


1. A8 is well l:novm/1 2/ the behaviour of a conduction elec-
tron in a vpolar crystal is described, after some idealizations, by
the Pellc\ar—l?_rohlich hamiltonian:
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where we use the units corresponding to 17\ =1, ‘P and are

the momentum and coordinate operators of the elecitron, m ig its

conduction effective mass in a rigid lattice, Cl:’: and A are
the creation and annihilation operators of phonons with quasimomen-
tum K and frequency o , R’ takes values in the first

Brillouin zone, L is the volume of the system, Eeo and €o
stand for the high frequency and low frequency dielectric constants,
~€ is the electron charge. The constant of coupling strength
. , - e2C, (M \
i definedby o= @°Co (z_w) .

The problem formally corresponds to that of a particle (the
electron) with mags M inte}‘acting with a quantum Bose field
which carries momentum {!Rasaa . The total momentum

2 Ay A
@= 1’:+§‘KQ;'C\I is conserved and forms together with all
other quantum numbers v a complete get to determine the eigen-

values €(v, ®) and eigenvectors (v,8) of the hamiltonian .
In Paper/B/ it was shown that in the state |\2§> . the mean veloci-
ty of the electron is given by V(%E)T (V,F| F/mlIv,@)= Qa%!_@ .

If it is possible to describe the system in terms of a free
phonon field and a quasiparticle with renormalized mass and self
energy, then, such a quasiparticle is called polaron. Of course, as
it was noted in/3/, in the general case the effective mass and the
self energy will be temperature dependent quantities . ( E(ﬂ.P) 5
mt(a,?\ ; F: (kST)'*)_

In paper/B/ this idea is performed in the following way, for

T=0"K, Let |V6,8> be the state with lower energy E(%,@)
for fixed 6 « The electiron mean velocity in this state is
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v, F-8(va, V), The energy of the free phonon field at T =0"%

is Z— . Then, the polaron ground state energy Eo and the ef-
fectlve nass m* are defined through
ES = "’
E= €[0,8(0,V1-2, F = Eo+ £ m™V% ...

At zero temperature the free field momentum is zero and the
polaron momentum coincides with the total momentum @
have for small Vv

, then we
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An extensive literature exiats/1-5/ devoted to the calculation

of Eo(x) and M*(a) using a 9reat variety of methods. In the
framework of the Feynman approach to the problem the expression
for E(d,p) has been given in/7’ . However, to our knowled-

generalizing the definition given in/3
have not been obtained. As will be shown,Bogolubov's approach is
adequate and very useful to treat tHis problem.

ge, expregsions for M (“'P)

2. To obtain the polaron characteristics at finite temperatures

we start from the notion that, in the state of thermodynamical equi-

librium at temperature ‘T (P' ;;;ﬁ we have a free phonon
field with free energy Ep( and a noninteracting (with the
field) quasiparticle with mass M (d,P\ and self energy E(,p),
The last may be obtained from the corresponding "polaron free ener-
gy" (see below), To obtain the effective mass it is necessary to
determine the additional energy acquired by the qg&siparticle when
it moves with small, but finite, average velocity V « This is
precisely the picture observed in a frame of reference S‘moving
with velocity -V with respect to the laboratory. In s' the
hamiltonian of our system is 9,

M
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and the statistical operator, according to the general principles
of statisticel mechanics, must have the form
Ay >
[ g (R'-2-®)
Q)= e g . (3)
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The parameter A may be determined from the condition that the

electron mean velocity in this system is 3 « It is not difficult
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to show that A -3. For the free energy of the whole system in
the frame of reference S' we have

é(d)an):'“éP‘lﬂ SP QXP[-P(H—V-@)] (4)
and the free phonon field free energy is given by
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Then the "polaron free energy" in S is

Fle, V)= @ p,9)~ Fy(p.V) 6)

Taking into account (4) end (5’), F(G,P,V) may be rewritten in

the form
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For small '\7 we have

where F("(,P) ig the polaron free energy in the frame of refe-
rence where the electron mean velocity is zero end M™(X,p) is the
polaron effective ms. The self onergy is obtained from F(d.p)

by the formula E(o,p)= 3 PF(G.P)-— . Then, to obtain the
polaron characteristios e have to calculate the quantity F(G.F,V)
for small V . Of course, we suppose that W-K: Vo for
all 2 in the first Brillouin zone. When P-ON the free energy
F(N,P) and the mass m“’(a,P) tend to Eo(o) and M¥(X) re-
spectively. To show this note that from (7) it follows that
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for small enough -\7
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and from the condition of minimum V= - . Now, taking in-
o
to account the expressions for E(V)  and V(Vc,g), we have
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so that

m Fle,p)= Ea (@) lim m¥p) = o) |
P-Poo P-’roo

3. Now we pass to obtain an exact path integral representation
for F(o(,F.V) . The path integral method has been shown to be very
ugeful in polaron 1;heory/4"8 since it allows cne to deal in an unique
approach with the weak coupling (&< 1),strong coupling (&>> 1) and
intermediate coupling cases. To obtain the path integral representa-
tior110/for F(G,P,V) we will maeke use of the method described
in

/3/,

Umng the Bogolubov canonical tra.nsformation
-IR-F Foa3 n
ai’e\K(‘ b aie‘ 0 ‘P-{-Z‘Kb?b; .
The ha.uultonla.n is written in the follovung way
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The trace in expression (7) can be calculated using the complete set
of states of (9) for r {{Q -0. We have
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As in/w/ we define the generating functional
- - H p ~ A X - A+ A .
W, (§,8)=3p et Texp{-§dt [Ha(r) +g Hyw+ Wz ﬁmz..?b;‘ﬂbék)]},
where
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As was shown inﬂo/ the functional Ws(g,-{) satisfies the equa-
tion
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with the initial condition
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The solution of (12),(13) may be written as & functional integral

(see’/1%/) and for W(§\‘ W1(6 3) we have

Sﬁﬁ exp |- Sdtq (tﬂ Wo (8,8)

W (14)
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now, using the results of paper’h/ the expression (22) wmay be re~
written in the following way
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making the change of functional variables
t0 = Em+i(GV) (16

We have Az =N-K°7+{zfg(l“'?(°)11f Re Ag¥»0 the trace in (15)
is easily calculated and we obtain
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Now putting (14) into (10),
foru.ng the integration over

taking into account (16),(17) and per-
we achieve the result
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Making now the change of functional variables ?(’c): R®-UT R
where WU=iV and taking into account expression (7) we get
the final result.
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where
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Formulae (19) and (20) solve in principle the problem of obtaining
the polaron self energy and effective mape at finite temperatures.
Starting from (19) and (20) different approximation schemes may be
developed (perturbation theory, variational calculations, etc.) to
calculate F(O(,P,V) and from it using (8), obtain the energy and
the effective mass. Concrete results will be publighed in our next
paper.

4. Let us pass now to discuss the problem of the validity of
the Pekar-Frolich model to describe the electron-phonon interaction
in polar crystels. As is well known/1/this description is valid if
the main contribution to the electron phonon interaction is given by
those regions of the crystal located at a distance from the electron
much larger than the lattice constant. In the opposite case it is
necessary to consider the discrete structure of the crystal which is
neglected in Pekar-Frohlich's model.The parameter giving a quantita-
tive criterium of the validity of this desoription is the polaron
radius whioch is defined as some etfective radius of the polarization
charge distribution formed eround the electron. Knowledge of the po-~
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allows us to determine
until which temperatures the large polaron picture is correct.

laron radius as & function of & and P

Let Q()?\ be the average polarization charge density in the
point X if the electron is located at the origin. The total
charge of this distribution is q=3n ey d’X and the mean
interaction potential energy between the electron and the polariza-
tion charge distribution is

3~ ?(")
U:—eld |sz‘ .

We define the polarom rad.ius R as the distance from the electron
at which must be located the point charge q that its
interaction potential energy with the electron be equal to U . Then

R is given by
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Note that the definition of radius given in/1/ has essentially the
same physical gense. The operator of polarizatign charge density ise
defined by Q(x\=—-v PRy, P(®) is the pola-
rization operator and is given by

A Co \M2 A (RY
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The average polarization charge density §(X)
-BH
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where Q= {Q‘R} is the set of oscillatarcoordinates and
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For the statistical operator in the coordinate representation
<FQte PHIF QY according to/12/ we have
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The path integral over oscillator paths QR(u) is obtained
using the general formulae of/12/. Using the notation

..

Ag(®) = i(x\ Sd" e o [. 1-epwtgpusy ] (25)

we obtain
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Now, taking into account (22) and (25) we have for ?(;)
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_ It is not difficult to note that (e"‘ Mﬂ) < -tn-rqi ﬂ>
because the paths satisfying the conditlons (o) = F(p\ao
can be extended as even periodic functions outside the interval[O,P]
so that F(a=F(P1=0 , Then, taking into account the definition
of 4(x), we obtain for g(;)

ewle § (KX BTE{ AN
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and the polaron radius, according to (21), is given by
wre -(R.?

R aQ Kz 1 e[“’“ (28)
From (27),it follows that the total charge q of the polarization
charge distribution around the electron is =eCo . Ag in Pe~
kar-Prolich's model C, is considered to be a constant we see that
the charge is temperature independent. The effective charge of

the polaron is Q(C.-L).

Expression (28) will be used by us to evaluate the polaron
radius in the framework of different approximations used to calcula-
te the polaron characteristics.

We express our gratitude to Academic N.N.Bogolubov for his at-
tention and very valuable recomendations to this work. We are also
indebted to N.M.Plakida, 'V.P.Priezchev, M.A.Smondirev and E.A.Koche-
tov for useful discussions of our results.
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