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1. As is well known/1•2/ the behaviour of a conduction elec­
tron in a polar crystal is described, after some idealizations, by 
the Pekar-Frohlich hamiltonian: 

"~ - ....... 
H= _P +lw<aiaK+i)+ ~~(ait ... Q~~)e\K·r 

2 m ~ i( v2.wn 
~( )- u.ll.ln"'c~t c =- (.!. _ .:!.. ,-L 
~ K - ----- o €oo fo } 

( 1 ) 

K . 4 
where we use the units corresponding to 1l •1 • -p and r are 
the momentum and coordinate operators of the electron, nn is its 
conduction effective mass in a rigld lattice, a} and ait are 
the creation and annihilation operators of phonons with quasimomen­
twn K and frequency CIJ , K takes values in the first 
Brillouin zone, .n. is the volume of the system, £,. and Eo 
stand for the higb frequency and low frequency dielectric constants, 
- e is the electron charge. The constant of coupling strength 

is defined by 0( =- ~2Co (~ ) 1
/:t • 

The problem formally corresponds to that of a particle (the 
electron) with mass ~ interacting with a quantum Bose field 
which carries momentum 1. itd~d.it • The total momentum 
4 ~ ~ 4t.. "l 
G = r + {- 1\. a...:.a~ is conserved and forms together with all 
other quantum numbers v a complete set to determine the eigen-
values t(-.>, lP) and eigenvectors I v,i> of the hamiltonian. 
In paper/3/ it was shown that in the state I '.J 1 f > the mean veloci­
ty of the electron is given by vN,f): <->,il i:'tmh>,&>= -~~~> 

If it is possible to describe the system in terms of a free 
phonon field and a quasiparticle with renormalized mass and self 
energy, then, such a quasiparticle is called polaron. Of course, as 
it was noted in/3/, in the general case the effective mass and the 
self energy will be temperature dependent quanti ties. ( E ( "'• p) ; 
m .. (c:a,p) ; P" ( k6T)".t.). 

In paper/3/ this idea is performed in the following·~· for 
T: 0°K, Let 'vo,if) be the state with lower energy f('i.,~) 

for fixed 0 . The electron mean velocity in this a tate ia 
V(\).,,i9)"" i!;~y·') which determines (9 u a function of 
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~ 1 ~:&<vo, V'). 
is zit 'f . Then, 
fective mass m• 

The energy of the free phonon field at T =0°1C 
the polaron ground state energy fo and the ef­
are defined through 

... [ _. --1 ~ c.l .1 ... 2 ECv): E vo,f(v .. ,v -t..J~ z = Eo+2M v +·---

At zero temperature the free field momentum is zero and the 
polaron momentum coincides with the total momentum CP . then we 
have for small v 

.. H(vu,tP) (P 
V= ;)i :::: m"' 

An extensive literature exists/1-5/ devoted to the calculation 
of E0 (CC.) and m*'{Ol) using a 'reat variety of methods. In the 
framework of the Feynman approach 6/ to the problem the expression 
for E(ct,p) has been given in/7, 81. However, to our knowled­
ge, expressions for m•<a~,~) generalizing the definition given in/J/ 
have not been obtained. As will be shown,Bogolubov•s approach is 
adequate and very useful to treat tnis problem. 

2. To obtain the polaron characteristics at finite temperatures 
we start from the notion that, in the state of thermodynamicalequi-
librium at temperature 'r ( p • lt~'l') we have a free phonon 

field with free energy F·(~) and a noninteracting (with the 
field) quasiparticle with mass m•(o~,~) and self energy E(ct,\?>). 
T!le last may be obtained from the corresponding "polaron free ener­
gy" {see below). To obtain the effective mass it is necessary to 
determine the additional energy acquired by the quasiparticle when ... 
it moves with small, but finite, average velocity V • This is 

I 
precisely the picture observed in a frame of reference Smoving 
with veloCity -V with respect to the laboratory. In 5 1 the 
hamiltonian of our system is/9/: 

1\' ~ _,.. !. 
H= H-V·l? (2) 

and the statistical operator, according to the general principles 
of statistical mechanics, must have the form 

,., -- "' . ~(.V):: e-~(H -).·i) . (J) 

~ 

The parameter ~ m~ be determined from the condition that the 
electron mean velocity in this system is V . It is not difficult 
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to show that 1 •0. For the free energy of the whole system in 
the frame of reference s· we have 

A 

cp<cc.,~,v)=--"f; In Sp up{-~<t.f-v.&)] (4) 

and the free phonon field free energy is given by 

~ { w t I ( -~'<ul-K·V))} Fcp tr,v)= £,. i + ~ " 1.- e I 

~ I 
Then the "polaron free energy" in 5 is 

(5) 

Fta~,r,v)= ~<at,r,v>- F.p<,.v) (6) 

Taking into account (4) and (5), f{ot 1p,v) 
the form 

m~ be rewritten in 

" . 
S 

-r(H-V·'> 
pt 

Flat,p.vl=-~11"1 \1 e-~ 
-l'l(w-~·~) 

~-e r 1 .. 
Por sJD&ll 'I we have 

F( .. ' i .. -+2 oC,r,v)-= F(e~,p)- 2m Cac,~) V+·--

(7) 

(8) 

where Ft~,p) is the polaron free energy in the frame of refe­
rence where the electron mean velocity is zero and m.lll(«,p) is the 
polaron ef~ective mass. The self energy is obtained from FCa,~) 
by the formula E(a,~)=. f ~FCCI,~)- /;1 . Then, to obtain the 
polaron characteristics ~e have to calculate the quant1t7 FC«,p,v) 
for small V • Of course, we suppose that ltJ- t(.l/ >O for 
all K in the first Brillouin zone. When ~-+00 the free energy 
F(ot,~) and the masa rn-Yc«,p) tend to Eo(ot) and m•(C() re-

spectively. To show this note that from (7) it follows that 

liM Hat,r,;;> ... ~;n t rc~i)-v.i]- 5'. 
p-+ao ~ ~.'f} 1f' 

for small enough V 
lim F(<l1B,Vl= E(~.,io)- ~.fo -l. ~ r .. co r it 
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... 
_. 0 E.( llo1c9u) 

and from the condition of minimum V:::. alfu ..,. . Now, taking .i.n-
to account the expressions for E l \7) and V No,i), we have 

I• F( _.. t • 2. rrn oi 1 A1 V)-= Eo-- M V 
J!>-+ OCI ~- 2. 

eo that 

lim Feat., f'J) = Eo (01) 
~.Jooo I 

. tc 'I< 
lrm m (cc, ~) = M (ex) 
~-+oa 

3. Now we pass to obtain an exact path integral repreeentat.i.on 
for F(ot.1¥,V) • The path integral method has been shown to be very 
useful in polaron theory/4-S/ since it allows one to deal in an unique 
approach wi tb the weak coupling ( ~ < 1 ) , strong coupling ( 01. >) 1 ) and 
intermediate coupling cases. To obtain the path integral representa-
tion for F(Ol 1 ~1V) we will make use of the method described 
in/10/, 

Using the Bogolubov canonical traneformation/3/: 
.. " · .... .. "+ ~ + _ ~ K· r 4 !to. - "+ ,. b = C\~ e t K • r • b :: Q.:? e • (9 = ~ ;- Z, K ol<- bl<... • 

K ~ lj( II; I K 
The hamiltonian is written in the following way 
A ~2 ~ ~ • + • f..(K\ "+ " \ ) K• k1 ~~>-4 " f't b 
H= 2m+ftw-~ 1nitb ... +~)·?~t.llltl.lbi-+b,t,~1,a;-~brb~t' ~r! <9 > 

The trace in expression (7) can be calculated using the 
of eta tee of (9) for i< K) .. o. We have 

" !'. ~2. ... ~) s -r<H-~·&> ( t!l"i ;fl2rn-v.t 
P Q = )<~1\)3 e w<"i> 

,... ,. ,. 1 
where W(;)= Sp exp[-rlHJ.--tH2 tH3 ) 

q;. 

complete set 

(10) 

,. + ~ ,.. .. ,.. .t " k -I"+ "+ A 

H1 = ~ tw-% )(b~".. .. i) ; H~= l: ~ <b.t+ b~); ~-L 2~ ~bitt>". btt' ' 11 
> 

K ~ V2w.n.. ~ ;c:' 

As in/10/ we define the generating functional 

... .... t -~H ~ " .. .ra ..,. A-+ .. 1} w, (c91') = J.P e. 1 'T'up{- S
0
d't' [ H2.t'"t) +~ ~(1:l+ i.~~ ~(t)~it btt<t)bKti:-)j , 

where 
"' " .. - :-.a 

,.. 1-\1: .. -H'I:,. ,.. -(w-~)'t'"-t "+{lol-b)t' 
A<t)=e 1 Ae:t;bit<~>=bre "";bit)::bite m • 
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/10/ .... As was shown in the functional W"J (&,\) satisfies the equa-
tion 

.... .... s' dVV~) = .!. d-r 
()~ 4 G 

2 ..... 
8 Wq((JJ~) 

b ~(1:) 8 ~(1:) 
( 12) 

with the initial condition 

... H A 2.... "+ A. " (c 
W0 (6',{):. ~p e"f .t'l'e•pt 

0

dT(H1('tHifm ~('t)·~itbitc)b;(t)1\~13) 

The solution of (12),(13) may be written as a functional integral 
(eee/101) and for W(Q)=. W:~.C&,o} we have 

_ )~~up l-S~d"t\1.('t)1 We(~~) 
VV(~): p 

~f) ( up(- )d'l: ~z("t)l 
(14) 

0 

now, using the results of paperA 1/ the expression (22) may be re~ 
written in the following way 

A~ A A+ A ....... TIR s ~ -1Hit(b~b~+i) -A~brt -B,tbi} 
Wo (19, ~) = it p \.e. r " " e. e ( 15) 

: <P 
where .. ... • sp K·\9 ~ -+ .... 'A• = w- -1-- li K· dt- F("t) 

K M p.Jm o I or, 

R
-+- t if_1(K) )~d )or:;d.._ - (W- K·i)(l',·t'1..)- ~~ j\. 5 ?("t) d't' ~ 
11. - exp -- l's. ~ e. m l 

~n ~ 
0 0 't 

tA"l} {(~<.) ~~ !lcJ_it.i)T!.i~K·)\<"t)dt" 
-:.-- d't' e, M o 

6~ ' ~'J.IIo)[l. 
making the change of functional..,.variables . ([".. (~ ... } 

"tC"t)='Jm ~<-r)+t\rv\-v • (16) 

we have ll ::w-it.v .. \iCrcr'-iTto)lu Re.Ai)a the trace in (15) 
is easily calculated sed we obtain 

ip~;h. A .. B• 
exp IC. K 

t-it),l ePl-i . 
W0 <i,~) • TI RK ... 

K 

(17) 
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Now putting (14) into (10), taking into account (16),(17) and per­
forw"ng the integration over CJ we achieve the result 

Sp e~(H-v·~~ 
~ ft~ rm):O ~ mv -r:;- , m { =- 2 

- e,2 --i'tt'('r) A-B .. l :t n~.y) (,s~ e 2. o T\ RjtUP t.:il" (18) 
K lt- e:-r(IAI-K ~ ) j( e\ -1 • 

i'Co)co 

Making now the change of functional variables r ('t) = X ('t')-u 't • 
where 'il= tv and taking into account expression (7) we get 
the final result. 

Xc~):i!~ 
f<cX,_p,v) = _ .!.. 1, ( "'.... - S[X,U] p ) .,.,x e 

~(o)::c 

( 19) 

where 

~ • 2 £.'-C)~~~ -IUIT,-Ttfw(1j-T',.)\ .......... 
5(t, ~] .. m ~d't x <-r)- t-K- dT,dr~l ~ + e ·~K·(x<r.)-X(T:~.)] • 

z o "K 2c.J!t o \ 2 e~Col+~K·~1 e (2o) 

Formulae (19) and (20) solve in principle the problem of obtaining 
the polaron self energy and effective mass at finite temperatures. 
Starting from (19) and (20) different approximation schemes may be 
developed (perturbation theory, variational calculations, etc.) to 
calculate F(~ 1~1 V) and from it using (8), obtain the energy and 
the effectivemass. Concrete results will be published in our next 
paper. 

4. Let us pass now to discuss the problem of the validity of 
the Pekar-Prolich model to describe the electron-phonon interaction 
in polar crystals. As is well known/1/thls description is valid if 
the main contribution to the electron phonon interaction is given by 
those regions of the crystal located at a distance from the electron 
much larger than the lattice constant. In the opposite case it is 
necessary to consider the discrete structure of the crystal which is 
neglected in Pekar-Frohlich's model.The parameter giving a quantita­
tive criterium of the validity of this description is the polaron 
radius wbioh is defined as some erfective radius of the polarization 
charge 4istribution formed around the electron. Knowledge of the po-
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laron radius as a function of~ and ~ allows us to determine 
until which temperatures the large polaron picture is correct. 

Let ~(X) be the average polarization charge density in the .. 
point X if the electron is located at the origin. The total 
charge of this distribution is ':\=~A '(X) d3.X and the mean 
interaction potential energy between the electron and the polariza­
tion charge distribution is 

~.d:s .. ~ <x> 
U=-e £. x ~ • 

We define the polaron rad~us R as the distance from the electron 
at which must be located the point charge ~ in order that its 
interaction potential energy with the electron be equal to \J • Then 

R is given by 

i. 
= 

R 

(J3-. ~(x) 
~ 0 

)1. lstl 

)d3x ~tx) 
.n. 

(21 ) 

Note that the 
same physical 
defined by 

definition of radius given in/1/ has essentially the 
~ense. The gperator of polarizatiSl,.n charge density is 
~ (x) =- V • .e Cx) , where .1? (X") is the pol a-

rization operator and is given by 

" lA) 1 Co \i/t " lK•X 
~<x)=-L i"\l\K7 "'it e. 

it 

.. ,(T " ""1 
i '1-tt = -.u.:; (ak' +a -i<) .(22) 

The average polarization charge density ~(x) is, by definition 

~ d<l (GI~lx) I G.) ( o,G. \e~H lo,G..) 
~(i) .. 

)da. (o,G.Ie-~~lo,Q.) 
(23) 

where Q=\<tit\ is the set of oscillatarcoordinates and 

.. ~ w t~o )lfr.0 t'K·x 
(G.\~<~>1<~.)-:.- ~ l~ 1i K e. • 

1\ 
For the statistical operator in the coordinate representation 
<'F'~Ie,.-:q;t,G.) according to/121 we have 

I _. -,t.l ' .. r-<r)=·- &'l=G.: ~ 

{ t-' d 1 e~'"'I;:,G.) = !. ) 1?J r ~.SQ. q,.p \-) du 1"\ (H,~\Q.lu)] \ (24) 
I !I. Ho):-. r CllO):~ 0 • 

I 
where A(~l= ~ 1i<()h~it 

H(r,Q]= ~m~•+ i ti~+~~«:f.~ +I.'-<~) ~it e'k·~ ~~G ···= l\ )~t ... 
Z f 51:/& Q~\c Q.. if ,;<(e>)c"t;< 
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The path integral over oscillator paths ~i(~) 

using the general formulae of/121. Using the notation 

I' . .. ... -<o>"t c.!'\' 
.. tCK) {' d -I.I'I.·N't\ l e e l 

Al((r)= i"W .)
0 

't' e. i-4t.-pw+ el'w-t. 

we obtain 

is obtained 

(25) 

N:pl::O 
pH { J9 .... -S[~oln I rw- 1 il(o) a} 

(o,G..I i lo,G.):.n..!.) ,.. e ... ViM"hjiwe.xP,-fth 1?: [~lA~) 
l'(ol;o• IC 

Now, taking into account (22) and (25) we have for ftt) 

~(xl1~)"2.~ K{(K.\~.iK·V(~"t[ e-(U"t + ew't' ] <e-.:at.r('t')) (26) 

lii.n. ~ 1 J 1-ePw e~lol-i s 
0 

where ;:{Jl):C 

) ~rt - S(it,o] -\i<."YCT) 
e. 

{ i il-1<<>), '\;,)oO -S [ jt 0] 
/fiJ~ e. I 

;:cC>\"'"' -ii.~(t') o _iK.r:f-'tl\c. 
It is not difticul t to note that (e. >. = ( e ~ . s 

because the paths satisfying the conditions ~(o) = P(p)= 0 

can be extended as even periodic functions outside the interval[o,p] 
so that jt(o)= r((~l= 0 • Then, taking into account the definition 
of {(K) , we obtain for ~ Ot) 

. • • p -Wt' ._. ~ ~ 
~lX) .. ~! e'"K•X sd't _!..__ < i~K·,-("C) l 

n. it 0 1-e.-rlol s 
and the polaron radius, according to (21), is given by 

~ -c.l't . ,. .,. 0 

~= ~ l.!.. fot....L_ ( e-~K· .. C't'). 
R n .. k2. l · 1 -e.-~w s 

I( 0 

(27) 

(28) 

J.l'rom (27) 1 it follows that the total charge ~ of the polarization 
charge distr+bution around the electron is ~= eC0 • As in Pe­
kar-J.I'rolich1s model Co is considered to be a constant we see that 
the charge ~ is temperature independent. The effective charge of 
the polaron is e{c.-l.). 

• 
... 

:1 

• .fl 

,, 

Expresslon (28) will be used by us to evaluate the polaron 
radius in the framework of different approximations used to calcula­
te the polaron characteristics. 

We express our gratitude to Academic N.N.Bogolubov for his at­
tention and very valuable recomendations to this work. We are also 
indebted to N.M.Plakida, V.P.Priezchev, M.A.Smondirev and E.A.Koche­
tov for useful discussions of our results. 
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