


1. Here we continue discussing of the critical behaviour in
the frawework of a recently proposed method, invelving, in partl-
cular, the introductioén of a SpeClBl auxllxary critical system ﬂ
In the "mathematical aspect" the method ig based, in particular,
on a veraion of the theory of "quasi-averages" proposed by N.N.Bo-
golubov, Jr./4/ (for discuseion gee ref./1/ ),

In the present paper, closely related to ref./3/ , we consi-
der relations for the pafsmet‘ers of the critical singularities -
indices of power asymptotics, indices of logarithmic corrections
and critical amplitudes*.

For the basic indices we get the well-known sceling equalities,
for logarithmic indices and amplitudes the relations obtained are
new and previcusly unknown. The results are compared with experi-
mental date**,

The reader, being interestedonly in the final results, may
familierize himgelf with notation (10), relations in tables 1,2,4
and concluding remarks in section 8.

2.let us briefly account here some results obtained in ref./3/
necessary velow (as an introduction to ref./3/ see refs./1,2/ }.

We denote an arbitrary system with Hamiltonian I and tem-
pereture &= KT as r/e , operator order parameters as

A B ,+.., end corresponding susceptibilitiea as %ﬁB yeas
Numencal order parameters {i.e.,averages <A7t‘/9 sene) W11l
be denoted A(r/g) ess 5 and, in general, we denote any
quentity I depending on the system [ /6 asF (r/e)or F [l_/e:l

We shall consider a conventional "ferromagnetic" aystem
with Hamiltonian H end critical temperature Og ( H/B8. is
the critical system). For a nonzero magnetic field > 0O the
Hamiltonian of the system is fJ — ﬁ_/\/s , wiere S= St is

*¥e call below the index of power asymptotics the "basic in-

dex" or "index", and the index of logam t}u&w cor$ect10n "loga~
rithmic index". For the aasymptotice £E=>+o,

0. ie the basic index, Py is the logarlthm;i.c index,
is the critical amplitude,

**By "experimental data" we ghall assume alec the results
of numer.cal calculations for concrete modele (e.g.,for the
Ising lattices).




the magnetization operetor (per psrticle)*, A/' is the number
of particles. We shall discuss here only systeme with the one-
component order parameter (M =1) {e.g., the Ising lattices),

Let us consider, in addition to the besic order parameter
S , extra order parameter A and assume that both order pa-
rameters vanish at the critical point: A (H/ec)z S(H/e;_)zo_

30, H/Gc ig the ecritical system. Consider the system in
the ordered phase with B = Bc{(1-¢€ )(9;,&:0, i.e., the system
H/Bc(1‘i),€7 ©y € 2+0. In ref./3/ we have considered an ar~
bitrary system in the ordered phase H-+ '\//9Q s, Where V is
gome "ordering" and “"weak" variastion of the Hamiltonian. In the
cage H/Gc {1-¢) 'VE'.*‘_’- € H/(‘I-—E,) Z € H and the condition for
V; to be Mordering" and "weak" means thet IY‘[H/Bc (1—2)]‘
>0, ’X:}f‘![H/GcH—E)] y03Y=AsS, for €5 0,eand that
system H/g.(1-£) cen be removed into the critical point by in-
troducing, into the Hamiltonian, of the "disordering" term ANV SZ
by appropriate value of A /2,3/ :

He _ H+aE)VNS?2 _ {the oritical
__é_c— = B (1-2) h system . (1)

Making use of the results of ref,./3/ one can eagily write
relations connecting behaviour of the order parameters and sus~
ceptibilities in the systems H/8c(1~€) end Ha_g)vg/ec’
where H'E /ec ip auxiliary critical system (1}.

Introduce short notation F (&) = F [H [ (1-¢)] )
FEO(RY= FlHe - ANS/6], F=A,S, X AR, - 3
denote as FL(E) the effective magnetic field (see below (8)).
Taking into account formulas {(37)-{44) in ref. /3/ ,one gets, in

particular:
Alg)y= A® (L)), )
Sy = 5% (h(e), (3
¥ss (€Y = 1/2A(ENTss[e1-1) “

SS[E]
Yas €)= Tt Xas (h(€)),

~
*For the Ising model, for instance, S=N"" 58, d;=tq,
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Sesle] ©)
Xan(®) =< cast ael® ha (fe)), ©
s (E) _ Dssl€3 AE)
Xgs (€)  DAs[E] S(8)
with the effective field

fe>= an®)SE)= SEY(SsEI-1) N5 ©),@

here the superscript ( £ ) meene that the corresponding quanti-
ties relate to the suxiliary critical system (1.

(n

The above relations incliude alsc the "index-functions"
3‘33 [7 » 'Y AS [£], defined as follows. Introduce for the
criginal eritical systenm Q. the function /3/

Sve(R)="T(h) /4 (d2(8)/d8.), L(a Y=Y [R- NS/
Then %J‘{s [e1= SJ(E)YS (gl:'- £ (€)) where super-
peript ( £ ) indicates that H/Bc in %Ys(ﬂ.) ghould be rep-
laced by Hg /Bc (1); #A (€) see in (8). Note that if
(oY~ ﬁ_“/S‘vs { Sy¢ = constent), then s (4)—>
—}%'Yg as A»p. We shall assume below the power msymptotics for
order parameters and sumcepiibilities (see (10)) and consider
vindex-functions® 5‘75 [€] in (2)-{8) to be constants, despite
that /8. ie replaced here by He /6c .

Pormula {6) involves aleo the "gquared coaine of the angle
between A snd S ", cog a5 . Por arbitrary system /8
and order parsmeters f\ and B we define /373
osipg = l'XJAB\Q'/'XJAA X ge , end independently of the

syatem t/e 2
1%as (rie)|
an (T/e)Xpr (F/8)

{For more details see ref.f3/ ).

0 & wslag(rie)= 7 < 4 @

i When studying the critical behaviour one usually deals
with two "external fields" ﬂ,_ and & and two corresponding
"srder parsmeters™ S and H (Hamiltonian). It is conveni-
ent to introduce, instead of |1 , a correctly normilized "Yem-
perature order parameter" (singular part of the energy )



[ = —A/"(H-<H>H/ec).‘lire thus have quantities [/ , G , P I Xg=
= %LS,XLLto be considered for ﬂ. =0 , 0 :;‘L-G-C (we shall desl with
e £ Q9. only) and for %70 » B 28, . S50 we have 10 functions of
interest, among which only 6 are independent (4 susceptibilities ap-
pear to be derivatives of the order parameters},

Note that in the critical region with vanighing errors:

Xig =8¢ C,')Q’,ﬂ_ :33/35) where (I is the specific neat for a fixed
magnetic field, G &=y ,

Following the well-known experimental angd theoretical resultg
(see,e. g, ,ref, ] )slet us suppose for the order parameters and
Sugceptibilities the bower asymptotics with possible logarithmic
corrections tc hold true:

SE= 8Pl 1% | S()= ()10 )1
L(E):Tj-_%_/&aa}g" L()=Z L7 |4, gL/PC,J (10)
Xs O=r%e b 3, (4y=E4 )t 7

Lifferent.ating order parameters in (10),one alsoc peta:

X (‘E):.A-.Ehd-/ﬁa%fp“‘ s XSS(AZ)': g:‘_" ]&A]Pr

FpVE

=FR¢F g ¢ IR .

Vs (6)=pre ae Xse(ly=22 8% 14 4) %,
where o, 4,0, %,%, € are critical indices,Puy bg , Py, Py, Py, P are lo-
garithmic indices,A_, B, TL,D,Z, E are critical amplitudes*.Here we
have used the short notation F(E_)E'F[H/e‘_.(-r—g)], F(&);,F[H—ﬁ/vs/ec]_

It is known that critical indices in (10)are . not all independent.
There are 4 relaticns among 6 indices following from the gealing hy-
pothesis,which can be chosen,e.g,, in the form:
al ¥=g4(8-1) | ¢) L(Ftf)= 1-

b) A+2f4+y =2 ) € (r+8)= o4, an

We shall discuss relations (11)in the Fframework of our approach
and alaso derive new relations for logarithimic indices and critical

(10=)

amplitudes, .
4. The simplest- (and oo rough) method is the following

*Subseript (~}in A_ ,[. means the region B €Q. .Sometimes inagte-
ad of A A./4is used For o= O (and A-forol=0)(note that such a no-
tation is in ref./3/).Por the parameters.of the agymptotice £(4% )
Xsi (4 ), Xes (£) there are no generally accepted notations;we originste
from the order of the Greek alphabet,



(gee slso ref./3/ J}. Put in (2)-(8) A= [ and assume that
agymptotica like on the right-hand gide of (10){10=) remain va-
1id if one replaces the eritical gysten P{/QBC by the auxili-
ary eritical system }{e /Qac {(1); neglect the dependence fig /bk
uporn & (as £ —> O) , but for precaution supply all quantities
related_to Flg /E% by the superscript 0 ; replace everywhere
};‘YS [€] by the constants S’;S . S;S = S°9 o = 1/23‘:‘
Por the effective field (8) one then obtalns:
f(e)= 28 B v e\ R
(F=1)Xss (&)  T-(F%1) ~ .

Substituting asymptotics (10) and (12) inte (2),$32,(62,(7), one
obtaing for the besic indices:

a)  ¥= f(F%1) ¢) &(rrf)=1-=

b) A 2FHY =2 Q) e (r+p) = o, (13)
for the logarithmic indices:

a) §°Py =Py + Pe(871) ) Py = P B (ER)
») Put Py = 2Pg ) PS = Pur €°(Pr—Py),

and algo 4 equalities for amplitudes. In particular, it follows
from (3) in addition to {a) in (13),(14) that:

@ a _pe
(F2T-D7BT )T (rp) P =4 (15)
>
end from (7) in addition to (b):

FERE/AT. =4 (16)

(here we have taken into account that ‘6,"'5“/(1—-0() = 1/8,
see (13)). Two other relations for amplitudes follow from (2)
and (6) (mee (49) in ref./3/ ), but these relations, ss well as
(16), are to be modified (gee below).

For futher needs it seems to be convenient to make now @
stop end consider, independently, functione 005"15,_ (E )=
= coct, [H/Be(1-€)] and cos52g; ()= cos [H-bWS fBc] gor the
asykptotics (10). We have: ’

‘l - — —
wstg, (€)= lz_%: g A2 [fne lipﬁ e P"‘, (17a)



LVEpe -1/ &~ 2Py - Bm
COSQSL(&):E—EEZ—Q—Z teL-1/F 1/&‘{”2&, B ‘2“(17.1:)

Taking into account that functions (17) satiafy generel inegqua-
lities (9), cne can easily obtain restrictions on critical para-
meters presented in tables 1 and 2. Rach table can be read in
arbitrary sequence; blank Spaces mean the absence of regtric- )
tiong*,

Table 1. Allowed relations between temperature criti-
cal characteristice and cos ESL( & =+ 0).

o(+218+a’=2 A+ DL+ ¥ 9
PUL+P(:Q.Pﬁ Po-\-i‘PJ"?QBg

£2p2 :
%%:cosis.‘_(g-_--f-o) <4

sl (e=+0) yo s, (£ =+0) = O

Table 2. Allowed relaticns between field critical

characteristics and cos?, =0)
€+ 20 ~-1/8 = 4 €+25-1/5 7 1
Py + Pe = 2Pz Pr+Pc > 2 Pz,
§%2Zz2p"¢ /E =
=cos?y, (h=0)¢ 1
sty (h=0) yo “ws?¢, (h=0)=o0

As follows from table 1, one ghould distinguish between two
different situations:

*The reader can eagily see that table 1 containg, in parti-.
cular, the equality due to Esgam and Figher o(+9.,5—‘+3'= 2. /&/

(see (11b)) and inequality due to Rushbrooke o+ 2812 2 11/
table 2 .contains analogous relations. for the field charecterig-
tics didcussed by Coopersmith 8/ .



In the case {(ita) the eguelities (b) in (13),(14) do hold true
and deliberately }?“ZB'?—/A..I__ 2 4., In the case {(18b) at least
one of the equalities (13b), (14b) is violated. Analogous conclu-
gions follow from table 2 for the field parameters.

We thus see that relstions (13b), (14b) and (16) taken toge-
ther mean that
w5, (E=+0) = 4 (19)
Therefore it is interesting to congider ce&Zg, (E=+9o) for
concrete systems. The values of C'OSQ'SL (£ =+0C) for the
Ising lattices of different space dimensions (d.) are represented
in table 3*.

Here QA means the dimensionless auplitude ratio:

Qa = F2B2/A-T., (20)

under the condition (18a) QA coincides with COSQ'SL (e -——+O);
"yes" and "no" indicate whether or not (13b),{(14b) hold true; K
means the absence of logearithmic corrections.

T able 3. Values of cosZ g (& =+0) sng other para-
meters for the Ising latticea of different
dimengions.

Ising {13b) (14b) QA wsd =) 1-wos (5=0) _—’:‘E—
Molecular yes x 1 1 0 o]
field{d=20)

d=4 yea yes 0.75 0.75 0.25  0.25
d= 3 yes x Q.53 0.53 0.47 0.51
d=2 yes no I.85 0 1 1

Note that for the d.=4 Ising model Pu =Pg =Py = 1/3
and (14b) holds true, but for d =2 Puz=4, pg= py = O and
(14v) 1s violated, here COSQ'SL (E._) = 4.5 {gn_g["i >0 astrq
The two last columng of talble 3 will be discuss below.

*The mogt of data for concrete systems used in this paper,
ag well as numerious references to original papers, can be found
in ref./9/ ; for o =4 , see also ref. /10/.



We thug see that in real cases Co0%2¢, (£ = +p) does
net reach its maximum (19),
wog (E=+0) < 1, d=9,3,4, (a1)
while C082¢, (¢ =+0)=] corresponds to the molecular-field ap-
proximation {(d= wo”),

5e To explain the disagreement between (19) and (21), we
propose here a phenomencloglcal scheme, Let ue consider that in
the critical region (for @< 8. ) the temperature order parame-
ter L can be repregented as the sum of two "orthogonsl" compo-
nents L, , [.9_ where /.4 is "parallel” to S and f_.z is
"orthogonal® to S ,

L =Ly+ly , LillS, Ly LS, L4101, (22)
and the parallelism and orthogonality are assumed in the sense
that  Xg =0, X,,;, =0 (but g, #+0, X0, #0,
Xisis 0, COSAS:., =1, COSZ.KLZ =0 (all quentities are teken
for the system H/Gr.(’l—i-),'é-‘)-f-o;) *. Then Xg; = Xseq,
Xee = Kpjoqa + Xigty and we have*#*;

a)Xeun, (€) =X oo (€)cos é.r, (€)y DXty (€)= ©)(- ok, (€). (23)

We shall also assume thet the term AEIN S 2 in (1) "acts"
only on £+ and does not affect Ly (and thus the systemHg/gc
(1) is not critical with respect to £y and coincides with

H/6c (1—¢ )) - and, on the contrary, £4//$, and
one may hope that with respect to L-; the properties of the
systems Hg.. /9:, and H/B(_ are the same or similar,

It has been shown at the end of ref. 3 thet in disordered
phase the

*Note that X AR posgesses the properties of the mealar
product on the set of order parameters A , B ,... /3 .

**The well-known thermodynamical relation for the specific
heat for a fixed magnetic field C= C g and fixed magnetization

Cm in our notation can be written in the form Cy, (T/8) =

= Cp(rie)(1- "CSQSL,-(T'/E")), Lr= /A, Teking into account
(23) we see that in fact Xioty = 6 Cp,



term AN ST does not effect order parameters different frem S,
therefore one should expect to have in the disordered phase the
operator Lp L S only, L= Lo (note slso that 00325,_5 ¢ for
87@c).

In the ordered phase we have in addition an "inner wolecular
field" (aselfconsistent megnetic field) originatipg from the spon-
tenecus ordering of the interacting magnetic moments. Jo, let us
interpret Z_q as the "molecular field energy™ and L2_ ag the
"proper temperature enersy".

In the framework of such a phenomenclogical scheme one can
expect that the specific heat at fixed magnetization Cm (see
footnote +% on page & ) in the system @ < &, H/Gc(1-%),
should coincide with the specific heat L = C g in the system
H/8 (1+ &) . 8 7&c . If so, one car eesily see from
the relation for Cium and C ¢ (footnote #x» on paje 8 ) that
critical specific—heat amplitudes A+ (6 > &< ) and A~ (8<8)
should satiafy the relation:

+ g
—ﬁ—_ = 41- wstg (E=+0). (24)
Ag is seen from %able 3, this relaiion really holds true for the

Ising model {we must note that for d=3 data available are rough).

Now we are able to explain the disagreement of (19) with (21).
The fact is that the choice A=/ in (2)-(8) is incorrect; cne
should put A= L't . Then ingtead of (19) one gets the identlty
OOSQSL = &osz_c;_ (see also below),

Let us turn now to relations {2)},(6), from which the equa-
lities {c) and (d) .n (13)},(14) have been derived.

In the framework of our phenomenclogical scheme let us as-—
sume that switching on a nonzero field £‘70 at 6% & "ex-
cites" only the energy Lq and ALf (ﬁ) ig approximated by
%%,L1 (4 ). ©Putting in (6) A= /4 and taking into account
(23a) we get:

2 _ _5"° (@) ,

XLL(E)W.S sz_(‘e) s .y (K. (€)). {25)

One can algo put A= Lq in (2) and express L1{&) turoush
L (%) . If one sssumes that X ..z, (E)= L4 (£)/2 & and
takes into account (23a), rewriting the right-hand side of this
equality in the case of the asymptotics (10), then L., (E) =



il S Lg) {-’052.51_ (E.‘) and in view of (2) cne obtaing:

25T

[O(6(63) = Fygr L(€)eesg (5). (26)

f
=l

Note that if one puts in (7) A = L'J and takes into account
the above relation for /_1(?_) and L(E) » then (7) becomes iden-
tity.

Substituting the asymptotics (10),(17a) into relations (25),
(26} we obtain equalities for critical parameters presented in
‘the gecond (c¢) and third (d) lines of table 4. Four types of re-
lations in this table (a,b,c,d) correspond to the four egualiti-
es in (11). The first line (a) will be congidered below; line
(b) in the "general cage" of table 4 is absent, this line should
contein parameters o , P ., A_ , the velations of which
with other parameters are governed by table 1, For the inportant
special case CC'S“"SL ‘(5=+D)7 O (see (185)) we have relations
pregented in the lagst three lines of table 4 (the relation (a)
remains unchanged). /In table 4 we omit the supergcr.pt (0) in~
dicating the auxiliary critical system (1)/.

The verification of the equalit.ies (¢} and (@) (or (e') and
(4')) of table 4 js of considerable interest, but because of the
lack of date on the "field"'asymptotics we are now unable to do
thisg, )

It ig interesting to note thet in the d-‘: 2. lsing model
Pa=1,Pg =Py =0 and from table 4(d) it follows that
the specific heat X .o (ﬁ) is nonsingular as G=p., {Z,g,o’ %10
(in spite of X re (E)~1bnf|>0088 £ >0 (hso, €~6.-0)),
Une can easily see this slsc directly from (25), where Kig (E)~
lbnt | :""573,:.(5)"’ {nel™! 5o, we nave here Xee(b=0)z=Eg= wnst,
E/A- = 1.3255...

6. We now have only to discuss relations (13a),(148),{15).
Since the original equality (3) does not involve L (explicit-
1y}, we may hope that the peculiarities discussed above in view
of decomposition L=L1+L2_ would not be mo essential for
relations (13a},(14a) {see also (a) in table 4). For concrete
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Table

4., The main relations for critical parameters

I'ype ?ngige; Ifggigeighmic Critical amplitudes
1 -

/‘\i a X=ﬁ(g-i) ‘%‘P,;-=P,+Pﬁ(8'—1) ((5"—1)r_1)38")5'(r+ﬂ) P’>1 (~1)

. J(Pp’ P<r

o ¥+2F-1 _FE B rf?"'
o+ = _ ¥+ _f‘ FHE )
3y ¢ & y+g Fz, = B?a’*'ﬁ’ rip Fr 3+Zﬁ‘ ( ) (3’+ﬁ

1
3~ : Por 12-2)CPs- Py
HoJd 2 g e
g Q‘B’*ZE r+e /?67 B rtg
S al & = P = P . ~P i"ﬂ = (X—f" )
& 3 d Fip € Fa--p-/g 3’—-—3_+p 23 I

2Rt o

o ¢’ °<+wa=1 Pu+ Py = 2 Fs i_ r DCSQSL (e=+c) £

fl
w? 2
Fa el I I ] P Pt 7o (P . p’ B (-1 Pz,
2 A T‘;ﬁ’ o= Yuth(Phr—py) |7 = e B~ ﬁ)
% W
roi\./
2% ) £FB2/ B \ ¢ R
2%y . o P = p ) _85-1 -

3 d'| € Yeg e =Pt ely-h) |E =5 r_ ((?—4)?—> (reg)




systems these relat:ons are usually valid*, Pssaing to ampiitu-
des and taking into account (15} we see that it would be conve-
nient to introduce dimesionless ratios

Qy ((éN*i)F-DB%'”)%(a”rﬂ)-P? s (27)

Re = Gp' = (F-0EDB T Hrep) P Gora)
One can presuume that (_Qg:j_. The values of QB for Ising lat-
tices and als¢ experimental datas for CO@_ and Xe ** are
presented in table 5, One thus sees ithat in most cases QB'> 4
though close to 1,

: Table 5, Paraneters &Band
We are unable to give 2,6‘1(5'-1)/(1 %) for the Ising
an exhaustive explanation model and systems COy and Xe
of the fact Qgy1 . One
2(E -4
of possible interpretations [oVBtem Qp ?—é,r—_(—d_——z
is the following. We assume Molecular ] ]
the spontaneous magpetiza- field {(d=ca)
tion to be the sum of two a =4 1 1
ingredients: d =3 1.066... 0.89
&) = )+ d =2 1.06350. .. 0.4375
S(&)=Cel®) ¥ Sa(e), (4
where Cc‘: is a "primary" COQ 1.06 0.94
part of magnetization due Xe 1.09 0.96

to "first origins” (say,
some imaginery "sum rules",etc,), and the other part S:L appesars
ag a consequence of the inner molecular field excited by C.

end the term AEIA/SZ in (1) coupensates only S, (5) in S(gYy*t

*logarithmic corrections are available in thed = Y Ieing mo=-
del where §=3, R=Ps= =fy=% and equalities (a),{b')for loga-
rithmic indices hold frue.Thé best of our knowledge,indices
Pe,,Pe (a5 well B8 7, , € ) have not been calculated for mny stan~
dard system,If the relations of table 4 are correct,then for the
A=Y Ising model there should be €=gp , 5;:2/3;%,7-%‘—'-}'3— (fur~
ther discuesion see in Appendix C).

**Necegsary data are taken from tables 1I-IV of ref.lg/;for
COg and Xe ‘there Bre represented data averaged over three
methods of fitting experiment in table IV.

***One can also suppose that on the operator level Ceo han
" C -number" properties and does not affect X.sc , but leads to
"residual" megnetizetion in esystem (1), which in such a case
should be written as H + &.(‘E)N(S-('o)"-/ec. (1~ %)

12



Then one should write the equality (3) only for$,E) =8, 881 g [P
and agsume QBU) = -4 , where in O‘B(’l‘) amplitude B ‘ig repla-

ced by B15B ; since QB@) % Qg , one gets Qg Z 1(vable 5).
Perhaps, one should also take into account the difference bet-
ween B and B, in other equalities in teble 4, which then ap-
pear to be approximate relations (however, since really/B-Bqil<€ B
the numerical error ig expected to be swall). Further discussion
of the hypothethis (28) wsee in Append:x B.

Note that if we accept the hypotheses on decompositions (22)
and (28}, we then get in fact the phenomenological scheme of
"three subsystems", what resewmbles the situation in the theory of
guperfluidity ( Co is an analog of the condensate, ( S;, L1) i=&
an analog of the guperfluid component, Lz_is an analog of the
normal cowponent).

7. Many authors (details and references see in ref./g/)have
propesed to use for the Ilnterpretation of experimental data dif-
ferent dlmens:.onless amplltude ratlos. R= A+r+ /B'z Qq=-
= (B/MD) /B, Rx 2 QiT= DB T, Au/An, Do /Te
In the framework of our approach more naiural dimensionless amp- .
11tude ratiog are the followings:

T, (E=+0), “’Saﬂ-” e)s Qa= ﬂ&rgz? %t- ?

O‘B ((5—1)]’ Dgg 1) (3"")3) 7 Rg Qg Y Qr T+

-~ (E“ 1)
(ratio Glr will be discussed elsewhere). We propose %o anlude
ratios (29) in the tables of critical perameters for concrete

models with one-component order parameter (rt=4). Hote that in

{29)

the molecular-field approximation each ratio in (29) equals 1.’

B. Let us formulate some concluding remarks.

" a) In sddition to the basic indices, when'studying critical
behaviour, of a considerable interest are logaritimic indices
and critical amplitudes.

For logarithmic indices we obtain new relations (table 4)
which seem to be exact equalities of the same astatus ss the "scal-
ing" lawe for hasic indices.

b} Nathral dimensionless amplitude ratios seem to be quanti-
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ties (29), for which there are some theoretical precdictions diacug-
sed above. For the field auplitudes there are someequalities present-
ed in table 4, which mnay appear to be only approximate relations.

c) Egsential functions im the critical region are Oosi_gL (’E,)
and ©052¢ (4), <, A >o.

d) It seems to be highly actual +to calculate the parameters of
the "field" asymptotics L { '3 ) and Xzg (ﬂ.) (the singular part of
energy and specific heat for 8= 6, A # 0 ). such data would make
it poseible to test some considerations digcussed above on the role
of wmolecular field in the cr.tical region. In particular, it is of
interest to check the conclusion that in thed =2 Ising model the
specific heat may not be singular as 8=6c, A0, A > oO.

APPENDIX &

Proceeding from the hypothesis that A(E:)I\/SQ‘ in (1) com-
pensates only L4 =/ (€)cest s Bin € H =-tar )l + u;-m_g“(,' , One can
try to analyse the equality for averages £ L7 (.os = AE I Dwitn
averaging over M /@c (1~ €) . Rewriting th.s equal ty for the case
of asymptotics (10) {note that <SQ> = <S7") we obtein the equa-—
lity, which reduces to 3 somewhat surprising reletion for critical
indices: Q}?Q (r—i)— 1-o{. This equality, us one can see from
table 5, holds with good accuracy for dlfferent systema (except d=9
Ising) (for d= 2 we have taken/%/ - = 5/16 $ =5, a= 1/3).
One can try to explain deviations from 1 by the replacenent S‘zto
(5~ Co) in (1) {see footnote X% #* on page 12. ) what lemds to rela-
tion QFQ(S-‘O/@ a)= (1 gc/g) > where Co(€)=R, Eﬁ[&ﬁjpﬁ

APPENDIX B.

In the framework of ocur hypothepes (22),(28) it seems to be na-
tursl to assume that by 9<ec the Hamiltonian contains the effective
long-range term ( — A(EI)MS 2T ) . If one accepts as the origin of
such a term the "primary" magnetization C. (%), then it would be na-
tural to comalder A(E) to be physicql function e Co(E). Then AfE)
= Ae|Ca(ENT™E, Aox 1/2(5) rB . So the "coupling constant"
b, [?" and therefore, from the aegthetic considerations the
most mcceptable i the case when S—1= 2,4, 6,...,i-€.5 § = 355000 2k,
It is interesting to note that in the Ising model we have just the
cage: &= 32, 5,45 for ed=1,32,9, It may happen that odd values of

are not so accidental.
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APPENDIX ¢C.

For isotropic systems with the Yl -component order parameter
(n. 2z 2) susceptibility is infinite, %SS = B , for all temperatu-
ree below B¢ and the sgtrzightforward application of the resultis des-~
cribed above is impoesible. On the other hand, the scsling equaliti-
68 A’:f(g—‘[)'and x+2f+Y=2 remain valid if one takes therein §
for @7 c* Here we consider, on the same grounds, relations for loga-
rithmic indices {table 4). For d = 4 in systems with an ¥z —compo~
nent order parameter one has (see, e.g., ref. [10/ ): =0,
=112, ¥="1, $=3 and there are logarithmic corrections with indi-
ces: Py = (4-n)/(N+8)> Pg = 3/(V'{+ 2), P =(ne2)/(n+8),
Pg = 1/3 s where } and Py are taken for®> . ( indi-
ces ol , p, are the same for @76, and © £ 8¢ ). One can easily
verify that these values satiafy relations {(a) and {(b*) in talbe 4
(second column), while other relatioms in table 4 lead to the follow-
ing predietions: Pz = (-:o-n)/g(n+g), Pe=P, = (4-n)/(n+8)
(with o = €=0, & = 2/3).
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