...R
0

(t;z)l 
0
. U

0
(t) · 

dt 0 0 dt t= 
(3.6) 

3. By definition, H0(t) 

We shall denote by 
and H 0 have the same spectrum. 

P0
(t) =U~(t)P0 U

0
(t) (3. 7) 

d
. 0 

corresp~:m .lng ·to o 0 the spectr~l projection of H0 (t) 

P0 (t) is norm differentiable and 
does not depend on t • In fact, 

the norm of the derivative 

~ ~ 

.i.... P (t) = , U * (t) [-1- J -;:-1--~ --="-1 
-dz.l U (t), 

dt o o 2 rr i c H0 - z m H 0 - z o 
(3.8) 

where C is a contour surrounding ag . The formula (3.8) 

follows from (3.4) and the usual formula relating the. spect

ral projections and the resolvent of. a self-.adjoint operator. 

4. The following construction, which is crucial for our 

theory, goes back tO Kato 113 1 (see also refs _lSI , Chapter· II, 

§ 4.2, and re£. 1141 , Chapter XVII). 

Lennna 3. !. 
Let P(t) , t ~ R be a family of orthogonal projections, 

having continuous norm derivative with respect to t • 

i. If K(t) is defined by 

K(t) = i(1- 2P(t)) _i__ P(t) 
dt 

(3. 9) 

then K(t) is a family of bounded self-adjoint operators 

and 
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1P(t), K(t)l = -i.i__P(t). 
dt 

ii. The equation 

i~A(t) ~ K(l) A(t), 
dt 

A(O) ~1 

has a unique solution satisfying A- 1 (t)~A*(t) 
A(t) P(O) ~ P(t) A(t). 

(3.10) 

(3.11) 

and 

(3. 12) 

5. Let K 0(t) , A 0( t) be given by the construction in Lemma 3. I, applied to P 0 (t) and 

J3 ~ l..K (0). 0 (. 0 (3. 13) 

Consider now the self-adjoint operator 

(3. 14) 

By direct calculation \which is allowed by Stone's theorem) 

(3.15) 

which implies 
i!X t -iE"X 1 t A

0
(t) ~e 0 e (3. 16) 

From (3. 7), (3. 12) and (3. 16) it follows that 
(p - i< x1 t l - 0 o' e - ' {3.17) 

which implies that if f <;; D(X 1), then P 0 f <; D(X 1 ) and 

(3. 18) 

We are now ready t-o prove the main results of this section: 
Theorem 3. I . 

(3.19) 

Proof: From (3.18) and the fact that H' is essentially selfadjoint on D(H 0 ) .~ D(X 0 ) it follows that 
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(30 20) 

\vhich together with the SchrOdinger equation written in the 

following form 

e-H( t=l "'c] 
0 

implies (30 19) 0 

(3o 21) 

One can easily obtain extentions of the above result. Let 

b(x.') be a bounded function and B be the operator of multi-

plication with b(:Z). Suppose that t \iBii < d/2. Let P 13 

be the spectral projection o£ H0 -cB corresponding to the 

spectrum included in \A\dbst.(A,crg) < (\!B \I\ and 

i' (Xo I D) t 
PB(t)"~e 

Since X0 commutes \.Jith B 

and, exactly as above, 

d icX0 t 
-e 
dt 

(3022) 

(3o23) 

it follows that PB(t) is norm differentiable. From this 

point, all the theory developed above applies and the result 

is 

Theorem 3.2. 

)'B(,ot) 11(1-P )e-ill'<p li··lij.....'!_p (t)J i't. 
1 ' B B''-!' dt B te-O ,I 

(3 0 25) 

Remarks. 

3.1. Supposing that we knm.; that on a dense set x0
P0 -P0 X 0 

is well defined and bounded, it is easy to see that tts 

extension by continuity denoted by l X0 , P0 l equals 

J_ \__!!__ P (t) _] He can reformulate the result in 

( di 0 t = 0 

Tho3ol.as 

y (,, t) < ' Ill p , X J II t . 
0 - 0 0 

(3o26) 
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Of course, the same connnent applies to Th.3.2. Moreover, in this case the theory in the first part of this section becomes unnecessary, since we can define X1 and B0 by 

(3. 27) 

3.2. We shall outline the proof of the fact that the bound obtained recently by Bentosella ' 3 ' is a particular case of (3.26). Consider the case when P0 corresponds to a nondegenerated isolated band of a periodic system. Bentosella tooks as b(;;) the periodic function which equals --nx in the first cell. For t sufficiently small, P 8 corresponds to a nondegenerated isolated band of H0 - (B. Let w;1l(i) = uJ'(i- R m) be the Wannier functions of this band (which are supposed to be sufficiently localised, such that all are in the domain of X0 ). 
Let 

I • 

(3.28) 
~. 

Let 

(3. 29) 

Obviously !,] gj 1

1 
< N 

(3. 30) ~ j](l- P )(g -(X +BJfJII < B 0 -

where Jn is the same as in Bentosella's paper. 
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4. THE GENERAL THEORY. 

We shall start by remarking that (3.2), (3.7), (3.9) and 

(3. 11) imply: 

Lemma 4. I. 

R 0 (t;z) • P 0 (t), K0 (t) , A0 (t) 

norm differentiable functions oft~ R . 
Let us consider now H 1 (t) given by 

.I ] A i• X 1 t 
H

1 
(t) ~A~ (tl H

0
(t) -K 0(t)! 0 (t) "" 

are indefinitely 

(H _B) -itX1 t 
o ( o e ' 

( 4. I) 

D(H (t)) • A'(t) D(H (t)). 
1 0 0 

Obviously, u(H
1
(t)) = tr 1 

is independent of t and for 

d ---
~~' Ba!': 

is a union of two disjoint sets 

at --=af' ai (4.2) 

(,~1 _),\' clist\A,ug), { :. B
0 

i·~ l . 

Following the 
can define P1 (t) 
corresponding to 
similar to (3.9), 

Lerrrrna 4. 2. 

construction from the previous section, we 

as the spectral projection of H 1 (t), 

a~ and K1 (t) ,A1(t), B 1 byformulae 

(3.11) and (3.13). 

R 1(t: z), P 1 (t), K 1 (t), A 1(t) areindefinitely 

norm differentiable functions of t;;; R. 

Proof: It is sufficient to consider R 1 (t; z) for 

dist(z. a~) • I! B0 1\ · 
Writing 

-1 
R 1 (t;z) = A,;(tJR

0
(t;zJ[l-K

0 
(t) R0 (t;z)l A 0 (tl (4.3) 

the indefinite norm differentiability of R 1 
(t; z) 

from Lemma 4 o 1 o 

follows 

One can continue this process indefinitely o At the n-th 

step, the value of E for which the procedure can be carried 

out is 

d 
E < ( n 1 n 

2 ~ [!Bill 
j"" 0 

(4.4) 
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The recurrence relations are 

(4. 5) 

(4.6) 

- i(X t H (t)-A'(t)IJI (t)-K (I.)JA (l)oe1'Xnt H 
11 e n n-!l · n n n n n-

(4. 7) 

and the repetition of the theory in the previous section 
leads to 

Theorem 4. 1 . 
For ('-(n' n-0.1, 

' r (t) - I I (l - P ) e -dlt P I [ ··' i i B II t , n '' n n n 

Theorem 4. 2. 
For ( 

that 
1 n , n ,_ 0, 1. 2 , .. 

I' B lj ,F ( Il b • II 
11 

, _ 
11 

there exists b 

(! •. 8) 

( 4. 9) 

such n 

(4. I 0) 

The main body of the proof is contained 
Lemma. 

in the following 

Lerrnna 4.3. 
Let C be a contour enclosing og and satisfying 

dist(C aD) ..Q_ Then, there exist constants an.m h n, m 
n"" o.t· ... ~-. ,;;- = 

21.2. ... such that for t < { n 

(t;zlll c' ,m a n,m 

d m 
II -- p (t)ll <' "+'" b m n - n, m dt 

The proof is by inductj_on over n . 
n- 0, 

< ( m a 
- O,m 

]0 

(4. II) 

(4. 12) 

(4. 13) 



follows frnm 

d . . ~- £t 
-R .(t,z) ~<It (t,z) R

0
(t;z). 

dt Q 0 m 
(4.14) 

Now (~.12) for n ~ Q follows from (4.13) and 

Ill ump (t)l 11<-1-JIIl dm Ro(t;z)l II ldzl-
dtm 0 t=--o - 2rr C dtm .t=O 

(4. 15) 

Supposing (4.11), (4.12) are true for n-1 , (4.11) for n 

follows from the formula 

R (t;z)~A* (t)R (t)[l-K (t)R 
1
(t)]-1 A 

1 
{t). 

n n-1 n--1 n-1 n- n-
(4. 16) 

Finally (4. 12) for n follows Irom the following formula 

P (t) -P ( 0) ~ 
n n-1 

(4. 17) 

~-1-A* (t) [ J 1 K (t) R (t;z) dz]A (t). 

2rri n-1 C H (t)-K (t)-z n-1 n-1 n-1 
n-1 n-1 

Formula (4.17) follows from the fact that 

(4.!8) 

which is true by construction, implying that ~n-l (0) is the 

spectral projection of Ari-t(t)Hn-l(t) An_1(t) corresponding 

to a
0
°_1 for all tl;; R • This finishes the proof of Lemma 4. 3. 

Now (4.10) is implied by (4.12) for rn~l and the defi

nition of B
0

, and the proof of Th.4.2. is finished. 

Finally, suppose that V("i) is periodic and let T(.i\) -be 

the translation operators. Either using 

T(:i., l x0 -x0 T<a, l ~iia, 

or directly from (3.2), it follows that 

[H0(t), T(;; 1
)] ~ 0, t<; R. 

Then, by construction it follows that 

k ~0.1 •... 

and then 

[Hm, T(a1 )] ~ 0, [ Xm, T(a 1 )l~-na 1 , m ~0.1.2 .... 

(4. I 9) 

(4.20) 

(4.21) 

(4. 22) 
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Finally (2.9) follows from (210), (2. I 1), (2.12) and 
Y0 (,, t) :;: 211 P n - P 

0 II + y n (,, t) . 

Remarks. 
(4.23) 

4.1. Leaving the full discussion for a .future publication, we shall connnent a little bit on the controve'rsal exi.stence of the Stark-Wannier ladder. For simplicity, we shall consid~r the one-:Qimensio:nal case. Moreover, we sball· :take P 0 c~rresponding to a ·single nondegener.ated band. Then, ··pn w1ll correspond to a nondegenerate band of Hn • The n-th order effective Wannier Hamil.to~ian Hh can be writt~n as an orthogonal sum 

Hw(,)~P Hw(c)P e(l-P )Hw(<)(l-P ). .(4 .• 24) n n m n n n n. 

Now, P Q H; (() P n .. , has. a. J!lure nondegenera ted point spectrum /15,16. • 

(4.25) 

where 0 is a certain constant and a is the lattice constant. Due to (4.10), if,C~) is a pseudoeigenvalue of order n of the total Hamiltonian in th€. sense that (r'e£. 151
, Chapter XII. 5) 

IIH'v,~n) -(cap+o)~,~n) llsbn,n+l (4.26) 

indicating a spectral concentration of order n . Moreover,· since the one-dimensional projector associated with 0(n) connnutes with H~(d it foll.ows that P 

l (·&(n). e-ill't .t. (n) )12 >l-b2,2(n+l) 2 (4.27) 'l'p. 'Pp - n t 

indicating a rather long lifetime of the pseudoeigenstate 0<[;) . Let us stress that "while the spectral concentration in the sense of (4.26) is of the order (n, the spacing between pseudoeigenvalues is of the order of f • In this sense, one can say that at low electric. fields, a StarkWannier ladder of well separated ·'resonances exists (see also ref~ 116 / for related results). · 

4.2. Our last remark is about the existence of an effecti~e l;lamiltonian having no interband transitions. If the constants bn appearing in (4.10) satisfy 

I b I <en, n - C<~ 
(4. 28) 
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then Hn and Xn converge to well defined operators Hooq, X oo 

for sufficiently small ~:, H
00

+!X
00

= H{ and [POQ,Hf]=O. 

Unfortunately, it seems that (4.28) is not true and the 

above scheme does not work, so if H n converges in some 

sense to an operator Hoo , this is at best in some asymp

totical sense (see also ref .1171 for a discussion about this 

point). 

5. GENERALIZATION AND REMARKS 

The first remark is that in order to obtain bounds of the 

form (2.9), the homogeneity of the electric field is not 

really needed. The whole theory works if (2.3) is generalized 

to 
(5.1) 

the only condition being that ¢(;) be differentiable and 

its derivatives be bounded on R 3 . Of course, in this case 

the translation invariance of Hn, n = 1,2,.... is lost. 

Moreover, bounds on the interband transition probabilities 

can be obtained also in the case when the electric field is 

not constant in time. 
Another generalization is that in the case of homogeneous 

electric field and periodic potential, the whole theory works 

if a forbidden gap exists in the following sense. Let 

..... i 4 00 

a 0 (k) = P. 0 (k) l;=o be the (discrete) spectrum of H0 , 

at a fixed value of crystal 

.\g (k) continuous } , then 
replaced by 

0 0 ..... ..... 
momentum. If a 0 =l.\[.\ =X0(k) ,kc;B ., 

the condition (2.5) can be 

0 ..... ...,. 0 ...,. 
~f dist(,\0 (k), 1a 0 (k)"-..\ 0 (k)l):;: d> 0, (5. 2) 

k(;B 

where B is the first Brilloui~ zone. In other words, the 

condition is that a forbidden gap exists at each value of the 

crystal momentum. 
Our last remark concerns the numerical values of the 

constants appearing in (2. 12), (3.25), etc. For the typical 

values d=6-1o- 19 J , a= 5-10-10 m, Bentosella claims 131 

that for his choice of B 

y (<;T) <4.10-2 
Ben. -

(5.3) 
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without any assumption on V, as far as E< 10 7 V/m. However, we were not able to follow his arguments leading to the above estimates (and we suspect one of them to be incorrect). Our (rough) estimations lead, under the assumption that V(X) is bounded and 

~ ~ -17 ess sup V (x) - ess inf V (x) < 6 -10 J. 
X<;.R 3 x~R s ~ 

to the weaker results 

y 0 (,; T) S 5 ·10 (5.5) 
and 

for E < 10 8..2... - m (5 .6) 

A detailed study of the numerical values of the constants appearing in the theory will be published. 
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