


1. INTRODUCTION

This is the first in a series of papers dealing with the
dynamics of Bloch electrons in external electric fields.
Since the first paper by Bloch’l/, a large body of literature
has been accumulated about this subject. In spite of this,
mainly due to some subtle mathematical phenomena which appear,
few rigorous resclts are known and matters like the existence
of oscillating Bloch electroms, effective Wannier Hamil-
tonians, Stark-Wannier ladder, etc., are still controversial.
The aim of this series of papers is to obtain rigorous
results about the dynamics of Bloch electrons in external
electric fields and to settle some of the existing debates.

The main aim of the present paper is to prove 4 result
announced already’2 . In the second section, the problem is
described and the main results are stated. The third section
contains the first order theory. The recent result due to
Bentosella’3’ is shown to be a particular case of our first
order theory. The fourth section contains the general theory
and the proof of the main results. In the last section, we
shall indicate some straightforward generalizatioms. As .
already announced 72/ the proof follows essentially the proof
of the adiabatic theorem 4/ with some simplificatioms, due to
the time independence of the starting Hamiltonian.

2. DESCRIPTION OF THE PROBLEM AND THE MAIN RESULTS

The Hamiltonian we shall consider in this paper is of the
form

€
H =H + X, (2.1)

where (h =1},

H -l A4V@E)=T+V, % © R3, (2.2)
0 2m : :

(X, ) =0 XE® te LE(R®), (2.3)



where n is the umit vector along an arbitrary fixed direc—
tion. The Hamiltonian (2.1) describes thg dynamics of an
electron of mass m in the potential V(x) and under the

influence of the electric field E=—;—3. About V we shall

suppose that

lim || V2| = 0, (2.4)
T+a .

a-»o

ie., V ig T bounded, with relative bound zero. The con- .
dition (2.4) is a rather weak opne; it is sufficient that v(x)
be uniformly locally L2 (ref./5/, Th,XITII 96). In particular,
if v is periodic, i.e,, for some basis {a; Pi=t,2.3 € R3,

VE+3) =V, it is sufficient to be square integrable
over the unit cell. The condition (2.4) implies. via the Kato-
Rellich theorem (ref.’fﬁ/, Th.4.3, Chapter V) that H; is
self-adjoint on D(T). It is known (ref.’® » Th.X 38) that
H® is essentially self-adjoint on CJ(R %) . .

Let o4 be the spectrum of Hy . We shall suppose that
there exist z\i,)lg'éR » such that

0‘0=0'3U0§9 0‘07é¢v
0 1 2.
g Sl LA,L el RN A T, (2.5)

P 0 iy _
@st(ao,ao) =d> 0,

Let us stress that we shall not make any assumption about the
nature of 69, so0 our results apply for periodic systems as
well as for c?isordered cnes (as far as a forbidden gap
exists’7),

0Let P, be the spectral projection of H, corresponding to
7y and

Yole ) =11 ~P )exp(-iH €t Pyl (2.6)

Obviously 1-y2(, 1) is a lower bound for the probability
to find at the time t the electron in a state corresponding
to oy, if at t =0 the electron is with probability one in
a state corresponding to 08 - The main problem, we shall be
concerned with, is to obtain upper bounds on Yolest) . . The
main result obtained in section 3 is that (see Ths.3.1. and
3.2.)

¥ole, 1) <e(C, +C,t) (2.7)



for some comstants 0<C,,C, < = . In the periodic case, in
order to establish the existence of oscillating Bloch elec-
trons in weak fields 789/ , one needs to show that y, e, 1) <<1

for t of order T = __li__’ where !5:\ is the linear dimen~
€

sion of the unit cell. Clearly, the bound (2,7) is not sui-
ficient. In fact, ¢C,T 1is less than one only for .suf-

ficiently large forbidden gaps. On the other hand, physical
arguments suggest that :

limy (e,T) =0, . (2.8)
€>0 0 ' '
jrrespective of the smallness of the forbidden gap. Bounds on
yole t), powerful enough to imply (2.8}, are obtained in

section 4. More exactly, it is proved that for a given in-
teger n, there exist 0<e, b, C;: <o, k=1,2,...,0 such that
for 0<e<ey

n
" t)5k§lc;c“+bn<““ t. ' (2.9

Moreover, during the proof of (2.9} the following construc—
tion emerges. We shall construct a sequence of bounded
operators B ,n=01,... with the following properties:

i, B, is well defined for e<e, and

B ||<b en : (2.10)
n''= n
ii. Let H_{&) be defined for ¢<¢, by

n=1 ’
Hn(£)=H0—ekEOBk, n=1,2,.... . - (2.11)

n—1 : ‘ : ' ' :
Then ¢ 2 HBk” < %— , so that Hn(c) still has a gap in

its spectrum. Let P_ be the spectral projection of Hy (¢)
corresponding to the part of its spectrum which coincides
with og in the limit ¢ - 0. Then

it - P Jexp(H )P [[ b e H I, (2.12)
iii. 1If H‘;(‘) is defined by
. [ 2
B = H® 2B _, (2.13)
n T
or, otherwise,

HY () =H () +eX, 4, (2.14)
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where

n—1

X =X, + 3B, , (2.15)
n 6] k=0 k
then
(HY¢), P 1-0, (2.16)
n n

-
iv. Suppose that V(X) is periodic and Tla;), =123
are the unitary cperators representing the translations with
the basis vectors of the lattice. Then

[8 1@ )i-0 (2.17)
and, consequently,

[Hn(é),T(Ei ) =0, (2.18)

[Xp TGN =[X,, T@E ) =52, . ’ {2.19)

We have called I{f(e) effective Wannier Hamiltonians of
order n, since the approximative Hamiltoniang of the above
sort have been discussed for the first time by Wannier 710/
(see also refs,/11.12/ y,

3. THE FIRST ORDER THEQRY

We shall start with a few observations.

I. Consider the family of self-adjoint operators

Ho(t) = Ua‘(t) HD Uo(t) : Uo(t)= exp(-—ieXOt) s

(3.1)
D{H (t)) = UL() D(H ).
Since UJ () D(H,y) = D(Hy) , we have D(H,(t) =D(H,).
Moreover, as it can be easily seen
Hy(®) = 5~ B0% 4V P =-iy . (3.2)
2. Let for sz(HG(t)) =p(H0)
1
R o(tiz)e mmmet 31.3)
ol 2) TG (



Then, R, (t;z) is norm differentiable as a function of 1t
and - ' ' '

d en. 1 pem 1y
—_— :z) = . (3.4)
m R,(ti2) =eUsMg— ~0 0,z o®-
: . . s 4 pem- 1L
To see this, note first that the operator — - —-— 18
bounded and Hy-z Hy-z
im || R (6:2) - R (0;2) ~ B 1 j-0. (3.5
fao t 0 0 Hy-2z ® Hy-z :

The general case follows from (3.5), remarking that

d i * N d .,‘. ‘ ' . , .
-d—t—RO(t.z)=U0 (t)l'EfRo("z)] . U ). {(3.6)

3. By definition, Hy(t) and H; have the same spectrum.
We shall denote by : .

P, (1) = U* ()P U (1) : o (3.7)

the spectral projection of Ho(t) corresponding -to og .
P,(t) 1is norm differentiable and the norm of the derivative
does not depend on t . In fact,

' 1 p-n 1
m H

a
dt

. .
po(t)ﬂug(mzﬂ fc Eap O_Zdleo(t), (3.8

where C 1is 2 contour surrounding gg . The formula (3.8)
follows from (3.4) and the usual formula relating the spect=
ral projections and the resolvent of a self-adjoint operator.

4. The following construction, which is crucial. for our
theory, goes back to Kato’13/ (see also refs.’8’ , Chapter II,
§ 4.2, and ref. 1%’ | Chapter XVII).

Lemma 3.1.

Let P(t) ,tcR be a family of orthogonal projections,
having continuous norm derivative with respect to t .

i, 1f K{t) 1is defined by

R(1)=10~2P(ENS-P@®) : (3.9)

then K(t) 1is a family of bounded self-adjoint operators
and ' ' : '



PE, K@)l -—--—i-_g-t-—P(t.). (3.10)

ii. The equation

i:il:—-A(t) K@) AWM, A0 =1 G.11)
has a unique solution satisfying A™1(t) =A%) and
A(t) P(0) = P(t) Alt). (3.12)

5. Let Kyt , Ag(t) be given by the construction in
Lemma 3.1, applied to Pt and

1
BDZ?KQ(G)' (3.13)

Consider now the self-adjoint operator
X,=X4+ B_; DX, ) =D(X,). (3.14)

By direct calculation {which is allowed by Stone's theorem)

d ieXpt e“i“xlt

i~d-t--(e“"*‘°t e HIN K (1) e £ (3.15)
FED(X,),
which implies
ifXﬁt "'iEXlt
A () ~e e ) (3.16)
From (3.7), (3.12) and (3.16) it follows that
[Py, e %1%y, all  ¢R, (3.17)

which implies that if f ¢ D(x 1), then Pyf&D(X,) and

] - = (3.18)
X1Pof POXIf 0.
We are now ready to prove the main results of this section:
Theorem 3.1.
—~pc
voleit) = HW-Pyye™ " P fi<e|[Byilt. (3.19)

Proof: From (3.18) and the fact thar Hf is essentially self-
adjeint on D(HG) " DX o) it follows that
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1 9—1(1104-( Xl )t‘

Pyl~0, (3.20)
which together with the Schrodinger equation written in the
following form

_int t i(ifgl¢Xyn T

Tty f e 0 B, e Hou gy (3.21)
0

itHp+eXy It
e

implies (3.19).
One can easily obtain extentions of the above result. Letl

b(x) be a bounded function and B be the operator of multi-
plication with b(x). Suppose that « Bl < d/2. Let Py
be the spectral projectien of H,—<B corresponding to the
spectrum included in {)\!dist.(/\,vg} < BN and
i " —ic (X B
L (3.22)
Since X, cowmmutes with B
ieXpgt it Bt —ie Xpt —ie Bt
Poty-e @ pae O e : (3.23)
and, exactly as above,
ieXpt —ie Xyt e Kl ) g -ieXqt
A p e " e _1_¢ ﬁJ———#_.EL.—ﬁl dzle \
dt B 2ri ¢ Hy—eBez W H,-«B-z
(3.24)

it follows that PB{t) is norm differentiable. From this
point, all the thecry developed above applies and the result
is

Theorem 3.2.
—in‘e

yylot) Wa-ppeitte TR T AT (3.25)

BT 4t
Remarks.

3.1. Supposing that we know that on a dense set Xgpo —PUXO
is well defined and bounded, it is easy to see that 1ts

extension by continuity denoted by | g, Pl equals
—i—l.-f—l—P (ty] . We can reformulate the result in
e di O t=0
Th.3.1. as
1)< X . .
yo(" )‘_EHIPO! O]Ht (3 26)



0f course, the same comment applies to Th.3.2. Morecver, in
this case the theory in the first part of this section
becomes unnecessary, since we can define Xy and By by

X =P X P +(1-P }X (1-P )
1 70700 0’ "o 0 (3.27)

By=(I~P)X, P +P X (1-P ) =(1-2P NP .X ]| .

3.2. We shall outline the proof of the fact that the
bound obtained recently by Bentosella 3 is a particular
case of (3.26). Consider the case when P, corresponds to a
nondegenerated isolated band of a periodic system. Bentosel-
la tooks as b(x) the periodic function which equals -hHx
in the first cell. For « sufficiently small, Py corres-
ponds to a nondegenerated isolated band of Hy -¢B.  Let
wéﬂf)=<u’ﬁ -R m) be the Wannier functions of this band
(which are supposed to be sufficiently localised, such that
all are in the domain of X0). ;

Let
fE‘PBLE{R3 ), e, f@3= %Cmm;ﬁgh
(3.28)
SIR [Bic 120 .,
m m m
Let
g(;)=%;-§m Cpo/ (1. C(3.29)
Obviously || g|l < e and {1-P)g =0. Then
IILPg, (X, +BYEll= |10~ B ) (X +B)P £ -
(3.30)

A -Po)e ~ (X, +BID)) <

3 -9—)—9‘ - . —;h-) _ P _
SH2C (max-K )+oo -7 )| <0 v EC,® <=,
where JI is the same as in Bentosella’s paper.
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4, THE GENERAL THEORY.

We shall start by remarking that (3.2), (3.7}, (3.9) and
(3.11) imply:

Lemma 4.1.

Rgy(tiz) Pott) s Kg (t) » Aglt) are indefinitely
norm differentiable functions of 1= R

Let us consider now H, (1) given by

e e Xt —te Xqt
Hi(t)=A3(t)1ﬂ0(t)_KO(:)mo(n)=e” 1 (HO—eBO)e‘ 1
(4.1)

D(Hl {t)) = A-“O(I)D(HO(I)).
Obviously, o(H (t)) =« is independent of t and for -
E'ﬂzlt'——rg—mf~ is a union of twe disjoint sets

21‘_80;: .
o ‘.‘(}'0 " ()'1

17 % 1’ 4.2
1y '

U Adi 0y il i
(!1 k}\‘dlSt(;\,UO) € 'B(}L

Following the construction from the previous section, we
can define P, {t) as the spectral projection of H({t),
corresponding to a? and K, (t) , A (t), B, by formulae

similar to (3.9), (3.11) and (3.13).

Letma 4.2.
R, (L3 z}y , P (), K, (t) , A,(t) .are indefinitely
norm differentiable functions of t< R.
Proof: It is sufficient to consider R ({t: 2) for
. 0 T |
dist{z. UO),‘t11B0|1.
Writing

R,(tiz) = AF (DR (42 [1-K (1) Ry (t;z)l_le(t) (4.3)

the indefinite norm differentiability of R, (t;2z) follows
from Lemma 4.1.

One can continue this process indefinitely. At the u-th
step, the value of ¢ for which the procedure can be carried
out 1s

d

6(:{ =___-.__.——--.
n nll
2 = B! (4.4)
j=0 !



The recurrence relations are

Xn'iI:X;n4 Bn’ . (4.5)

HnAH = H - Bn : {4.6)
—icX_t

J =A@ (1) ~K (1) |A NOE el ¥yt H e n (4.7)

and the repetition of the theery in the previous section
leads to

Theorem 4. 1
For e, n=01,

‘
n

3
. o _ —iH 1 HOoe i (4.8)
v, )= lld-P Je P oU<dilB {It,

P . e‘—i(lln J'EXI‘H]]’]_! 0. (&.9)

iH

Theorem 4.2,
For ¢, o n=01,2 there exists bna o such
that s
B 1] - «np_, (4.10)
n = n
The main body of the proof is contained in the following
Lerma .

Lemma 4.3.
Let C be a contour enclosing ug and satisfying

msﬂc,uoj = %? . Then, there exist constants Ao bn.m »
n=01,.. m="12, .. such that for ¢ « .
T . :
ISR ) s ®a (4.17)
gm n n,m
4" . n+m (4.12)
“a“n:‘ Pn(t)” se bn,m . .
The proof is by induction over n
n -0
H_""““R (t; Z)H‘HI R (t; Z)] -0 S (4.13)
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follows from

d o .y PR —et : _
-ERG,(t,z) ...eRO(t,z)—-—-——m R, (t;2) - | (4.14)
Now (4.12) for n =0 follows from (4.13) and

-4 W ORI éH[ ~R UL I I idel (4.15)

Suppesing (4.11), (4.12) are true for n-1 , (4.11) for n

follows from the formula

R (t2)=A% MR _, (OI-K_ (R _,® 17'a (). (4.16)

n—1
Finally (4.12) for n follows from the following formula

P (1) P _ (0)=

(4.17)
1 1 .
- 6 K (MR (hzydsld - (6).
i n 1( f Hn-—lu)*Kn-l(ﬁ"z n—i n—1 n—1
Formula (4.17) follows from the fact that
A (OP =P,y A ;) {4.18)

which is true by constructiom, implying that P, _, (D) is the
spectral projection of Aj 3(t)Hy 1(t) Ay (L) correspondlng
to o0 for all tcR . This finishes the proof of Lemma 4.3.
Now (4.10) is implied by (4. 12) for m=1 and the defi-
nition of B , and the proof of Th.4.2. is finished.
Finally, suppose that V(x) is per:odm and let T(a;) be
the translation operators. Either using

- - d _-9-; 4.19

T@ ) ¥y ~X, T ) =13, (4.19)
or directly from (3.2), it follows that

[Hy(1). T(a,)} =0, t&R. (4,20
Then, by construction it follows that

B, , T )=0, k=01,.. (4.21)
and then

(H_,T@E)N=0, X, Tap)l=—ad, m=012.. (4.22)

il



Finally (2.9) follows from (210),(2.11), (2.12) and

}f.o(e,t)§2HPn-—P0H+yn(e, t). | ‘_(4.23)

..

Remarks. :

4.1, Leaving the full discussion for a future publication,
we shall comment 4 1ittle bit on thée controvetsal existence
of the Stark-Wannier ladder. For simplicity, we shall con-
sidgr the oqe—gjimensio:nal case. Moreover, we shall take P,
corresponding to a 'single nondegenerated band. Then, P
will correspond to a nondegenerate band of H,. The n-th
order effective Wannier Hamiltonian H, can be written as an
orthogonal sum : g

H‘:(d:PnH:(c)‘Pn&3(1:—Pn)Hr(c.)(1—Pn). - (4.,24)

Now, P Hw(c)Pn,‘_ has.a pure nondegenerated point spect=-
rum ‘15167 T ‘

PnHr'(r.}Pn ‘/f‘p"J ={eap 45y ;‘”, p=0.+1,+2 .. | (4.25)

where & is a certain constant and a is the lattice cons=~
tant. Due to (4.10), r,ff(g? is a pseudoéigenvalue of order n
of the total Hamiltonian in the sense that (ref.”’® s Chapter
XII.5) :

‘_HHEV’;S‘) —lap+8)y [P 1<y ¢+l (4.26)

indicating a spectral cencentration of order p . Moreover, -
since the cne-dipensional Projector associated ,with,vﬁéﬂ)
commutes with Hple}) it follows that

I{‘/’f)n) . e"iH‘a o ;n) )i'2-21 —bifz(nﬂ)tg ‘ {(4.27)
indicating a rather long tifetime of the pseudoeigenstate
w(;‘) . Let us stress that while the spectral concentration
in the sense of (4.26) is of the order «¢", the spacing
between pseudoeigenvalues is of the order of ¢ . In this
sense, one can say that at low electric.fields, a Stark-
Wannier ladder of well separated resonances exists (see also
ref. 18/ for related results). - '

4.2. Our last remark is about the existence of an effec-
tive Hamiltonian having no interband transitions. If the
constants b, appearing in (4.10) satisfy

b | <cn, C <o : ‘ (4.28)



then H_ ~and X, converge to well defined operators H_. X,
for sufficiently small ¢, H_ +eX = HS and {P_,H¢]=0.
Unfortunately, it seems that (4.28) is mot true and the
above scheme does not work, so if H, converges in some
sense to an operator H, , this is at best in some asymp-
totical sense (see also ref.”17 for a discussion about this
point).

5. GENERALIZATION AND REMARKS

The first remark is that in order to obtain bounds of the
form (2.9), the homogeneity of the electric field is mnot
really needed. The whole theory works if (2.3) is generalized
to

K, D) = ¢ OIE, (5.1)

the only condition being that ¢(;) be differentiable and
its derivatives be bounded on R® . Of course, in this case
the translation invariance of Hy,n=1.2, ... is lost.
Moreover, bounds on the interband transition probabilities
can be obtained also in the case when the electric field is
not constant in time.

Another generalization is that in the case of homogeneous
electric field and periodic potential, the whole theory works
{f a forbidden gap exists in the following sense. Let

GO(E) ={A%(k)§;:0 be the (discrete) spectrum of Hg,

at a fixed value of crystal momentum. If o%:{A{A=A%(E),§GB.,
A%(E) continuous }, then the condition (2.5} can be
replaced by

inf atst O &), 1o oG&INA GG 24> 0, (5.2)
keB

where B is the first Brillouin zone. In other words, the
condition is that a forbidden gap exists at each value of the
crystal momentum.

Our last remark concerns the numerical wvalues of the
constants appearing in (2.12), (3.25), etc. For the typical
values d=6.10"1%7 a=510"10m, Bentosella claims
that for his choice of B

v {e;T) <41072 (5.3)
Ben. -
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without any assumption on V, as far as E<107 V/m. However,
we were not able to follow his arguments leading to the above

esti

V()

mates (and we suspect one of them to be incorrect).

Our (rough) estimations lead, under the assumption that

is bounded and

ess sup V(3) - ess inf VE) < 6.10717 g, (5.4)

3R xcR3

to the weaker results

vo ;1) <510 ’ (5.5)

and

¥

;T <8.1077 B, for EEIOS-EV-. (5.6)

A detailed study of the numerical values of the constants
appearing in the theory will be published.
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