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1 • INTRODUCTION 

The one-particle effects accounted for in the frame of the 

crystal field theory are described starting with the basic 
assumption of the legitimacy of replacing the spatially ex­

tended ions by point charges. The point charge approximation 
is then supplemented It-&! by the hypothesis of the Coulombian 

character of the interatomic forces in the crystal. The re­

sulting crystal field parameters are generally unrealistic 

and several supplementary effects have been investigated to 

improve the theory (see, e.g., ref. 161 and references quoted 

therein). Among them, unanimously accepted and included in 

the model is the screening of the magnetic f electrons by the 
outer shells of the corresponding ions /7/. 

In spite of the limitations of the model, this was exten­

sively used for the interpretation of the experimental data 

both in nonmetallic 18·181and intermetallic compounds. In fact, 

for the metallic systems, the actual interatomic potentials 

are known to strongly .deviate from the Coulornbian behaviour, 

and to vary significantly from a compound to another 1191, It 

appears therefore justified a study concerning the deviation 

of the crystal field Hamiltonian which, while adopting the 
point charge approximation, is free from special assumptions 

on the spatial behaviour of the interatomic forces. Recently, 
Duthie and Heine/20/ derived results for the crystal field 

coefficients under the hypothesis of arbitrary interatomic 

potentials. However, their starting expressions for the crys­

tal field coefficients were taken from a paper by Hutchings 131, 

who used both the point charge approximation and the hypothesis 

of the Coulombian character of the interatomic forces. In the 

present paper we show that the crystal field Hamiltonian of 
a system of point charges, which interact through arbitrary 

effective potentials, is obtained as a usual, symmetry depen­
dent, linear combination of spherical harmonics, whose coef­

ficients are, however, different from those given in re£. 131 

Of course, when postulating the 1/R behaviour ·of the inter­

atomic forces, these coefficients reduce to the known results. 

This paper is organized as follows. In section 2/ starting 
from the more crude results of our previous papers 21,22/, 

we develop a quite general symmetrization technique which 
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yields an expression for the crystal field potential that is 
manifestly invariant to the point group·of the given crystal 
site. Then this procedure is particularized in sections 3 and 
L~ to cubic and respectively hexagonal structures. The main 
new results brought by the present study are summarized in 
section 5. 

2. SYMMETRIZED EXPRESSIONS OF THE CRYSTAL FIELD POTENTIALS 
Let ~ be the point group of the ionis site of interest 

and C .i=1,2, .. ,N, its elements. Let v(R.) be the effective 
one-particle potential which characteriz~s the interaction 
between the reference ion taken as origin and the neighbour­
ing ion located at R .. The invariance of the crystal under t,' J ' implies 

4 4 

v(GiRi)=v(R), GiG-f':, i=1.2 .... ,N, ( I ) 

for every R j site, j = 1.2 ..... 
The one-particle crystal field potential acting on an f 

(or d ) electron found at the site r in an incomplete f (res­
pectively d) shell of.the reference ion is obtained from 

V(;) =(e/4"'o):l:Q. v(ii.-;), 
j J J (2) 

where the summation index j runs over all the lattice sites and the factor (4rr(
0

)-1 is specific for the International 
System of Units. Here e is the electron charge, while Q. de­
notes the effective charge of the ion located at R .. Taking 
into account Eq. (1), alternative expressions for 

1
V(f)are given by 

V(i')=(e/4"'o):l;Q v(G R -1), G.G- §, i=l, ... ,N. J l J 1 
(3) 

The existence·of N equivalent expressions (3) of V~) allows 
uS to redefine it as the N-th fraction of their sum. This 
provides us with an expression of V(;) which is manifest­
ly invariant under the point group§, namely, 

where 

....,. ....,. -1 N 
W(R.,r)=N :l: 

J i"" 1 
(5) 
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Now, with the usual cryStal field hypothesis, 

x<<Xj, y<< Yj, z<<Zj, (6) 

where f=(x,y,z), Rj=(Xj,Yj,Zj),we c~n expandv(GiRj-;) in a con­

vergent Taylor series around GiRl and get 

_,. _,. 
00 rP -1 N a a a P _,. 

W(R.,r)~~---N ~ 'G.(k--+1--+m--) v(R) 
J ~""o P ;~1 1 axi ayi azi J • 

(7) 

E =y/r and m=z/r denote the direction ~ . 
Here, r ~ \r \, wh>le k ~ x/r , 

cosines of the vector r 
Once the point aroup ~was specified, our task iS to put 

the quantity W(Rj,r),Eq. (7), in a form which is appropriate· 

for the crystal field theory. In this paper we use the nota­

tion of Bradley and Cracknell 123~which we fi~d the most con­

venient for our purposes: the international notation for the 

symbols of the crystallographic point groups and the SchOn­

flies notation for the individual elements of a given point 

group. 
If ~ contains the inversion I we can write it as a direct 

product, 

~~}{ ®l, (8) 

where 1= (E,I) is the inversion group, and we have 

N ~2M, (9) 

where M is the order of the invariant subgroup H.Using (3) 

and (9) in (7), we get nonvanishing contributions to the sum 

over p only for p =2q, q =0, 1, 2, ... , therefore in this case, 

... ... 
00 r 2q 1 M d a d 2q -+ 

W(R.,r)~~ --M- ~G. (k--+1--+m--) v(R) 
J q~o (2q)! ;~1 1 axJ ay_ az. J • 

( 1 0) 

J J 
G i <e J{ • 

In the following, we shall consider explicitly two cases 

which correspond to the most frequently investigated crystal 

structures. The first in the case of cubic crystalline sys-

terns,. when 

f-'1 ~ m3m ~ 432 ® 1, J{ ~ 432, M ~ 24, ( 1 I l 

while the second is that of the hexagonal crystalline systems. 

when 

~~ ~ 6/mmm ~ 6mmm 0 1, J{ ~ 6mmm, M ~ 12. (I 2 
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3. EFFECTIVE ONE-PARTICLE CRYSTAL FIELD POTENTIALS IN CUBIC CRYSTALS 
Taking into account Eq. (II), the sum over i in Eq. (10) can be factorized as 
24 

1
3

1 
G 1 ~ (E +a:) (E + C 3 + c;) (E +a~ +a~+ a~). (13) . Introducing in (10), we get after long but straightforward al­gebra, 

_,. 4 1 <><> 2q 2q K 
W(R. ,r)~- ~ -'-- ~ ~ C~ CP[l+(-!)"q-'\-(-1)"-P + J 24 <rO (2q)! K~O p-0 q K 

In this equation, 

4 iff K ~ ~ and p ~ 2v, 

0 otherwise, 

therefore we have finally, 

4 

4 _,. I "" 2q q A 
W(R . , r) ~ - ~ -'- ~ l 

J 6 q~o (2q)!>.~o v~o 
C

2AC2v 2V,2(A-v) 2(q-.\) 
2q 2A k t m x 

X [a 2ql(a XraY r.\-v) az!j<r") +a 2q I <ax r ayj2(q-Alaz ~(A-v) ) + 

+ il 2ql (JX~(A-v) ay;v az;(q..,\)) + a 2q I (JX~(A-v) aij<rr\>az r ) 
+ d 2q I (JX2(q-.\!Jy2V az2(A-v) ) + a2q I(JX2,(q-.\)JY2t-vh ~v) l v(i~ j ) . J J J 

( 14) 

(15) 

( 16) 



Thus, the most general expression of the one-particle effec­

tiye Rotential in cubic crystals is given by Eq. (4) with 

W (R· , r) found from Eq. ( 16). 
As it is well-known /1·51, only some terms of this expres­

sion are relevant for the crystal field Hamiltonian. In order 

to rule out the unnecessary quantities, we have to factorize 

out the electronic and ionic contributions. As a result of 

the factorization, we get an expression of the form 

-+ -1o oo r 2q q -+ oo 

W(R. ,r) = :l: ----A. v(Ri )+ :l: p2 (k, C, m) x 
J q=O (2q +1)! J n=2 n 

X :); 
q=O 

r 2(n+q) 

(2n + 2qJl c 2n+2q, 2n l'.q p 2n (K J , L J , M J ) , 

(17) 

where ~j is the Laplacian acting on the co-ordinates of the 

j-th ionic site, p2 (k,E,m) are linear combinations of unnorma­

lized tesseral harm~nics of the order 2n, P2n(KJ ,Lj ,Mj) are 

homogeneous linear combinations of partial der1vatives of the 
~ 

order 2n of v(R j ), c 2n+2 2 are some numerical coefficients. 

Fin~lly, Kj =Xj/Rj, Lj = . .Yj/R~, Mj =Zj/Rj denote the direction 
cos1nes of the vector Rj. 

Nonvanishing matrix elements are obtained only from the 

terms p~ (k,C ,m) and p0 (k, C ,m), and therefore the relevant crys­

tal field potential 1s given by 

Vcr (f') = A4 (
r) p4 (k, C,m) + A6 (r) p 6 (k,f ;m), 

where, as usual (Hutchings 131 ), 

while 

e oo r4+2q 
A (r) = -- :l: c4+2q,4 

4 4rr<o q=O (4 + 2q) I 

(18) 

( 19a) 

( 19b) 

(20a) 

(20b) 
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Here, 

a4 a4 a• P4 (K ,L .,M. )=(-+-+-
' ' ' ax• ay 4 az• J J J 

3 2 ~ - -11. ) v(R . ) , 5 J J (21a) 

a6 a 6 a 6 15 a6 a 6 
Ps(K.,L ,M )=[--+ays+ az6 --( 4 2+ 4 2 ' ' ' axf , 1 4 ax.ay aylazl 

a" 
+ + az •ax~ 

J J a6 as as 15 a ~ +---+ + )- -14/l,l)v(Rj). ax 2ay• ay2az 4 az 2ax 4 
J J J J J J 

The coefficients c 2 +2q ;;m , n=2,3, characterize the contri­butions to the crysfal f1eld potential of the terms of the order 2(n+Q),n+q""2,3, .... of the power series development (16). They are obtained after very long and intricate calculations. The lowest order coefficients are respectively 

c = 5/6, c = 25/22, 4,4 6,4 
c =56/33. 6,6 (22) 

Under the hypothesis of the Coulombian interatomic forces, 

11 q P
2 (K . , L. , M . ) = O. n = 2, 3; q = 1, 2, ... , J n J J J (23) 

and the sums (20) reduce to the term q"" 0. Further, we get 

P
4
(K.,L.,M.)=K4+L 4 +M'-3/5, J J J J J J (24a) 

P 6 (K j, L j , M j) = K ~ , q + M ~ + (15/ 4) (K; L j
2 

+ L; M f + Mj K ~ + 
(24b) 

therefore Eqs, (20) reduce to the usual crystal field coeffi­cients for cubic compounds, 

_1._) 
5 • (25a) 
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4. EFFECTIVE ONE-PARTICLE CRYSTAL FIELD POTENTIALS 
IN HEXAGONAL CRYSTALS 

Taking into account Eq. (12), the sum over i in Eq. (10) 
can be factorized as 

12 
~'G. =(E+C

6
+C

3
)(E +aY)(E+a•), 

i=l 1 v h 
(26) 

and we get from (10) and (I), 

W(R. ,;)=.!.. i ' 2
q ! i c2Ac21<k21<e 2<1.-p)m 2(q-.\Jx 

J 3 q=O (2q) ! A=O ~=0 29 2A 

(27) 

a2A 1 1.-p p-1 
X ~ C2v-1 I. 3 p.+v-a-t c 20+1 x 

ax2<v+aJ ay 2(A-J.'-<TJ I. 2A-1 v:l 2(A-p)a=0 2p 
j j 

a2A a2<q-.\J ~ 

X v(Ri ) ' 
ax 2(v+a) ay 2(A -v""<') az 2<q-A J 

J J J 

Similar to the case of cubic crystals, it is necessary to 
factorize out the electronic and the ionic contributions to 
the effective potential. Performing this factorization and 
ruling out the contributions whose matrix elements vanish 
identically, we get the relevant expression of the crystal 
field potential as, 

V (;)=A (r)p 
0
(k,f,m)+A 

0
(r)p

40
(k,f,m)+ 

cf 20 2 4 (28) 

Here, Pnq(k, f ,m) denote unnormalized tesseral harmonics, given 
respectively by 

p 20 (k. r , m) = 3m 2 -1 • 

p 40 (k, f, m) = 35m4- 30m2 + 3, 

p 60 (k, f, m) = 231m 6 -315m4 +105m 2-5, 

p
66

(k,f, m) =k 6 -15k 4f2+15k2f4_ps, 

(29a) 

(29b) 

(29c) 

(29d) 
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while 

00 2+2q 
A (r) ~ _e_ L r co L Q L\ q P (K 

20 4"'oq~o(2 +2q) 1 2+2q.2i i i20 i 
(30a) 

e oo r 4+2q q 
A 40 (r) ~ -- L -'----c 0

4+2 4 L Q. !\. P 40 (K J, LJ., M.J·) , 
4"'o q~o (4+2q)! q, i J J 

(30b) 

e oo r6+2q q 
A (r) ~ -- L -'-c:--::--:-c 0 L QJ. 1\l. P (K L M ) 

60 4rrcO q=O (6+ 2q) 1 6+2q,6 j 60 j ' j' j ' 
(30c) 

e oo r 6+2q 6 q 
A 66(r)~-- L -'---c6+2 6 L Q.l'i. P

66
(K. ,L. ,M.). 

4"'o q~o (6+2q)! q, i J J J l l 
(30d) 

In Eqs. (30), the characteristic contributions coming from 
the j -th ionic site to the crystal field potential are given 
by 

J2 4 

, L. , M. ) ~ (3- - L\.) v(R. ) 
J J az 2 J J 

j 

(31a) 

a4 a2 z '""' P (K L M )~(35--30-A.. +M )v(R ) •o i . i . i az 4 az 2 J i i • 
J J 

(31 b) 

as as as 
P (K L M )~ (- -15--- +15---;;:---:;-

66 i · i · ; ax s ax4 ay 2 ax 2 ay 4 
j j j J J 

as 4 

--
6

)v(R. ). (3!d) 
ay. l 

J 

Further, the coefficients c~~+Zq, zn characterize the con-
tributions to the crystal field potential of the terms of 
orders 2(n+ q), n+ q = 1, 2, 3, ... , of the power series development 
(27). Once again, the calculat.ion of these coefficients is 
a difficult task, which we have accomplished for the lowest 
orders only. We have, 

8 

c;,2 ~1/6, c~. 2 d/7, c~. 2 ~5/42, 

c~. 4 ~1/280, C
0

6.4 ~ 3/616, 

C0 ~1/3696, c 6 ~1/32. 
6,6 6,6 

(32) 



Under the hypothesis of Coulombian interatomic forces, 

and the sums (29) reduce to the term Q=O. 
get 

In this case, we 

(34a) 

p (K .• L .. M.) = 35ML30M_2+3, 
40JJJ J J 

(34b) 

P 60 (K J ,L J ,M J) =231M~- 315Mt+105Mf-5, (34c) 

( 6 4 2 15 2L 4 L 6 P 66 K i , L i , M i ) = K i - 15K i L i + K i i - i , (34d) 

and the expressions of the crystal field coeffiCients become 
the usual ones, 

-__ e_~ _1_ 4 2 A 
40 

(r) :1: Q . (35M . -30M . + 3) , 4tn:
0 

4r 280 j J J J 

e ,a 
A (r) = ----eo 41Tc o 6! 

1,.. 634 2 ---<- Q.(231M.- 15M. +105M,. -5), 3696jl J J 

A 
66 

(r) = _e_ ~ - 1- :1: Q. (K 6 -15K 4 L2J. +15K 2,. L 4J. -L J6) . 
4 "' 61 32 ,. J J J 0 . 

5. CONCLUDING REMARKS 

(35a) 

(35b) 

(3_5c) 

(35d) 

In this paper we have derived, in the frame of the point 
charge approximation, the most general form of the one-par­
ticle crystal field potentials for cubic and hexagonal crys­
tals. 

In order to accomplish this task, it was necessary to de­
vise an alternative approach to the derivation of the crystal 
field Hamiltonian. This is based on the possibility of writing 
the potential acting on the f (or d ) electrons of the in­
complete shells of the ions of interest in the form (4), which 
is manifestly invariant to the point group of the given crys­
tal site. 
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The final results, Eqs. (18) and (28) respectively, show 
that the parametric expression of the crystal field potential 
in terms of spherical (tesseral) harmonics is the usual one. 
However, the coefficients of these harmonics are given by ex­
pressions, Eqs. (20) and (30) respectively, which consist of 
series of powers rn rather than of single rn terms as in the 
hypothesis of Coulomb interatomic forces, Eqs. (25) and (35), 
respectively. 

It is interesting to establish the connection between the 
present results and those reported in two recent papers. On 
the one hand, in a theoretical paper, Duthie and Heine 1201 

calculated the crystal field coefficients in cubic compounds 
allowing for realistic interionic potePtials, but starting 
from expressions which are essentially equivalent to the con­
sideration of the term Q=O only of Eq. (20). In order to 
settle the reliability of this approximation, a study of the 
consequences emerging from the use of the complete expres­
sions (20) is necessary. On the other hand, in an experimen­
tal paper, Devine and Berthier 1 2~~tarting with the usual pic­
ture offered by Eqs. (25) and (35), established experimental 
values which they called expectation values <r 4 > and <r 6 > 
for 4f electrons across the rare earth series. The comparison 
with theoretically calculated values showed a systematic dis­
crepancy between theory and eXperiment for <r 4>, while for <r~ 
the considerable uncertainty in the experimental data did 
not allow definite inferences. The present paper sheds new 
light on the significance of the experimental data reported as 
<r4>and <r6>values in 124 1, Indeed, Eqs. (20) and (30) show 
that these data correspond in fact to expressions consisting 
of series of powers < r n> rather than to pure< r 4 >or< r 6> values, 
hence the direct comparison with <r4 > and <r 6 >theoretical 
values obtained from atomic calculations has to be regarded 
with caution. A calculation starting with the present expres­
sions for the crystal field potentials and with v(R) taken 
from reference 1201 should permit a comparison of physically 
equivalent quantities. Quantitative answers to the questions 
raised by the above considerations are planned to be reported 
in a future paper. 
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